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During the last years, there has been increased interest in developing efficient radial basis function (RBF)
algorithms to solve partial differential problems of great scale. In this article, we are interested in solving
large PDEs problems, whose solution presents rapid variations. Our main objective is to introduce a RBF
dynamical domain decomposition algorithm which simultaneously performs a node adaptive strategy. This
algorithm is based on the RBFs unsymmetric collocation setting. Numerical experiments performed with the
multiquadric kernel function, for two stationary problems in two dimensions are presented. © 2008 Wiley
Periodicals, Inc. Numer Methods Partial Differential Eq 25: 1482–1501, 2009
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I. INTRODUCTION

During the last decade, radial basis function methods for the solution of partial differential
equations have gained considerable attention both in the engineering and the mathematical
communities. Several approaches for the solution of PDEs by RBFs have recently appeared
in literature. Among them, we emphasize the pioneering works of Kansa [1, 2] on asymmetric
collocation methods, the symmetric collocation version [3], the method of fundamental solutions
[4], the Galerkin techniques for compact RBF [5], and the differential quadrature methods [6].
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All these methods have already had an impact in different applied fields such as, financial
mathematics, meteorology, geophysics, and computational fluid dynamics, see [7, 8] and the ref-
erences therein. Unlike classical methods, such as finite differences, finite volumes, and finite
elements, the lack of grid generation in these methods is a fundamental issue that explains their
success. Among the most important advantages of these RBF methods we have that: they are are
algorithmically simpler than the classical techniques, they are better suited to cope with problems
in high spatial dimension with complex boundaries, the adapting techniques are far simpler and
flexible than the corresponding mesh adaptive methods, and an exponential rate of convergence
can be attained as the number of nodes increases [9].

On the other hand, it is well known that the condition number of RBFs collocation methods
becomes highly ill conditioned when the number of nodes increases. This problem, known as the
uncertainty principle of Schaback [10], has been tackled by many of different methods among
which the most prominent are the preconditioning and the domain decomposition techniques.

In this article, we are interested in solving large PDE problems whose solution presents high
gradients in some regions of the domain. Specifically, we introduce a RBF collocation algorithm
that combines a domain decomposition technique with a node adaptive algorithm. The domain
decomposition method is proposed to cope with the bad conditioning because of the large size of
the PDE problem. Simultaneously, a node adaptive technique is built to efficiently approximate
the oscillatory or high gradient regions of the solution. Several advances in domain decomposition
and node adaptive methods have been reported in the literature. It is worth mentioning that in the
field of approximation theory, Iske and Levesley [11] combines an adaptive node technique with
a domain decomposition method for scattered data distributions.

In particular, domain decomposition methods for unsymmetric RBF collocation techniques
have been treated in several recent works. Stationary PDE problems have been studied in [12–15],
whereas time dependent problems have been treated in [16–18]. In a recent work by Zhou et al.
[19], both multiplicative and additive RBF algorithms are formulated and numerically studied.
Among their conclusions, the authors report that the multiplicative Schwarz algorithm is twice as
fast as the additive one, although the additive version is easier to parallelize than the multiplicative
version. In Zhang and Tan [20], a convergency proof is given for both RBFs multiplicative and
additive Schwarz algorithms in two domains. Except for [16], which uses a multizone algorithm
for nonuniform nodes, all these works have been formulated for Cartesian grids. In our case, a
nonregular data distribution of nodes and a dynamic subdomain partition are necessary due to
influence of the node adapting algorithm.

In the field of RBFs, node adaptive techniques some articles have also recently appeared in
literature. In one dimension, both stationary and time dependent PDE problems have been treated.

In two dimensions, Behrens et al. [21,22] formulate a RBF node adaptive technique. In this last
approach, which is of semi-Lagrangian type, the authors use a local error estimate to determine
the node insertion/remotion strategy of the algorithm. A Delaunay triangulation, and its dual, the
Voronoi tessellation, is employed to localize a node and its neighboring points. In Drisscoll and
Heryudono [23], the authors formulated a node adaptive technique based on a global error estimate
that determines the node insertion/remotion strategy. In Pereyra et al. [24], a global optimization
technique is formulated to solve stationary PDEs problems by the collocation technique based on
Gaussian kernels.

As far as the authors know, none of the former methods combine both domain decomposi-
tion and node adapting techniques to solve the PDE problems. The method presented in this
article is based on a RBF Schwarz multiplicative domain decomposition algorithm with a vari-
able number of subdomains combined with a local node adaptive technique based on a quadtree
structure.
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TABLE I. Classical globally supported radial basis functions.

Multiquadric (MQ) φ(r) = √
r2 + c2

Inverse multiquadric (IMQ) φ(r) = 1/
√

r2 + c2

Gaussian (GA) φ(r) = e−(cr2)

Thin-plate splines (TPS) φ(r) = rm log r , m = 2, 4, 6, . . .
Smooth splines (SS) φ(r) = rm, m = 1, 3, 4, . . .

This article is organized as follows: In Section II, a brief review of the asymmetric collocation
method is presented. In Section III, we formulate both overlapping additive and multiplicative
Schwarz algorithms in the context of RBFs. Section IV, is devoted to introduce a node adaptive
algorithm for non-uniform centers. In Section V, the domain decomposition node adaptive algo-
rithm is presented. Numerical results for a Poisson and a stationary convection-diffusion problems
are presented in Section VI. In Section VII, final remarks and conclusions are presented.

II. RADIAL BASIS FUNCTIONS

Consider the following generic elliptic PDE problem

Lu = f in � ⊂ R
d , Bu = g on ∂�, (2.1)

where L is a linear partial differential operator and B a boundary operator that can be of Dirichlet,
Neumann, or Robin type. In Kansa’s approach [1, 2], the exact solution u(x) of problem (2.1) is
approximated by ansatz

ũ(x) =
N∑

j=1

λjφ(‖x − xj‖) + p(x), x ∈ R
d , (2.2)

where λj is the unknown coefficients and p ∈ πd
m is a polynomial, which depends on the particular

RBF kernel [7], of degree at most m in d-dimensions. The most popular RBFs are displayed in
Table I, where c is a positive constant called the shape parameter. Substituting the ansatz (2.2)
in the elliptic PDE problem (2.1), where we take p = 0 for exposition simplicity, we obtain the
following algebraic linear system of equations

A� = F , (2.3)

where F = [f g]T , A = [L�a B�b]T , � ∈ R
N , �a ∈ R

ni×N , �b ∈ R
nf ×N , and N = ni +nf

denotes the division of the N collocation nodes into interior and boundary nodes. The entries
of the matrix A are L�a = {Lφ(‖xi − xj‖)}, i = 1, . . . , ni and B�b = {Bφ(‖xi − xj‖)},
i = ni + 1, . . . , N , j = 1, . . . , N . In the literature, this method is also known as the unsymmetric
collocation method, due to the asymmetry of the matrix A.

The system (2.3) can be solved by LU factorization to obtain the vector � = (λ1, . . . , λN)T ,
which determines the numerical solution (2.2) at any point in �. Namely, we obtain that ũ = H�,
where each row of H ∈ R

M×N is given by (φ1, . . . , φN) with φj = φ(‖x − xj‖) and where x

belongs to the set {xi}M
i=1 of points where the solution is evaluated. To the best of the authors

knowledge, no theoretical proof exists of the invertibility of the matrix A. However, the method
has been successfully applied to a wide range of applications.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 1. Two subdomains with overlapping.

III. OVERLAPPING DOMAIN DECOMPOSITION METHOD

Domain decomposition methods are divide-and-conquer techniques that are used to solve large
PDE problems. The original problem is divided into small subproblems whose solutions are joined
through an iterative process to build an approximate global solution. In this section, we present
Schwarz overlapping methods in the context of RBFs collocation techniques.

To do so, recall first that the classical Schwarz alternating method is an iterative algorithm
that solves the subproblem in each subdomain alternately and couples the subproblems together
by overlapping each subdomain and exchanging function values (Dirichlet data) at the artificial
boundaries.

Although the following approach can be easily extended to N subdomains, for simplicity on
the exposition, we define the alternating Schwarz overlapping method for the case where the
whole domain � is decomposed into two subdomains �1 and �2 (i.e., � = �1 ∪ �2 with the
two artificial boundaries �1, �2 intersecting ∂�, see Fig. 1). To illustrate the method, consider an
elliptic PDE with Dirichlet boundary data

Lu = f in �,

u = g on ∂�, (3.1)

where L is some elliptic differential operator. In what follows, we summarize the Schwarz addi-
tive and multiplicative domain decomposition techniques to formulate these schemes within the
RBF setting. In the additive version, the artificial boundary values of each subdomain problem
at the (n + 1)th step are updated from the results of the nth step, whereas in the multiplicative
version, the artificial boundary values of each subdomain are updated from the most recent results
obtained from its neighboring subdomains. So, we could properly say that the additive method is
a Jacobi type iteration, whereas the multiplicative one is a Gauss-Seidel.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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• Additive version: Set u0
i initially in �i , i = 1, 2, and construct un

i in parallel:

Lun+1
1 = f in �1

un+1
1 = g on ∂�1\�1

un+1
1 = un

2 on �1

and (3.2)

Lun+1
2 = f in �2

un+1
2 = g on ∂�2\�2.

un+1
2 = un

1 on �2

n = 0, 1, 2, . . .
• Multiplicative version: Set u0

1 initially in �1 and construct u
k+1/2
1 in �1 and uk+1

2 in �2

sequentially:

Lu
k+1/2
1 = f in �1

u
k+1/2
1 = g on ∂�1\�1

u
k+1/2
1 = uk

2 on �1

and (3.3)

Luk+1
2 = f in �2

uk+1
2 = g on ∂�2\�2.

uk+1
2 = u

k+1/2
1 on �2

k = 0, 1, 2, . . .

The solution un in � can be composed in many ways from un
1 and un

2 such that un is smooth
enough and un = un

i in �i\(�1 ∩ �2).
Using the notation introduced in Section II, choosing the subdomain problems small enough,

and assuming the invertibility of Ai , we have that their solutions can be directly obtained from

�i = A−1
i Fi , i = 1, 2, (3.4)

where Ai = [A�̄i\�i
A�i

]T , Fi = [F�̄i\�i
F�i

]T , and �̄i = �i ∪ ∂�i ∪ �i denote the closure of
the domain. The solution ũi is given by

ũi = Hi�i , i = 1, 2, (3.5)

where Hi is the matrix of RBFs at collocation points where the solution is requested.
Note that F�i

ũi := I�i→�j
ũi , where I�i

→ �j is the discrete operator that assigns the nodes
of �i to the nodes on the curve �j . Clearly, Fi includes the artificial boundary conditions that
changes with the updating results of its neighboring subdomains. At each (n+ 1)th iterative step,
the subdomain solution to (3.1) on �̄i can be rewritten as

�n+1
i = �n

i + A−1
i

(
Fi − Ai�

n
i

)
, n = 0, 1, 2, . . . . (3.6)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Or using Eq. (3.5), we can restate Eq. (3.6) in terms of the approximate solution

ũn+1
i = ũn

i + HiA
−1
i

(
Fi − AiH

−1
i ũn

i

)
, n = 0, 1, 2, . . . . (3.7)

The Schwarz additive and multiplicative overlapping domain decomposition methods can now
be formulated in terms of the radial basis function collocation setting as follows.

• RBF additive version: In this algorithm, the artificial boundary values of each subdomain
problem at the (n + 1)th step are updated from the results of the nth step. Hence, (3.7) can
be written as

ũn+1
i = ũn

i + HiA
−1
i

(
F n

i − AiH
−1
i ũn

i

)
, n = 0, 1, 2, . . . . (3.8)

for i = 1, 2.
• RBF multiplicative version: In this algorithm, the artificial boundary value of each subdomain

is updated from the most recent results obtained from its neighboring subdomains

ũ
n+1/2
1 = ũn

i + H1A
−1
1

(
F n

1 − A1H
−1
1 ũn

1

)
ũn+1

2 = ũ
n+1/2
2 + H2A

−1
2

(
F

n+1/2
2 − A2H

−1
2 ũ

n+1/2
2

)
, n = 0, 1, 2, . . . . (3.9)

It is worth noting that the additive (3.8) and multiplicative (3.9) Schwarz versions correspond
to the block Jacobi and block Gauss-Seidel iterative type methods, respectively.

The former schemes allow us to calculate the approximate solution in each of the two subdo-
mains �1 and �2. As mentioned, there are several ways to smoothly compose the global solution.
In the case of Cartesian grids, the existence of a mesh parameter combined with a particular cri-
teria in the overlapping zones gives us a solution to this problem. In this work, however, we aim
to formulate a domain decomposition algorithm for scattered data centers combined with a knot
adaptive strategy. Thus, neither the subdomain partition strategy nor the extension algorithm used
to build the overlapping zones are trivial. The nonuniform data distribution in each subdomain
requires a special criteria to form the extended subdomains. In the following section, we shall
briefly describe the node adaptive strategy, whereas in Section V, we formulate the combined
domain decomposition node adaptive algorithm.

IV. ADAPTIVE THINNING METHOD

In this section, we construct an algorithm which combines Behrens et al. [21, 22] refinement
method with a quadtree type algorithm in two dimensions. The main difference with respect to
[21,22] is in the data structure used to localize and insert or remove the nodes. In this article, instead
of using a Delaunay triangulation or its dual Voronoi tessellation to search and insert/remove the
nodes, we use a quadtree type algorithm to perform these tasks. The main difference is that this
type of data structure allows us, by means of an octree algorithm, to solve problems in 3D.

We first describe the error indicator function used to mark the nodes that will be refined. Then,
we introduce the data structure used to perform the node refinement scheme for nonequally spaced
data.

Let 	 denote the current node set that comes from the initial knot distribution. For each node
x ∈ 	, we select a set of neighboring nodes Nx\x ∈ 	. We construct a local interpolant I ũ(x)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 2. Block and quadtree representation.

based on Nx\x, using Eq. (2.2) plus a polynomial of first degree with a TPS (r2 log r) as RBF
kernel.

Based on the numerical solution ũ(x) of the partial differential problem and the local interpolant
I ũ(x), we define the error indicator

η(x) = |ũ(x) − I ũ(x)|, (4.1)

which assigns a significance value η(x) to each node x ∈ 	. As local TPS interpolants reproduces
linear polynomials, the value of η(x) is small when the surrounding values of ũ(x) belong to a
smooth region of the solution. On the other hand, a high value η(x) indicates that the numerical
approximation around of ũ(x) presents a sharp variation, which corresponds to regions where the
PDE solution has a high gradient.

Based on the error indicator η(x), we can now define the rule to flag the nodes to be refined or
to be coarsened according to the following criteria.

Definition. Let θr and θc be two threshold satisfying 0 < θc < θr . We say that a node x ∈ 	 is
flagged to be refined if η(x) > θr , alternatively if η(x) < θc the node is marked to be removed.

This definition can be understood in the following way: only the nodes that have an error
larger than a threshold value are marked to be refined. In a similar way, the nodes that have
an error lower than a threshold value are marked to be removed. We note that according
to our experience, the threshold values can be chosen in such a way that θc is approxi-
mately of two orders of magnitude less than the selected value of θr . In general, however,
this is a problem dependent election, which up to now do not have an abstract support, see
[21, 22].

The quadtree is a hierarchical spatial data structure [25, 26] that applies when the domain �

is a square or a rectangle. The idea is to decompose the domain recursively into four new ele-
ments; these new elements are named children of the father element. Each children is labelled
with regards to its relative position as {NW, NE, SW, SE}. The center of each element or quadrant
contains a node. Figure 2 shows the box and quadtree representation corresponding to three levels
of refinement.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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FIG. 3. Illustration of node refinement in two dimensions, it is observed that the neighboring cells
are refined by the constrain 2:1. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

The information of the quadtree is stored in a tree structure, which contains the node x ∈ R
2,

the numerical solution ũ(x), the shape parameter c, the refinement level, the size of the box, the
type of the node {NW, NE, SW, SE}, a pointer to its father, and a pointer to its four children.
Based on the last three items, the neighbors

Nx = {N, S, W, E, NW, NE, SW, SE}, (4.2)

of a node can be determined in an efficient way [25]. Note, that the local thin-plate spline
interpolant, necessary to define the error estimator η(x), is based on the set of points given
by (4.2).

After each refinement, the leave of the tree must satisfy the 2:1 relationship at the bottom of
the tree. That is, for each node, we insert new nodes to have a similar (±1) refinement level on
its neighbors. This 2:1 restriction is required to diminish the highly numerical oscillations near
the regions where the solution is rapidly varying.

Based on the local error indicator η(x), we flag the elements to be refined. The refinement
process is illustrated in Fig. 3 for an initial quadtree with one level of refinement corresponding to
four elements. For each element marked for refinement (denoted by R in the figure), four elements
are inserted. Observe in Fig. 3 that the (unmarked) neighborhoods of the elements marked to be
refined are also refined. This corresponds to the imposed 2:1 constrains in the level of refinement.
A similar procedure is used to remove a given node. This strategy allows us to control the knot
density distribution, in such a way that it smoothly decreases from high density regions to zones
where the knot density is low. This procedure allows us avoid the possible presence of Gibbs
phenomena that can be generated at a sharp discontinuity between two different nodes density
regions.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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V. LOCAL NODE REFINEMENT AND DOMAIN DECOMPOSITION ALGORITHM

In Section III, the basic Schwarz algorithms for RBF in two domains were formulated, whereas
in Section IV, a node insertion/remotion technique for scattered centers was presented. Here,
we combine both techniques to build a domain decomposition node refinement algorithm for
nonuniform data. We first explain how to build the partition of the domain in such a way that
it can dynamically change as the node distribution is modified. Then, we explain how to build
the extended subdomains for this dynamic partition of nonuniform nodes. A load balance for-
mulation will be also presented. We explain how to use the multiplicative Schwarz algorithm
within this setting. Finally, we explain how the node adaptive technique explained in Section IV
is used.

We start by pointing out that the collocation scheme to be used is based in multiquadric kernels.
Thus, after a first node distribution of the domain �—which might or not be Cartesian—is built,
an initial shape parameter cini must be given. Although in this work, all the numerical examples
are based on a first or initial coarse Cartesian grid, the algorithm can be initialized by using a first
nonuniform sparse and evenly distributed set of nodes. Within this work, we have used a constant
value for the initial shape parameter cini.

The first step of the domain decomposition node adaptive technique, Algorithm 1, is to built a
quadtree index structure that records a unique global index related to each node of the domain.

The second step is to use a coordinate bisection algorithm based on the former quadtree
structure, see [27, 28], to divide the domain. Recall that this technique is a divide and conquer
procedure. For completeness, we summarize the basic steps of this algorithm. First, the coordinate
direction of longest expansion of the domain is determined, which without loss of generality, we
can assume to be the x direction. Then all vertices are sorted according to their x coordinate. Half
of the vertices with small x-coordinates are assigned to one domain, the other half with the large
x-coordinates are assigned to the second domain. For each new subdomain, the ordering process
is repeated but now in the y direction. This divide and conquer procedure is repeated recursively.
As a QuickSort algorithm is used, the numerical complexity is of order O(N log N), where N

is the number of nodes. Note that each subdomain �i , i = 1, . . . , P forms a cover of disjoint
sets, �i ∩ �j = ∅ if i 	= j , of �. To keep the load balance of the subdomains, before the divi-
sion procedure is performed, the algorithm verifies that each subdomain has at least a minimum
number of Nmax nodes. Only if this condition is fulfilled a new subdivision is performed. This
condition guaranties that there is no domain which has more than Nmax nodes. This is how the
dynamical subdomain adaptation is done. Note that the maximum number of nodes Nmax depends
on the condition number of the collocation matrix related to each subdomain. As we are not using
preconditioning techniques, typical values of Nmax which give reasonable condition numbers are
within the range of 103.

Once the subdomain partition has been performed and to apply the Schwarz multiplicative
overlapping algorithm, an extended partition has to be built to form the overlapping regions and
the artificial boundaries. For Cartesian grids, this is a simple task that is very similar to the one
used by the finite difference method. However, for nonuniform data distributions—which is our
case—the criteria becomes more involved. In this case, we aim that the nodes of the overlapping
regions that correspond to a sharp gradient part of the solution have a higher level of expansion
than those which are placed within a smooth region. This is the criteria that we shall use to build
the overlapping regions for the nonuniform node case.

To construct these overlapping regions, we first need to perform a local copy of the global
indexes which corresponds to the nodes related to each subdomain. Thus, we build a set of lists
containing each the set of local indexes related to the nodes of each subdomain.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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TABLE II. Levels of expansion to built the overlapping zones.

Refinement level Expansion level

5–6 2
6–10 3

11–14 4

Recall now that the level of the tree structure is determined by the node refinement algorithm.
The deeper the level of a given node in the tree, the higher the refinement level. Moreover, as
the knot insertion is determined by the thinning algorithm, deeper nodes in the tree correspond
to regions of the solution that presents sharper gradients. Thus, the knot tree structure determines
whether a knot belongs to a smooth region or to a sharp gradient part of the solution. These
observations are behind the criteria that we shall use to expand the subdomains.

The overlapping regions are built by means of an iterative procedure that we divide into two
steps: extension and expansion of the subdomains. The extension step depends on the nearest
neighboring nodes, related to a subdomain �i , which are used to build a first set of overlapping
regions for this domain. These regions do not depend on the gradient of the solution, a criteria
which as mentioned, is at the core of the algorithm. The expansion step solve this problem by
using the tree structure information, that is related to the gradient of the solution. In this step,
the algorithm determine—by using the position in the tree—the number of nodes that should be
expanded for each node that belongs to the overlapping regions built in the extension step.

A specific criteria should be used for this purpose. By means of extensive numerical
experimentation, we found that the criteria formulated in Table II gave excellent results.

We now explain in detail how to formulate these two steps. In the first step, given a subdomain
�i , we build the overlapping region by asking if for a given fixed node its nearest neighboring
nodes Nx , see (4.2), belong to �i . If these nodes do not belong to this subdomain, then �i is
extended by including these new nodes in the subdomain:

if (Nx(�i) /∈ �i) then �e
i ←− Nx(�i),

�e
i conform the overlapping region and the new subdomain is now formed by: �i = �e

i ∪ �i .
Recall that �e

i could contain repeated nodes, so before inserting a new node in �e
i we determine,

by a binary search over its local index list, whether the new node does belong or not to �e
i , if it

does not belong we include this node.
In the second step, based on the level of the tree corresponding to the set of nodes that belong to

�e
i , we use the criteria given in the second column of Table II, to iteratively expand each node of

�e
i . The artificial boundary �i of the extended domain is formed by the last two expanded nodes.
The Schwarz multiplicative algorithm given by (3.9), which can be easily extended to P subdo-

mains, can now be applied to the extended partition. Namely, the multiplicative Schwarz algorithm
given by (3.9), which can be easily extended to P subdomains is used. Although the number of
subdomains P changes in each global iteration, see Algorithm 1, it should be observed that the
multiplicative algorithm can be directly applied within each inner loop. The stopping criteria for
the Schwarz algorithm is given by: ‖ũk − ũk−1‖ ≤ 10−3, calculated on the artificial boundaries. As
it is well known, when the range of the solution lies out of the interval (0,1), it is recommendable
to use the relative error instead of the maximum error. Note that before applying the Schwarz
algorithm, it is necessary to localize the interior nodes of each subdomain that will be used to
update the artificial boundary of the neighboring subdomains. This is efficiently performed by
means of the local indexes lists.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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The integration of the subdomain solutions to form the global solution, corresponding to the
domain �, is performed by taking the average values of the possible intersecting points in the
overlapping regions.

Once the global solution has been built, it is then refined through the thinning algorithm pre-
sented in Section IV. The value of the shape parameter c is related to its corresponding level of
the quadtree. The deeper in the tree the lower value of c. Thus, we determine that a useful criteria
to obtain the new value of c for each refinement node is cnew = cold/2. This technique is thus an
h − c type algorithm.

An initial level levelini determines whether a given node will be removed or not: a node can be
removed only if its level in the tree is greater that levelini. This condition is introduced to avoid
the formation of regions without nodes. In this context, reasonable values of levelini are four or
five, which means that the Cartesian initial grid or nonuniform evenly data distribution, have 44

or 45 nodes, respectively. Note also that, the deeper the level in the tree, the closest the distances
between the nodes. Consequently, to control the minimum distances between the nodes it is nec-
essary to bound the maximum number of levels in the refinement procedure. In our experience,
this can be achieved by limiting the number of levels to be 9 or 11.

The global stopping criteria of the algorithm in the global loop is given by the following rule:
either there are no more nodes to insert or a maximum number of iterations Niter is exceeded.

Algorithm 1. Local node refinement and domain decomposition algorithm
Define the variables: levelini, cini, θr , θc, Nmax.
Build the initial tree and refine twice on the boundary
while max{η(x)} > θr or iteration< Niter do

1. Partition � obtaining the subdomains �i , i = 1, . . . , P .
2. Form the overlapping zones.
3. Solve the PDE problem by the multiplicative Schwarz algorithm.
4. Join the solution obtained in each �i to build the solution in �.
5. Perform the node adaptive scheme.

end while

VI. NUMERICAL RESULTS

The aim of this section is to demonstrate the algorithms described earlier for the solution of PDEs.
For this purpose, we consider two partial differential equations in two dimensions. The first is
a Poisson equation and the second is a convection-diffusion problem. Although the numerical
results presented in this section have been performed by using the DD-refinement algorithm with
multiquadric kernels, we note that different algebraic RBF functions have been successfully used,
for a DD algorithm using an equispaced grid, to solve PDE problems, see [13]. For this reason,
we have included numerical experiments that use this kind of kernels within the DD-refinemet
algorithm, to compare them with the multiquadric results.

A. Poisson

Consider the following Poisson problem in two-dimensions{
∂2u

∂x2 + ∂2u

∂y2 = f , in �,
u = g, on ∂�,

(6.1)
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TABLE III. Decreasing of the error vs. iterations for Poisson problem.

Iteration Subdomains N Emax

0 2 2152 13.38180
1 2 2884 3.078997
2 4 3589 0.108308
3 4 5344 0.010537
4 8 7252 0.010239
5 8 8548 0.006888
6 8 8686 0.006892
7 8 8728 0.006890

where u = u(x, y), �=[−1, 1]2 and the functions f , g: R
2 → R are determined using the

analytical solution

u(x, y) = tanh(x + 50y). (6.2)

The analytical solution presents a sharp variation parallel to the x-axis with y = 0, whereas
outside this zone it takes a constant value. Our goal is to reduce the numerical error and simulta-
neously increase the throughput by using Algorithm 1. For this purpose, the following parameters
where selected: initial shape parameter cini = 0.1, coarse node distribution N = 45 plus two
additionally levels of refinement on the boundary. A maximum of 1500 nodes in each subdo-
main without overlapping region is allowed, and threshold values relative to the coarse and node
refinement are θc = 0.0005 and θr = 0.01, respectively.

In Table III, we show how the error in the numerical approximation is reduced as Algorithm 1
is iterated; see Section V. In the first column, the iteration number is shown, the subdomain adap-
tivity is depicted in the second column, the number of nodes at each iteration is displayed in the
third column. The fourth column corresponds to the measurements of the error using the norm
‖ · ‖∞ calculated over the whole domain �.

It is observed from the fourth column of Table III that, as the number of iterations increases
the error diminishes, thus reaching the objective of reducing the approximation error by means of
an adaptive local node refinement. On the other hand, note that after the fourth iteration the error
does not present a considerable reduction. This is consistent with the well-known fact that for FD
and FE methods the rate of convergence is reduced as the number of subdomains is increased,
unless a proper two-level Schwarz method is used. Although we are not using a two-level Schwarz
technique in this work, we stress that the inclusion of an adaptive technique—which is the pur-
pose of this work—within the domain decomposition method implies that the throughput of the
scheme is increased. This fact will be explicitly illustrated in the next section.

This algorithm corresponds to an h-c refinement scheme. The initial and final condition num-
ber were 107 and [108, 109], respectively. As the number of nodes increases, see third column, the
number of subdomains also increases as it is shown in the second column. This allows us to handle
large amounts of data by using the domain decomposition method and subdomain adaptivity in a
computer cluster environment.

Figure 4 shows the numerical solution ũ(x, y) at different iterations = {0, 1, 7}. It can be
observed that the nodes were refined in an incremental way. The refined zones are near the axes
y = 0 and parallel to the x-axis, which correspond to the zones where the greater spatial variation
of the analytic solution exists.

As mentioned at the beginning of this section, we also solve the Poisson problem by using
algebraic RBF. Specifically, we obtained that with the RFB r4 log r , the DD-adaptive Algorithm 1,
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FIG. 4. Domain decomposition and adaptive node refinement for Poisson problem at iterations = {0,1,7}.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

gives an Emax error of 0.026567, using 8800 nodes and 7 iterations which is an order of magnitude
poorer than the equivalent result obtained by the multiquadric function. On the other hand, we
obtained that, the RBF: r5 produced an Emax error of 0.007232, using 8752 nodes and 7 iterations,
which is similar to the multiquadric error obtained by the same method. All these results, includ-
ing the multiquadric results, were obtained by using the same values for the parameters used in
Algorithm 1. We note that the equivalent results that we obtained by using the r7 RBF kernel
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FIG. 5. Comparison between node adaptive and nonadaptive schemes. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

produced a blow up in the numerical solution. The explanation to this problem is that, due to the
node adaptive procedure, the condition number of each subdomain is highly increased for higher
degree radial basis functions. Although this also happen if we use an equispaced or Cartesian grid
without node refinement, the condition number does not increase in such a dramatical way, thus
giving reasonable results for the r7 kernel.

Adaptive vs. Nonadaptive Methods. In this experiment, we compare node adaptive vs. non-
adaptive schemes by fixing the error in the ‖ · ‖∞ norm that both methods should reach. In both
cases we use the multiplicative Schwarz method.

The program was written in C, and compiled with gcc version 3.3.4 with the flag -O2. Com-
putations were carried out in a dedicated Intel Xeon (3.2 GHz, 4Gbytes RAM, under Linux). The
time reported includes all the steps in the inner loop of Algorithm 1.

The test was carried out by using the free shape parameter thin-plate spline kernel function,
r4 log r , plus a bivariate polynomial of total degree at most two. The following parameters were
selected: a maximum error of 4×10−2 was fixed to perform both experiments; the threshold values
of the node refinement and coarse refinement were θr = 0.028 and θc = 0.00001, respectively.

Figure 5 shows two graphs in a loglog scale. In the x−axis the number of nodes are displayed,
whereas the y−axis corresponds to the time expressed in seconds. The nonadaptive scheme relies
on successive refinements of the leaves in the quadtree structure. Both methods start with the same
initial node distribution. As we can see from Fig. 5, to meet approximately the same error, the
node adaptive scheme combined with the domain decomposition method takes only 27% of the
time required by the nonadaptive domain decomposition scheme. In addition, the final number of
nodes for the node adaptive method were 4564, which represents an efficiency of 94% relative to
the number of nodes used by the nonadaptive scheme.

It is well known in the field of FEM, FDM, and recently in the context of RBF [19], that the
increment in the number of subdomains P produces a reduction of accuracy and a decrease of
the convergence rate, however, as pointed in the former section, the throughput of the scheme is
increased.
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TABLE IV. Decreasing of the error vs. iterations for convection-diffusion problem.

Iteration Subdomains N Emax

0 2 2152 0.364755
1 5 4540 0.082683
2 5 4351 0.091548
3 5 5077 0.081013
4 7 7285 0.084177
5 8 9472 0.080848
6 9 10,615 0.075643
7 9 10,969 0.072041
8 10 11,023 0.053759
9 10 11,029 0.053766

B. Convection-Diffusion

Our goal in this section is to investigate if the proposed Algorithm 1 can dynamically adapt the
nodes and the subdomains for a linear convection-diffusion problem. For this purpose, consider
the following equation in two dimensions

{
β∇2u + v · ∇u = 0, in �,

u = g, on ∂�,
(6.3)

where � = [0, 0.5]2, ∇ is the gradient differential operator, β the diffusion coefficient, and
v = [vx , vy]T the advection coefficient (or the velocity) vector. The problem is solved by defining
the analytical solution as

u(x, y) = a(e−cxx + e−cyy), (6.4)

where cx = vx/β and cy = vy/β. The following values a = 0.5, vx = vy were used and the
Péclet number is defined as Pe = v/β.

We fix the diffusion coefficient β = 1 and considered the case where the velocity coefficient v

dominates the diffusion term, so that a high value Péclet number given by Pe = 103 is obtained.
This corresponds to a predominant hyperbolic case. In this case, the analytical solution has a
region with a high gradient near to the axes x = 0 and y = 0, which is similar to the sharp
gradient of the boundary value problem of the previous section, except that now it depends on the
Péclet number. Outside this zone, a flat region is obtained. The numerical approximation near the
boundary is not trivial due to the high spatial variation.

In Table IV, we show the iterated results obtained by Algorithm 1 with the initial shape para-
meter cini =0.01. In the first column, the iteration number is displayed, the adaptivity of the
subdomains and nodes are illustrated in the second and third column respectively. The fourth
column corresponds to the measurements of the error in the ‖ · ‖∞ norm.

It can be observed from Table IV that as the number of iterations is increased the Emax decreases
giving a better numerical approximation; see fourth column. Simultaneously, the number of sub-
domains are adequately adapted with respect to the number of nodes, see second column. The
initial condition number is 109 and the final condition number is in the interval [1010, 1011]. Note
in the last three rows in Table IV that there is little variation in the numerical error and the number
nodes, a result that could be used as an empirical indicator to stop Algorithm 1.
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Recall that unlike the case of Poissons problem, where the Emax diminishes consistently with
the number of subdomains, in the case of the convection-diffusion problem the reduccion of the
error Emax is considerably slower. This is a consequence of the high Péclet number that we are
using, i.e., Pe = 103.

The gradient of the limit layer of the convection-diffusion problem is much more pronounced
that the high sharp region present in the case of Poisson problem. This behavior not only requires
a greater number of subdomains, but also implies that its aspect ratios are much greater.

In Fig. 4, the bottom picture displays 8 subdomains whose sizes are nearly 1/8 of the size of
the whole domain. Moreover, in Fig. 6 the final size of the subdomains are extremely narrow near
to axes x = 0 and y = 0, compared with the whole domain. These elements explain why the
rate of convergence in Poisson case decreases much more rapidly that in the convection-diffusion
problem. However, in this last case, the CPU time is considerably smaller when the domain
decomposition method with node refinement is used as compared with the nonadaptive domain
decomposition method. This result is consistent with the previous numerical results relative to
the Poisson problem.

The cells and subdomains adaptivity at different iterations are illustrated in Fig. 6. In addition,
the last two figures correspond to the final iterated numerical solution ũ(x, y) and the final cell
distribution near to the point (0, 0). It can be observed from Fig. 6, that, the cells were refined
in the zones where the analytical solution presents a sharp spatial variation. Hence, the function
indicator η(x) correctly detects the regions where the approximation presents a high spatial vari-
ation, generating a denser node distribution and consequently reducing the approximation error.
In a similar way, an error reduction occurs in regions with low spatial variation.

Note that the maximum refinement is attained near the point (0, 0) with a value of 13 levels of
refinement, which is consistent with the behavior of the analytical solution. On the other hand, in
the flat region it was not necessary to refine the cells and the level of refinement keeps a constant
value of 5, which correspond to the minimal level in the tree. In addition, the dynamic partition
of the data has a concentration of subdomains and a diminution in its sizes near to the axes x = 0
and y = 0.

As in the previous section, we performed numerical experiments by using the RBFs: r4 log r ,
r5 and r7. Unlike for the case of Poisson problem, for the convection-diffusion experiment, we
obtained that the differences of the maximum errors between the kernels r4 log r and r5, were
of nearly the same order of magnitude. Specifically, we obtained that for the RFB r4 log r , the
DD-adaptive Algorithm 1, gave an Emax error of 0.020052, using 8824 nodes and 46 iterations.
Simultaneously, for the RBF r5, we obtained an Emax error of 0.016303, using 8836 nodes and 46
iterations. Thus we did not obtain an improvement of the error for this case. These results were
obtained for a Péclet number of 500 which means that the gradient of the solution is highly sharp.
This bad behavior of the maximum error has also been reported in [13], for a Péclet number of
100 using DD with a Cartesian grid. We would like to emphasize, that for low Péclet numbers,
for example 10, the authors in [13] report an excellent improvement in the maximum error for
the former RBF, a result which is consistent with the fact that the gradient of the solution is
smooth. This is not only consistent with our experience, but also explains why the maximum
error decreases in such an important way for the Poisson problem. As in this last case, the kernel
r7 produced a blow up in the numerical solution.

Based on the results obtained for the Poisson and the convection-diffusion problem, we can
conclude that the proposed Algorithm 1 is an efficient algorithm; the node adaptivity allow us to
reduce the number of nodes required to capture the sharp gradient whereas the domain decomposi-
tion with dynamic data partition reduces the time required to solve the linear system of equations,
keeping low the condition number and letting us handle large scale problems.
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FIG. 6. Dynamically distribution of the nodes and the subdomains for convection-diffusion prob-
lem at iterations = {0,1,9}. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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VII. CONCLUSIONS

In this article, we have introduced a RBF collocation algorithm, based on multiquadric kernels,
which combine a domain decomposition technique with a node adaptive algorithm. Our main
interest is to solve large PDE problems whose solutions present sharp gradients or oscillations.
To this end, a RBF multiplicative Schwarz domain decomposition algorithm is developed to deal
with the large size of the problem. Simultaneously, a node adaptive technique is applied to effi-
ciently approximate the high gradient regions of the solution. The combination of both techniques
requires that the DD method is able to dynamically adapt the number of subdomains by increasing
or decreasing their number where the node density is high or low, respectively. This was achieved
by means of a coordinate bisection algorithm. At the same time, the node adaptive method increase
the node density in the regions where the solution presents sharp gradients while simultaneously
reduces the node density in smooth parts of the solution. The node adaptive algorithm is based
on a quadtree structure and local error estimates. An important issue of this algorithm is that
the node density smoothly decrease from high density zones to regions with low density. This
problem was solved within the node adaptive algorithm by imposing a 2:1 subdivision rule in the
quadtree structure. The quadtree structure also plays an important role in the construction of the
overlapping regions of each subdomain, as the level in the tree is directly related to the gradient
of the solution. We managed to solve the problem by building wider overlapping regions that are
placed in sharp parts of the solution than those which are placed in smooth regions. As far as
to the authors knowledge, this is the first RBF algorithm reported in literature which combines
domain decomposition methods with node adapting techniques.

Two stationary problems in 2D were chosen to numerically analyze this method. A Poisson
problem with Dirichlet boundary conditions whose analytical solution presents a sharp gradient
was discretized. Also, a convection-diffusion stationary problem with a boundary layer for Péclet
numbers up to 103, was studied. For both problems, it was clearly observed that the proposed
algorithm effectively adapts both the node density and the subdomain distribution. For the case
of the Poisson problem, we observed that as the number of iterations increases the error decays
considerably. Also, it was observed that the domain structure and node density increases near
the high gradient region of the solution, thus reducing the numerical complexity of the scheme.
In the case of convection-diffusion equation, this behavior was also clearly observed, although
for Péclet numbers up to 103, the subdomains become highly thin near the boundary layer, thus
reducing the rate of the error decay.

It should be observed that the DD-adaptive algorithm reduces the numerical complexity in com-
parison with the domain decomposition methods without adaptation. It is also worth mentioning
that, although through this work a Cartesian subdomain structure has been used, the proposed rule
to extend the subdomains and its artificial boundaries, permits us to easily extend this formulation
to irregular subdomain structures.

The former results represent an encouraging first step toward the formulation of highly efficient
algorithms capable of solving large PDE problems with oscillatory or sharp solutions. A better
non-Cartesian structure of the subdomain partition is possible. As mentioned, to obtain global
convergence a two-level Schwarz method should be used. Time dependent problems can also be
formulated within the frame presented in this article. Further work in these directions is currently
being undertaken by the authors.

We express our gratitude to the referees for their many valuable suggestions that improved this
article.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



1500 GONZÁLEZ-CASANOVA, MUÑOZ-GÓMEZ, AND RODRÍGUEZ-GÓMEZ

References

1. E. J. Kansa, Multiquadrics—a scattered data approximation scheme with applications to computational
fluid dynamics. I. Surface approximations and partial derivative estimates, Comput Math Appl 19 (1990),
127–145.

2. E. J. Kansa, Multiquadrics—a scattered data approximation scheme with applications to computational
fluid dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput
Math Appl 19 (1990), 147–161.

3. G. E. Fasshauer, Solving differential equations by collocation with radial basis functions, A. Le Mehaute,
C. Rabut, L. Schumaker, editors, Surface Fitting Multiresolution Methods, Vanderbilt University,
Nashville, Tennessee, United States, 1997, pp. 131–138.

4. M. A. Golberg and C. S. Chen, Discrete Projection Methods for Integral Equations, Computational
Mechanics Publications, Southampton, Boston, 1997.

5. I. S. Raju, D. R. Phillips, and A. Krishnamurthy, A radial basis function approach in the meshless local
petrov-galerkin method for euler-bernoulli beam problems, Comput Mech 34 (2004), 464–474.

6. C. Shu, Differential quadrature and its application in engineering, Springer-Verlag, London,
2000.

7. M. D. Buhmann, Radial basis functions, Cambridge University Press, Cambridge, 2003.

8. G. E. Fasshauer, Meshfree approximation methods with Matlab, World Scientific Publishers, Singapore,
2007.

9. A. H. D. Cheng, M. A. Golberg, E. J. Kansa, and G. Zammito, Exponential convergence and h-c mul-
tiquadric collocation method for partial differential equations, Numer Methods Partial Differential Eq
19 (2003), 571–594.

10. R. Schaback, Error estimates and condition numbers for radial basis function interpolation, Adv Comput
Math 3 (1995), 251–264.

11. A. Iske and J. Levesley, Multilevel scattered data approximation by adaptive domain decomposition,
Num Algorithms 39 (2005), 187–198.

12. Z. Wu and Y. C. Hon, Additive Schwarz domain decomposition with radial basis approximation, Int J
Appl Math 4 (2000), 81–98.

13. J. Li and C. S. Chen, Some observations on unsymemetric radial basis function collocation methods for
convection-diffusion problems, Int J Numer Methods Eng 57 (2003), 1085–1094.

14. L. Ling and E. J. Kansa, Preconditioning for radial basis functions with domain decomposition methods,
Math Comput Model 40 (2004), 1413–1427.

15. J. Li and Y. C. Hon, Domain decomposition for radial basis meshless methods, Numer Methods Partial
Differential Equ 20 (2004), 450–462.

16. A. S. M. Wong, Y. C. Hon, T. S. Li, S. L. Chung, and E. J. Kansa, Multizone decomposition for sim-
ulation of time-dependent problems using the multiquadric scheme, Comput Math Appl 37 (1999),
23–43.

17. J. A. Muñoz-Gómez, P. González-Casanova, and G. Rodríguez-Gómez, Domain decomposition by
radial basis functions for time dependent partial differential equations, S. Sahni, editor, Proceedings of
the 2nd IASTED International Conference on Advances in Computer Science and Technology, Puerto
Vallarta, Mexico, ACTA Press, 2006, pp. 105–109.

18. P. P. Chinchapatnam, K. Djidjeli, and P. B. Nair, Domain decomposition for time-dependent problems
using radial based meshless methods, Numer Methods Partial Differential Eq 23 (2007), 38–59.

19. X. Zhou, Y. C. Hon, and J. Li, Overlapping domain decomposition method by radial basis functions,
Appl Numer Math 44 (2003), 241–255.

20. Y. Zhang and Y. Tan, Convergence of general meshless schwarz method using radial basis functions,
Appl Numer Math 56 (2007), 916–936.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



NODE ADAPTIVE DOMAIN DECOMPOSITION METHOD 1501

21. J. Behrens, A. Iske, and St. Pohn, Effective node adaption for grid-free semi-lagrangian advection, Dis-
crete modelling and discrete algorithms in continuum mechanics, T. Sonar, I. Thomas, editors, Logos
Verlag, Berlin, 2001, pp. 110–119.

22. J. Behrens and A. Iske, Grid-free adaptive semi-lagrangian advection using radial basis functions,
Comput Math Appl 43 (2002), 319–327.

23. T. A. Driscoll and A. R. H. Heryudono, Adaptive residual subsampling methods for radial basis function
interpolation and collocation problems, Comput Math Appl 53 (2007), 927–939.

24. V. Pereyra, G. Scherer, and P. González-Casanova, Radial function collocation solution of partial
differential equations in irregular domains, Int J Comput Sci Math 1 (2007), 28–41.

25. H. Samet, The quadtree and related hierarchical data structures, ACM Comput Surv 16 (1984), 187–260.

26. H. Samet, Hierarchical spatial data structures, Design and implementation of large spatial databases,
A. P. Buchmann, O. Gunther, T. R. Smith, Y. F. Wang, editors, Proceedings of the first symposium on
Design and implementation of large spatial databases, Santa Barbara, California, United States, 1990,
pp. 193–212.

27. M. J. Berger and S. H. Bokhari, A partitioning strategy for nonuniform problems on multiprocessors,
IEEE Trans Comput 36 (1987), 570–580.

28. H. D. Simon and S. H. Teng, How good is recursive bisection?, SIAM J Sci Comput 18 (1997),
1436–1445.

Numerical Methods for Partial Differential Equations DOI 10.1002/num


