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ABSTRACT

Wedescribe amapmakingmethod thatwe have developed for the Balloon-borneLargeAperture Submillimeter Tele-
scope (BLAST) experiment, but which should have general application to data from other submillimeter arrays. Our
method uses amaximum likelihood–based approach,with several approximations,which allows images to be constructed
using large amounts of datawith fairlymodest computermemory and processing requirements. This new approach, Signal
and Noise Estimation Procedure Including Correlations (SANEPIC), builds on several previous methods but focuses
specifically on the regimewhere there are a large number of detectors sampling the samemap of the sky, and explicitly
allowing for the possibility of strong correlations between the detector time streams. We provide real and simulated
examples of how well this method performs compared with more simplistic mapmakers based on filtering. We dis-
cuss two separate implementations of SANEPIC: a brute-force approach, in which the inverse pixel-pixel covariance
matrix is computed, and an iterative approach, which is much more efficient for large maps. SANEPIC has been suc-
cessfully used to produce maps using data from the 2005 BLAST flight.

Subject headinggs: balloons — methods: data analysis — submillimeter — techniques: image processing

1. INTRODUCTION

The problem of optimal ‘‘mapmaking’’ or ‘‘image reconstruc-
tion’’ is complex andmultifaceted, with the basic procedures and
even the terminology differing dramatically between different
subfields of astronomy. The method adopted depends on the
form in which the data are gathered and on the dominant source
of systematic effects. From the optical to the near-IR one talks
about combining ‘‘frames,’’ along with measurements of ‘‘darks’’
and ‘‘flat fields.’’ For the reduction of cosmic microwave back-
ground (CMB) data the now conventional method is to start from
the principle that there is a linear algebra approach to solving the
maximum likelihood problem. However, this has only been fea-
sible up until now because of the limited number of detectors in
the typical CMB experiment, and the fact that correlated signals
among the detectors can be effectively ignored. Because of the
rapid development of large bolometer arrays, the question that

arises is, how does one adapt the CMB approach to dealing with
substantial numbers of detectors and where there are significant
cross-correlations of noise between the detector time streams?
Data from the Balloon-borne Large Aperture Submillimeter

Telescope (BLAST; Devlin et al. 2004) represent a new chal-
lenge for bolometric time stream–to–map algorithms. Recent
CMB experiments that use detectors similar to those used on
BLAST, such as BOOMERANG (Crill et al. 2003) and Archeops
(Benoit et al. 2002), only use a handful of separate bolometers.
Furthermore, these experiments’ off-axis designs lead to small
correlations between detectors. Consequently, the correlations
could be ignored at the mapmaking stage, and each detector time
stream could be treated as an independent subset of the data. This
has changed for BLAST, which has up to 139 detectors per band,
with significant correlations induced by the on-axis design, as
well as the higher frequencies of the observations. Just by itself,
the large number of channels increases the impact of even small
time stream correlations, the contribution from which does not
integrate down with increasing number of detectors, unlike the
uncorrelated noise. The high level of correlation (largely induced
by temperature drifts in the obscuring secondary supports in
BLAST) makes it important that the correlations be handled care-
fully in the mapmaking process.
This paper describes a Signal and Noise Estimation Procedure

Including Correlations (SANEPIC) that has been developed for
the analysis of BLAST. This algorithm will also have applica-
tion to many next-generation experiments that will involve both
noise correlations between channels (including correlations from
the atmosphere) and very large numbers of detectors. This in-
cludes the next generation of larger format arrays for use in
ground- and balloon-based instruments at microwave and mil-
limeter wavelengths, which will have typically thousands of
detectors.
This paper is arranged as follows. We next describe the per-

tinent aspects of BLAST. In x 3, the longest section, we set out
our basic mapmaking method. Simulations we use for testing
the method are described in x 4, with results presented in x 5,
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demonstrating the benefit of accounting for the correlated noise
in BLAST-like observations. Finally, some of the maps obtained
from the 2005 June BLAST flight are presented in x 6.

2. BLAST OBSERVATIONS
OF THE SUBMILLIMETER SKY

The mapmaking procedure presented in this paper has been
used to analyze the data from the BLAST 2005 flight. We use
BLAST as a specific example for the application of SANEPIC
throughout the paper. We describe BLAST in x 2.1 and then
summarize the preprocessing of the data prior to mapmaking in
x 2.2. In x 2.3 we derive a model of the data that we use for the
mapmaking.

2.1. BLAST Instrument and Observations

BLAST incorporates a 2 m primary mirror and large-format
bolometer arrays operating at 250, 350, and 500 �m, designed to
have 144, 96, and 48 bolometers, respectively (of which 139, 88,
and 43, respectively, were used). The instrument is described in
detail in Pascale et al. (2008). The low atmospheric opacity at the
operating altitude of�38 km allows BLAST to map the sky very
quickly compared to ground-based experiments and to conduct
large-area shallow surveys as well as very deep surveys of the
sky (Devlin et al. 2004). The BLAST wavelengths are near the
peak of the spectral energy distribution of cold galactic dust,
which gives BLAST the ability to conduct unique extragalactic
and Galactic submillimeter surveys with high spatial resolution
and sensitivity. BLAST thus enables studies of the distribution
of very high redshift galaxies and of star-forming regions in our
Galaxy.

The typical observing strategy consists of scanning the tele-
scope back and forth in azimuth, covering the entire field by
slowly varying the elevation. Cross linking of the data is assured
by scanning the same field at another time of the day. Typical
scanning strategies are given in Pascale et al. (2008).

The first scientific flight of BLAST took place in 2005 June
from the Esrange Arctic base in Sweden to the Canadian Arctic.
A total of�100 hr of datawere taken in a variety ofGalactic fields.
They include a star-forming region (Vulpecula) over 4 deg2, de-
scribed in Chapin et al. (2008), three other fields of similar size in
the Galactic plane (which will be the focus of future papers), an
integration toward the ELAIS-N1 field (see Oliver et al. 2000),
the Cas A supernova remnant over about 0.5 deg2 (P. C. Hargrave
et al. 2008, in preparation), and several compact Galactic and
extragalactic sources (Truch et al. 2008). Hereafter we refer to
these as the BLAST05 data, to distinguish them from the data
taken during the 2006 December Antarctic flight.

2.2. Time-ordered Data Preprocessing

The processing of BLAST data from detector time streams to
the final map product involves several steps prior to mapmaking.
Each of these steps is designed to remove a particular (or sev-
eral ) artifact(s) from the data and sometimes requires iterating,
since some effects need to be removed simultaneously. In the
following, we summarize the main processing stages leading to
the time-ordered segments that are used as inputs for the map-
making process.

We start by identifying events in the data that are sharply
localized in time, such as spikes from cosmic-ray hits and other
spurious sources. We use a method that allows us to discriminate
between the different events depending on their signature in the
data. Spikes that involve only a single sample are flagged, and
the corrupted samples are replaced by the average value of the

samples in the vicinity. The data are deconvolved from the low-
pass filter applied by the readout electronics. This filter has a
frequency cutoff of approximately 35 Hz and is designed to
avoid high-frequency noise aliasing. The deconvolution is per-
formed in Fourier space. In addition, we have applied a low-pass
cosine filter that limits the noise power from increasing at very
high frequency (above 38 Hz) due to deconvolution. We have
checked that the noise power spectrum is relatively flat after these
deconvolution operations. Finally, cosmic-ray hits and other lo-
calized artifacts in the data time streams are detected and cut out.
In order to avoid biasing our data products by having systemati-
cally more false event detections located where the sky is bright
(e.g., when scanning a point source), we iterate this process: we
make maps starting from data that have been cleaned using the
process described above, subtract the maps from each original
data set, and reprocess the data. The maps calculated at this in-
termediate stage are obtained by simply rebinning the data into
pixels after strong high-pass filtering. The filter applied is a
Butterworth filter with a frequency cutoff of 0.5 Hz, which is of
the order of the knee frequency of the noise. Even if this operation
suppresses most of the intermediate to large scales of the sky sig-
nal in the maps, it does not very much alter the signal from lo-
calized sources, at least to the level of accuracy needed at this
stage, and it has the advantage of removing most of the stripes in
themaps due to 1/f noise.We have verified that the resulting bias
for bright calibrators is less than 1%.

About 2% of the data from the BLAST05 flight were removed
due to cosmic-ray events. Most of the events affected a single
detector time stream, although some events affected a whole array
at the same time. Detected spikes (from cosmic rays but also other
spurious effects) are flagged over small time intervals of typically
1 s in the data. One second is too large an interval to simply ignore,
so the corrupted data need to be replaced with random noise
generated in a way that as much as possible preserves the sta-
tistical properties of the data. In the later mapmaking stage, which
is partly performed in Fourier space, we assume continuity of the
data. We could perform this gap filling with a constrained noise
realization (see, e.g., Stompor et al. 2002). However, since the gap
intervals are significantly smaller than the inverse of the knee
frequency of the noise power spectrum (0.3 Hz), the noise can be
well approximated by the sumof awhite component plus a straight
line of some slope across the gap. Specifically, we generate white
noise in each gap with a standard deviation measured from the
data in the vicinity of the gap and add a baseline with the pa-
rameters fitted using 20 samples on each side. The white-noise
generation is for restoring as best as possible the stationarity of
the data (generated samples are not reprojected to the map at the
end).

After having filled the gaps in the time streams, we filter out
very low frequency drifts that are poorly accounted for in the
mapmaking procedure. A fifth-order polynomial is fitted to the
data and removed from each data segment in order to reduce
fluctuations on timescales larger than the length of the consid-
ered segment, which, depending on the specific case, varies from
30minutes to a few hours. These fluctuations are poorly described
because of the limited number of Fourier modes and would cause
leakage at all timescales (for instance, a gradient in the time stream
is described by a wide range of Fourier modes), degrading the
efficiency ofmapmaking. Note that we experimentedwith various
polynomials and other effective high-pass filters; we found that
the results were not very sensitive to precisely how this is done,
but some such filtering is certainly required. The degree of the
polynomial was chosen empirically as a compromise between sup-
pressing the artifacts and keeping the large-scale signals in the final
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maps. Using simulations, we have checked that the effect on the
transfer function of the signal in the final map is weak. The re-
sulting data segments are then corrected for the time-varying
calibration (see Truch et al. 2008) using measurements of an
internal calibration lamp (Pascale et al. 2008). Finally, the data
segments are apodized at the edges over �2000 samples and
are high-pass filtered at 5 ; 10�3 Hz with a Butterworth filter.
This filtering has very little effect on the final maps, since modes
in the data at lower frequencies that are cut in this way are not
expected to contribute significantly to the signals. We discuss the
choices of filters further in x 3.2.

Accurate pointing reconstruction is a complicated procedure
for balloon-borne telescopes, and this affects the mapmaking
task through the pointing matrix (defined in x 2.3). The pointing
reconstruction procedure is described in detail in Pascale et al.
(2008). The next important step in reducing the BLAST data,
which is calibration of the detectors, is detailed in Truch et al.
(2008).

2.3. Model of the Data

Having performed the cleaning procedure described in the pre-
vious subsection, the resulting data time streams can be modeled
very accurately as the sum of pure signal and pure noise contri-
butions. The data for detector i observing at a given wavelength
and at time sample t can be written as

dit ¼ Ai½ � tp sp þ nit; ð1Þ

where p labels the pixels in the final map, Ai is the pointing
matrix for bolometer i (whose elements, indexed with time t and
pixel p, give the weight of the contribution of pixel p to the
sample at time t for bolometer i), sp is the signal amplitude at
pixel p, and the noise amplitude at time t for bolometer i is nit.
Summation over repeated indices is assumed here.

Ideally, the element ½Ai� tp of the pointing matrix is equal to the
value of the beam response b½R(r� r0)�, where r points to the
pixel p location, r0 is the location of the beam center at time t,
and R is a rotation matrix that depends on the rotation angle at
time t between the telescope and sky coordinate systems. In prin-
ciple, one could then recover a map of the sky deconvolved with
the instrumental point-spread function (PSF). However, in prac-
tice this would be unacceptably noisy, as well as computationally
intractable, because of the prohibitive volume of data. Although
Ai might have mostly zero elements, it is nevertheless a huge
matrix. It may be feasible to deconvolve a nontrivial beam re-
sponse (e.g., like the BLAST05 beams, as shown in Truch et al.
2008) at the same time performing the mapmaking step, through
an approximate treatment of the sparse pointing matrix. But we
do not pursue that approach here.

In the simple case where the beam is symmetric, the map-
making problem becomes tractable, provided that one restricts
oneself to reconstructing a map of the instrument-convolved sky.
We can then consider sp in equation (1) as the map of the sky
convolved with the beam, and consequently Ai indicates simply
where the detector points in the sky at a given time. In this case,
Ai is an ultimately sparse matrix with, in the BLASTcase, simply
a 1 in a single entry of each row. This approach, which has been
conventional for CMB mapmaking (although with some adap-
tation for chopped data), is what we use in the following anal-
ysis. It gives no loss of information provided that the map pixels
are sufficiently small, and one can simply assign all the flux from
a bolometer’s to the map pixel to which it points at each time
interval. The requirement for accuracy is that the pixel size is
smaller by a factor of 3 ormore than the fullwidth at half-maximum

(FWHM) of the instrumental PSF; in that case the additional
convolution with the pixel shape gives negligible loss of angular
resolution.
The noise term nit in the model represents the sum of all con-

tributions to the time streams that do not reproject on the sky.
This will in general include instrumental noise, fluctuations in at-
mospheric emission and other loading, and unrecognized cosmic-
ray hits. In general, some of those noise contributions will induce
strong correlations between detector time streams. In this paper
we adopt a very general model of the noise where the noise co-
variance matrix,

Nii 0tt 0 ¼ nitn
t
i 0t 0

� �
ð2Þ

(for bolometer indices i, i 0 and time indices t, t 0 ), has possibly
nonzero elements even for i 6¼ i 0. A key assumption, as we see
later, is that the noise is Gaussian (so that Nii 0tt 0 is sufficient to
describe all the statistical properties of the noise) and stationary
(constraining Nii 0tt 0 ; see xx 3.2.1 and 3.4).
In the specific case of BLAST05 observations, a very signif-

icant correlation of the noise is found in the time streams, and we
have shown that a more constrainingmodel provides a very good
description of the data. An independent component analysis
(Delabrouille et al. 2003) of the data enabled us to find that the
noise and its correlations can be described to a high degree of
accuracy by a noise component that is not correlated between
detectors, together with a single common-mode component seen
by all the detectors at a given wavelength (some correlations are
also seen between detectors from different wavelengths, but we
have chosen to treat each wavelength independently). The com-
mon part of the noise is instantaneous, meaning that the same
common-mode noise is seen at the same time by all the detectors.
In ourmodel, the noise term in equation (1) is then decomposed as

nit ¼ ñit þ � ict; ð3Þ

where the first term is the noise that is uncorrelated between
detectors and the second term represents the common-mode
component of the noise, rescaled by an amplitude parameter� i ,
which depends on the detector but not on time. Thismodel can be
generalized easily to deal with multiple noise components in
time streams.
In the following section we present a method to reconstruct sp

given the data, in the framework of the linear model (eq. [1]) and
in the presence of correlated noise between detector time streams.

3. MAPMAKING METHOD

3.1. Maximum Likelihood Mapmaking

The use of maximum likelihood mapmaking techniques has
been developed by many authors for application to CMB data
sets (Wright et al. 1996; Tegmark 1997; Borrill 1999; Prunet
et al. 2000,15 2001; Tegmark et al. 2000; Ferreira & Jaffe 2000;
Doré et al. 2001;Natoli et al. 2001;Dupac&Giard 2002; Stompor
et al. 2002; Hinshaw et al. 2003; Yvon &Mayet 2005). Other ap-
proaches are more specific to destriping for Planck-like scanning
strategies (Delabrouille 1998; Maino et al. 2002; Keihänen et al.
2005; de Gasperis et al. 2005; Macı́as-Pérez et al. 2007; Poutanen
et al. 2006; Ashdown et al. 2007b). Since there are already a large
number of publications on the topic, here we present only a very
brief overview of the approach of maximum likelihood map-
making techniques.

15 Available at http://moriond.in2p3.fr / J00 /ProcMJ2000 /.
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Assuming the simple linear model given by equation (1), the
log-likelihood of the data can be calculated under the assumption
that the noise is Gaussian and stationary. The solution is

log L djsð Þ ¼ �1
2
d � Asð Þ tN �1 d � Asð Þ; ð4Þ

where N � nnth i is the noise covariance matrix in the time do-
main (here and after we do not make explicit reference to time
indices t and t 0; Nmeans noise covariance matrix in the time do-
main) and superscript t denotes transpose.Maximizing the above
equation with respect to the map parameters s (suppressing the
pixel indices here for convenience) leads to the following well-
known estimator:

ŝ ¼ AtN �1A
� ��1

AtN �1d: ð5Þ

The inverse pixel-pixel covariance matrix of the noise in the map
is the term in brackets in this equation, i.e.,

N �1
pp 0 ¼ AtN �1A: ð6Þ

Computation of the solution to equation (5) is far from trivial for
most astronomical applications, due to the large amount of data,
and hence this poses a difficult numerical challenge. The noise
covariance matrix in the time domain N is a very large matrix of
size the number of samples squared, which could easily be mil-
lions, while Npp 0 may be more reasonable in size but has no ob-
vious symmetries and so is still difficult to invert. Nevertheless,
we have implemented a method aimed at finding the maximum
likelihood solution given by equation (5) when there are a large
number of detectors and in the presence of possible correlations
in the noise between different detector time streams.

3.2. Implementation

In the simple case of dealing only with independent noise
between detectors, our matrix inversionmethod is very similar to
theMADCAPmethod, described in Stompor et al. (2002). How-
ever, we have developed our new approach to deal efficiently
with multidetector data in the presence of correlated noise be-
tween detectors (described in detail in x 3.4). In this section we
summarize the basic ideas for the simpler one-detector, one-scan
case.

In order to find the maximum likelihood solution of the map
(eq. [5]), we have developed two different algorithms. They both
allow us to solve the linear system Npp 0 ŝ ¼ x, with x � AtN �1d.
The first approach explicitly computes the inverse pixel-pixel co-
variance matrix N �1

pp 0 , and we refer to this as the ‘‘brute-force al-
gorithm.’’ The second approach uses iterations that converge to
the maximum likelihood map without the need for computing
N �1

pp 0 , and we refer to this as the ‘‘iterative algorithm.’’ Both ap-
proaches require as a first step the computation of the inverse of
the time-time noise covariance matrix N.

3.2.1. Inverse Noise Covariance Matrix N �1
tt 0

In practice, even when we have knowledge of the statistical
properties of the data as described by the power spectrum P(!),
the brute-force inversion of N is not tractable because of its
enormous size: for a single BLAST detector observing for 10 hr
at a data rate of 100 Hz, the matrix has approximately 1013 ele-
ments. However, if we make the approximation that each data
segment is ‘‘circulant,’’ meaning that the beginning and the end
of a segment are connected without discontinuity and that there
are no gaps in the data, then the matrix N is also circulant (see

x 3.6 for a description of howwe treat gaps in the data). Circulant
matrices are much easier to store and to invert. With this approx-
imation the elements of the matrix can be written as

Ntt 0 ¼ C t � t 0j jð Þ; ð7Þ

where the correlation function C(jt � t 0j) between samples t and
t 0 depends only on the separation between the two samples. A
circulant matrix has the property of having a diagonal matrix
counterpart in Fourier space.

Let F be the discrete Fourier operator; we have

N ¼ F y�F; ð8Þ

where superscript y denotes transpose conjugation and � is a di-
agonal matrix whose diagonal is described by the power spec-
trum of the data segment,

�!! ¼ P !ð Þ: ð9Þ

The inverse of the noise covariance matrix is

N �1 ¼ F y��1F; ð10Þ

and because ��1 is a diagonal matrix, N �1 is also circulant, so
that knowledge of only one row is enough to describe the entire
matrix. Then the inverse covariance matrix can be written as

N �1
� �

tt 0
¼ C̄ jt � t 0jð Þ; ð11Þ

with

C̄ �tð Þ ¼ F �1 1

P !ð Þ

� �
�tð Þ; ð12Þ

whereF �1 represents the inverse Fourier transform. The inverse
of the covariance matrix can then be computed directly using
the power spectrum of the data. This is a very fast operation
[O(nslog ns), with ns the number of samples] and does not require
large memory since only one row of the matrix is computed.

The approximation that the data segments are ring shaped or
circulant might seem unreasonable, but in the end this only has
an effect on a small fraction of the matrix. For data with large-
scale correlations (data described by a 1/f power spectrum, for
instance), the approximation implies an assumption that the two
edges of the segment are very correlated. In reality, there is ob-
viously little correlation at long timescales compared to short
timescales, so extra striping could be introduced in the maps if
one steps across the two edges of the data segment. We have
addressed this problem in twoways in order to avoid introducing
artifacts in the final map. In the case where we explicitly compute
the inverse pixel-pixel covariance matrix N �1

pp 0 (as in the brute-
force inversion algorithm), for the estimation of N entering in
the computation of N

�1
pp 0 , we constrain C̄(�t) ¼ 0 for�t > ns /2,

with ns being the number of samples in the segment; this is some-
times known as ‘‘the MADCAP approximation’’ in the literature.
It is important to note that this approximation cannot be used for
the computation of AtN�1d because it is performed partly in
Fourier space (see x 3.2.3). Instead, we have apodized the data d
at the edges, and we have removed a low-order polynomial (fifth
order in practice) to reduce fluctuations having typical timescales
of order (or larger than) the data segment (see x 2.2). This is rea-
sonable, since those scales are not well described by a limited
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number of Fourier modes and hence will always be hard to
reconstruct.

3.2.2. Inverse Pixel-Pixel Covariance Matrix N �1
pp 0

The computation of the inverse pixel-pixel covariance matrix,
which is described in this section, is required only in the brute-
force inversion algorithm, or for an accurate error estimation in
the pixel domain.

Since the pointing matrix has only one nonzero element per
row in our simple model (one data sample is associated with a
single map pixel ), the matrix multiplication AtN �1A requires a
single loop going across all the nonzero elements of N �1. For
most cases, a dominant fraction of the mapmaking computing
time will be devoted to this operation. If the data are only corre-
lated within a typical length kc, we have the property C̄(�t) ’ 0
for �t > kc, and N �1 is a band-diagonal matrix (elements sep-
arated from the diagonal by more than kc are negligible). The
number of elements to go through in the loop is of the order of,
but smaller than, 2nskc, which is hopefullymuch smaller than the
size of the matrix itself.

Unfortunately, if the noise is described by a power spectrum of
the form (1/f )�, the correlation length of the noise is basically of
the order of the length of the whole data set. However, the am-
plitude of the correlation is decreasing for very long timescales
and becomes negligible beyond a certain scale. The function
C̄(�t) can then be artificially set to zero for �t > k 0

c, with k 0
c

chosen empirically so that the correlation of the noise is low
enough for scales longer than k 0

c , and also that there is very little
constraint on the signal at those scales. For the specific case of
BLAST observations, we find that k 0

c ’ 200 s is a good compro-
mise, as illustrated in Figure 1.

The noise strongly dominates the signal in BLASTobservations
for scales longer than k 0

c (corresponding to frequencies smaller
than 5 ; 10�3 Hz), since (1) this frequency is well below the knee
frequency of the noise power spectrum and (2) there is very little
signal at frequencies smaller than 5 ; 10�3 Hz, which is more
than 10 times smaller than the scanning frequency. Therefore, we
have used k 0

c ¼ 200 s for the computation of the noise covariance
matrix. The impact of fixing C̄(�t) ¼ 0 for�t > k 0

c in the initial
power spectrum is shown in Figure 1. We can see a tight relation
between the power spectrum and the inverse covariance matrix,
since getting C̄(�t) ¼ 0 for �t > k 0

c can be obtained only by
modifying the power spectrum at frequencies smaller than 1/k 0

c .

3.2.3. Computation of AtN �1d

In the computation of x ¼ AtN �1d, which is necessary for
both of our algorithms, the multiplication N �1d is performed in
Fourier space where the noise covariance matrix is diagonal. We
obtain this vector by dividing the Fourier transform of the data
by the power spectrum of the noise. Another way to represent
this is by considering that since N �1 is circulant, N �1d is a con-
volution operation. Assuming that this model holds, the resulting
data vector d̃ ¼ N �1d contains whitened noise. The remain-
ing operation Atd̃ just performs the addition of the filtered data
sample onto the pixels of s (i.e., the map) and hence is very fast.

In the case of BLAST observations, since we are not attempt-
ing to recover useful information from timescales larger than
200 s, we perform a high-pass prefiltering of the input data d at
5 ; 10�3 Hz.

3.2.4. Matrix Inversion Algorithm

In the matrix inversion algorithm, N �1
pp 0 is directly computed,

as described in x 3.2.2. The next step is to solve the linear system

ŝ ¼ ½N �1
pp 0 ��1

x. For small maps, in which N �1
pp 0 can be stored

in memory, we perform a Cholesky decomposition. For larger
maps, we write the matrix to disk and perform an iterative in-
version of the system using a conjugate gradient method with
preconditioner.
This algorithm allows one to easily perform multiple Monte

Carlo simulations, since the pixel-pixel covariance matrix, being
independent of the data realization, can be computed once (this is
assuming that the noise power spectrum is known and does not
have to be estimated from the data themselves) and used for all
the realizations of simulated data. Another advantage of this ap-
proach is that it allows for the exact computation of the errors in
the map, which are given by the covariance matrix.
However, the matrix inversion algorithm is generally slower

than the iterative algorithm, which we discuss next, and can be
used only for relatively small maps; we found thatwewere limited

Fig. 1.—Top: Absolute value of the first row of the inverse covariance matrix
given by C̄(�t) (see x 3.2.1) for a typical BLAST observation. The vertical line
indicates the value of k0c , such that for�t > k0c , C̄(�t) is set to zero for the com-
putation of N�1. Bottom: Power spectrum of the noise in a typical BLAST ob-
servation (dotted line) and after threshholding at frequencies smaller than 5 ;
10�3 Hz, i.e., 1/k0c (solid line). The dot-dashed line is obtained by inverting eq. (12)
after forcing the values of C̄(�t) to zero for �t > k0c , with C̄ obtained from the
initial power spectrum of the noise (dotted line). To find the power spectrum that
corresponds to the dashed line, the same procedure is applied, but starting from
the thresholded power spectrum (solid line). All the lines are very similar for fre-
quencies larger than 1/k0c , but the dot-dashed line begins to diverge at smaller
frequencies, while the dashed and solid lines lie very close to each other for all
frequencies. This shows the tight relation between the power spectrum and the
inverse covariance matrix. The noticeable peak in the power spectrum is located
at the scanning frequency of about 4 ; 10�2 Hz.
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to around 200,000 pixels if the matrix is written to disk, or less
than 20,000 pixels if the matrix is stored in memory (for a pro-
cessor with 4 GB RAM).

3.2.5. Iterative Algorithm

Wenow present an iterative algorithm based on conjugate gra-
dient with preconditioner to obtain the maximum likelihood so-
lution for themap (a similar algorithm has been used in Ashdown
et al. 2007a). Let us rewrite equation (5), which relates the best
estimate of the map with the data, after multiplying both sides by
the pixel-pixel covariance matrix:

AtN �1Aŝ ¼ AtN �1d: ð13Þ

If we define ŝk as an estimate of the map at iteration k, the con-
jugate gradient method allows us to solve the linear system by
minimizing iteratively the following criterion:

� ¼ rtN �1
pp 0r; ð14Þ

where

r � AtN �1Aŝk � AtN �1d
� �

: ð15Þ

This criterion is indeed minimum and equal to zero if ŝk is the
maximum likelihood solution.

One can interpret� as the weighted variance of the difference
between two map vectors. The first of these vectors, AtN �1Aŝk ,
is the inverse pixel-pixel covariance matrix times the current es-
timate of the map, while the second vector, AtN �1d, is a map
constructed by simply co-adding prewhitened data.We decide that
convergence is reached when the quantity rtr (which is much
easier to compute than�, and also converges to zero) gets smaller
than a predefined value. In practice, the number of iterations re-
quired for convergence is of the order of 100.

The conjugate gradient method is not described here, since it
is a fairly standard numerical tool, and the interested reader can
find many descriptions in the literature.16 Instead of describing
the details, we focus here on aspects that are specific to our map-
making process. In particular, let us describe the computation of
AtN �1Aŝk , which is the time-consuming part of the optimization
and has to be performed at each iteration (the computation of
AtN �1d is also time consuming but needs to be done only once,
since none of the parameters are changing through the iterations);
the other operations for updating the map at each iteration are sig-
nificantly faster.

One advantage of this iterative algorithm is that the computa-
tion of the full pixel-pixel covariance matrix is not required, and
the operation AtN �1Aŝk can be done step by step. Indeed, we
start by computing d̂ ¼ Aŝk , which is an estimate of a ‘‘signal’’
time stream. This operation is equivalent to scanning over the
current estimate of the map using the pointing solution. The sub-
sequent operation AtN �1d̂ (which should now be familiar) is
carried out in Fourier space, as described in x 3.2.3 (without
applying any extra filtering), and in x 3.4 for the case of corre-
lated noise between detectors.

This iterative approach is in general much faster than the
brute-force inversion approach because the most time-consuming
operations are performed in Fourier space. It also requires less
memory, sinceN

�1
pp 0 is not explicitly computed. Of course, if there

are found to be (or known to be) nontrivial correlations in N �1
pp 0 ,

then it may have to be calculated explicitly, hence requiring the
brute-force approach. However, provided that the pixel-pixel cor-
relations only involve relatively few pixels, it should be possible
to calculate a restricted part of (or perhaps an approximation for)
N �1

pp 0 in a modified iterative approach. A related concept is dis-
cussed in x 3.8.

3.3. Multiscan, Multidetector Case

In the previous subsection we presented the general method
for the simple case where only a single continuous observation
is considered. We now describe how we combine observations
from different detectors at the same wavelength, as well as dif-
ferent data segments obtained over different ‘‘visits’’ during the
flight, where by ‘‘visit’’ we mean a period in the data that starts
after a sufficiently long gap, or after the observation of a different
region of the sky.

For convenience, the data vector d in our model (eq. [1]) now
contains all the individual data segments from different detectors,
and also within a single channel, concatenated end to end. The
noise vector n in equation (1) is defined in a similar manner. The
matrix A in equation (1) is then the result of stacking individ-
ual pointing matrices. The maximum likelihood solution is also
written as in equation (5), with N becoming the full covariance
matrix of the noise, including all the channels and data chunks.
To start with, let us assume that there is no correlation of the
noise between data segments. This is a very good assumption if
we consider data segments obtained over different visits, but it
is certainly not a good approximation for segments obtained si-
multaneouslywith different channels, sincewe found a very strong
common-mode noise between detectors. We consider the simple
no-correlation case first, and then in the next subsection (x 3.4) we
generalize the mapmaking method to account for noise corre-
lations from different detectors.

In the absence of correlations between data segments, the time-
time noise covariance matrix N is block diagonal and each block
can be inverted separately. Defining N‘ as the subcovariance
matrix for the data in segment number ‘, and A‘ as the sub-
pointing matrix going from the map to the data segment ‘, the
inverse pixel-pixel covariance matrix can be written as

N �1
pp 0 ¼

X
‘

At
‘N

�1
‘ A‘: ð16Þ

The computation time for obtaining this matrix is proportional to
the number of data segments. In this simple case the computation
of x ¼ AtN �1d can be written as

x ¼
X
‘

At
‘N

�1
‘ d‘; ð17Þ

where the computation of each term is fast and can be performed
partly in Fourier space.

3.4. Detector-Detector Correlated Noise

We now allow for the presence of correlations in the noise
between different detectors. In the case of multiple visits, the
noise covariance matrix, N, still has null cross terms for samples
from two different data visits. Therefore, if the data vector is sorted
by visit, then N is block diagonal and each block contains the
correlation coefficients between all the detectors for the samples
within the time interval defined as a single visit. Each visit can
be treated independently, since the submatrices can be inverted
separately, and equation (16) is still valid, but in this case ‘ is the
label for the blocks inN. In the following, we therefore focus on a

16 For example, the 1994 article by J. R. Shewchuk: http://www.cs.cmu.edu /
~quake-papers /painless-conjugate-gradient.pdf.
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single visit and consider observations by all the detectors; the
generalization to multiple visits should be clear.

To simplify the notation, let N denote the noise covariance
matrix for the visit being considered, with d and n being the data
and noise vectors, respectively, containing the time stream seg-
ments for all the detectors put end to end, and Nij being a block
of N of size ns ; ns, corresponding to the noise correlations be-
tween detectors i and j. Let us define F̄ as themultichannel Fourier
transform operator such that

ñ ¼ F̄n; ð18Þ

with ñ containing end-to-end Fourier transforms of each data seg-
ment. F̄ is a block-diagonal matrix, and each block is the Fourier
transform operator F for one data segment.

In Fourier space, the noise covariance matrix R can be written
as

R ¼ F̄NF̄ y: ð19Þ

If we consider a single block of the noise covariance matrix for
detectors i and j, we obtain

Rij ¼ FNij F
y: ð20Þ

Under the assumption that the data are stationary and continuous
at the edges (see x 3.2 for a discussion), Nij is a circulant ma-
trix, since each element ½Nij� tt 0 depends only on the time interval
jt � t 0j. Rij is then a diagonal matrix with the diagonal given by
the cross-power spectrum of the noise between detectors i and j:

Rij

� �
!! 0 ¼

Pij(!); ! ¼ ! 0;

0; otherwise:

	
ð21Þ

Here P(!) is the noise covariance matrix of size nd ; nd for a
given mode !, where nd is the total number of detectors. The
computation of the inverse of R is straightforward, since each
Fourier mode can be treated independently. If P�1(!) is the
inverse noise covariance matrix for mode !, the same relation as
in equation (21) applies between R�1 and all P�1.

From equation (19), we can calculate the inverse covariance
matrix of the noise in real space:

N �1 ¼ F̄ yR�1F̄: ð22Þ

Then, a block of N �1 between detectors i and j can be written as

N �1
� �

ij
¼ F y R�1

� �
ij
F: ð23Þ

Because ½R�1� ij is a diagonal matrix (as discussed previously),
½N �1� ij is circulant and is related to the inverse of the matrix
containing the cross- and auto-power spectra of the noise:

N �1
� �

ijtt 0
¼ F �1 P�1

� �
ij

n o
t 0 � tð Þ: ð24Þ

From this relation, we can see that in practice N �1 is relatively
easy to construct, since each of its blocks (referring to each pair
of detectors) is a circulant matrix, so only a row of each sub-
matrix needs to be calculated using the fast Fourier transform.
Finally, in the case in which the noise covariance matrix is
used for multiplication in real space (as in the brute-force algo-
rithm), the same approximation described in x 3.2 is performed
on each block of N �1, i.e., ½N �1� ijtt 0 ¼ 0 for jt � t 0j > k 0

c (or for

jt � t 0j > ns /2 if k
0
c > ns /2). The global structure of the final in-

verse noise covariance matrix is illustrated in Figure 2.
In our model of the data (eq. [3]) in which all the correla-

tions between detectors are described by a single commonmode,
P�1(!) can be related to the power spectra of the common mode
and of the uncorrelated part of the noise between detectors:

P�1 !ð Þ ¼ � c !ð Þyc !ð Þ
D E

� t þ ñ !ð Þyñ !ð Þ
D Eh i�1

: ð25Þ

This relation can be generalized if multiple common-mode
components are present: � would then be a mixing matrix
and hc(!)yc(!)i becomes the covariance matrix of these noise
components.
Having computed the inverse noise covariance matrix of the

time streams, we can express (using eq. [6]) the noise covariance
matrix in the pixel domain:

N �1
pp 0 ¼

X
ij

At
i N

�1
� �

ij
Aj; ð26Þ

where, as before, i and j label the detectors. The computation time
for N �1

pp 0 is now proportional to the number of detectors squared.
The calculation of x ¼ AtN �1d is straightforward:

x ¼
X
ij

At
i N

�1
� �

ij
dj; ð27Þ

and this is fast, since (as already shown) the operation ½N �1� ij dj

is a convolution, which can be performed in Fourier space. One
can see from equation (24) that x can be expressed directly with
respect to the cross- and auto-power spectra of the noise:

x ¼
X
ij

At
iF �1 P�1

� �
ij
!ð Þd̄j wð Þ

n o
: ð28Þ

The formalism presented above can also be generalized easily
to deal with detectors operating at different wavelengths. The map
vector s could bemerging different maps at different wavelengths,
and the noisematrixNwould account for all the correlations of the
noise between detectors. The joint multiband mapmaking would
be suitable in practice when some contaminations from thermal
fluctuations in the instrument or atmospheric emission are pre-
sent because they correlate the noise at all wavelengths.

3.5. Noise Power Spectrum

Themaximum likelihood solution for the final map depends on
the noise power spectra for each data set (through N in eq. [5]),
which are assumed to be perfectly known. However, in practice
the noise power spectra have to be inferred from the data them-
selves and some uncertainties are associated with this iterative
process.
In practice, a first (approximate) estimate of the noise power

spectrum can be obtained by rebinning the power spectra of each
data segment, neglecting the contribution of the astrophysical sig-
nal in the time lines. Indeed, for most of the fields observed with
BLAST, and in particular for blank extragalactic fields ( like the
ELAIS-N1 field in BLAST’s flight from Sweden), the noise is
highly dominant over the sky signal at all frequencies. However,
this is not true for measurements of bright regions in the Galactic
plane. Therefore, for the first iteration’s noise estimate we focus
on the data taken for about 6 hr while scanning the deepest ex-
tragalactic field (ELAIS-N1) and use this to estimate the noise
power spectra, which then become the noise input for making the
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first set of maps of all of our fields. This approach is not en-
tirely satisfactory, since the noise is not stationary during the
flight: the noise power spectra are seen to vary over long time-
scales, although they are quite constant within a single visit of
each field. This nonstationarity appears most obvious when there
are variations of the scanning strategy between different visits
(a change of the scanning frequency induces a variation of the
location of peaks in the power spectrum) but can also occur due
to variations of detector loading or the detector bias being changed
during the flight.

Because of the observed nonstationarity of the noise, we would
like an independent estimate of the noise power spectra for each
visit for each of the observed fields. After starting from a first es-
timate of the noise power spectra based on ELAIS-N1 data as
described above, we adopt an iterative approach between maps
and noise power spectra. At each iteration, the estimated maps
are subtracted from the data, prior to noise power spectrum es-
timation. We can summarize our procedure in the following
steps:

1. Estimate P0(!) from d using a field known to have little
signal.

2. Compute ŝ from equation (5) (and also eq. [24] or eq. [12],
depending on the noise correlation being considered) using P0(!)
as input.

3. Estimate P(!) from d � Aŝ.
4. Reestimate ŝ from equation (5) using P(!), and iterate on

these last two steps until convergence is achieved.

We stop iterating when the noise power spectra do not vary by
more than 1 per 1000 from iteration to iteration (and find that
in practice only three to six iterations are necessary to reach
convergence).

We now focus on how we estimate the noise power spectra
P(!) in steps 1 and 3. For the simplest case, where no correla-
tions are assumed between detectors, we simply compute a bin-
averaged power spectrum for each data segment:

P‘ qð Þ ¼ 1

nq

X!max qð Þ

!min qð Þ

d̃�
‘! d̃‘!; ð29Þ

where, for bin number q, nq ¼ !max(q)� !min(q)þ 1, ‘ labels
the data segment, and d̃ is the data vector fromwhich an estimate

Fig. 2.—Inverse noise covariancematrix (N�1 in the text) for three detectors and for only 10minutes of data (corresponding to 60,000 samples per detector). The matrix is
computed following eq. (24), and the approximations described in x 3.4 are applied. The cross- and auto-power spectra of the noise, used for the calculation of N�1, are
computed from the data themselves (one of the auto-power spectra is shown in Fig. 3; the cross-power spectra are an unbiased measure of the common-mode signal shown in
the samefigure). Each submatrix is circulant and corresponds to a particular pair of detectors.One can see that the off-diagonal submatrices have amplitudes of the same order as
that of the diagonal submatrices. This is due to the very high level of noise correlation between detectors.
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of the map has already been subtracted. We have chosen loga-
rithmic spacing between bins, and an estimate of P(!) for each
!mode is obtained by logarithmic interpolation, which leads to a
smooth power spectrum estimate.

In the more complicated case where correlations between de-
tectors are assumed to be important and therefore are not neglected,
we must estimate, for every iteration, each cross- and auto-power
spectrum of the data between detectors, Pij(!), which enter into
the computation of the inverse noise covariance matrix (eq. [24]).
Each cross-power spectrum could be directly estimated as in equa-
tion (29) (using d̃i! and d̃j! in the formulae for detectors i and j),
but instead we choose to reduce the number of parameters to es-
timate at each step, by assuming that the data are described by a
commonmode between detectors plus independent noise (eq. [3]).
In the framework of this model, the expected cross- and auto-
power spectra depend directly on the following parameters: �, the
amplitude of the common mode in each channel; hc(!)�c(!)i,
the power spectrum of the common-mode part; and hñ(!)�ñ(!)i,
the power spectrum of the noise component, which is indepen-
dent between detectors. The relation between the model of P(!)
and the parameters has been shown in equation (25). These pa-
rameters are typically not known a priori and must be measured
using the data themselves.We use a blind ‘‘component separation’’
method developed for an entirely different problem inDelabrouille
et al. (2003). This allows us to obtain a single estimate of all the
parameters described previously, by simultaneously using all the
observed time streams of a given field for all the detectors in
a specified channel (i.e., at a single frequency). The method is
known to be the maximum likelihood solution for a Gaussian
and stationary model of both the noise and the common mode.
The cross- and auto-power spectra P(!) are then computed fol-
lowing equation (25), using these same estimated parameters.
Figure 3 shows the estimated noise power spectra in a sample of
BLAST data for one representative detector using 3 hr of time

streams during scans of the ELAIS-N1 field (which is known to
be essentially devoid of signal ).
The auto-power spectrum is shown, as well as its decomposi-

tion in terms of the common-mode power spectrum and the un-
correlated noise power spectrum.
Because our estimate of the converged map of the sky ŝ is not

perfect and contains contributions from residual noise, then in
subtracting a simulated signal time line from the data to estimate
the noise power spectrum we reintroduce some noise to the data,
which could potentially bias our estimate of the noise power
spectrum (Ferreira & Jaffe 2000; Hamilton 2003). However, this
effect is greatly reduced by the large redundancy in each pixel of
the final maps, as a result of the many repeated scans and the
large number of detectors at each wavelength. The bias can be
neglected to first order for BLAST, since the noise level per pixel
in the final map is much smaller than the noise in individual de-
tector time streams.

3.6. Dealing with Gaps in the Data

In order to derive the formalism presented so far, we have
assumed that each data segment is stationary and hence consists
of a continuous series of data points. However, we have seen in
x 2.2 that the BLAST05 data containmultiple gaps of typical size
less than 1 s. The amount of data in these gaps is a few percent of
the total. In order to reasonably restore the continuity of the data,
we have filled the gaps with random noise, as described in x 2.2.
The data samples generated in the gaps are not reprojected into the
final map but are directed to ‘‘dummy’’ pixels. In principle, the
optimal approach would be to create one dummy pixel per flag-
ged data sample, avoiding the possibility of several simulated sam-
ples falling on the same pixel (through the rebinning of flagged
pixels we do not want to introduce any spurious constraints for
the mapmaking process that could arise from adding crossings
over different time intervals). However, the approach of using
one dummy pixel per gap sample is impractical because the total
number of dummy pixels would be excessive for typical BLAST
observations, and the pixel-pixel covariance matrix (which has
size the total number of pixels squared) would be prohibitive to
store and compute.
We have adopted a simpler approach, which does not lead to

themathematically exact solution but comes very close (as has been
shown in simulations). This consists of rejecting (for the compu-
tation of N �1

pp 0 ) all the elements of N �1
tt 0 associated with flagged

samples. This is equivalent to removing from N
�1
pp 0 the rows and

columns corresponding to the dummy pixels before the inver-
sion of the matrix, as opposed to after inversion, which would
be the correct treatment discussed above. This approach is also
equivalent to assuming null off-diagonal terms for those rows
and columns. However, such dummy pixels are obviously cor-
related to some degree with the real pixels in the map, and hence
this cannot be entirely correct.
Nevertheless, we have verified that this approximation has a

small impact (a few percent only) on the final map for most of
the angular scales that are sampled, although we found some
differences at very large angular scales, sizes of the order of the
map size. For now, we have not put much effort into recovering
those very large scales because they are subject to other effects,
as discussed in x 5.2.2. The minimal impact on the final map has
been verified using pure signal simulations and by comparing the
results obtained between our simple approach and the correct map-
making solution. This approachworks to a high degree of accuracy
on most scales because the gaps are small and do not introduce
important discontinuities in the time streams.

Fig. 3.—Total noise power spectrum (solid line) for one of the 250 �m de-
tectors, using about 3 hr of data, corresponding to scans of the ELAIS-N1 field. The
dotted line corresponds to the estimated power spectrum of the common mode
between detectors at 250 �m, rescaled by an amplitude factor for the specific de-
tector being considered (�i in the text, where i is the detector index), also esti-
mated using the data themselves. The dashed line represents the estimated power
spectrum of the uncorrelated part of the noise for this detector. The commonmode
is very strong in these data and dominates over the uncorrelated noise at frequencies
lower than about 0.1 Hz. Most of the low-frequency noise excess comes from this
common mode. The uncorrelated part of the noise shows a knee frequency of less
than 0.02 Hz, which is 5–10 times smaller than for the total noise power spectrum.
The power of the uncorrelated noise is thus reduced by a factor of about 100 at
low frequencies. The excess signal at the scanning frequency (peak around 0.04Hz
in the power spectrum) is completely common between detectors.
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We have used this simple approach because it gives sufficiently
accurate results over the relevant angular scales, while being sim-
ple and fast to implement. However, another iterative procedure
could be adopted, which would lead to the exact solution. In this
approach, we define two maps. The first map ‘‘A’’ is made from
only the uncorrupted (i.e., real sky) samples, while the second
map ‘‘B’’ is obtained from projecting the simulated (i.e., for gap
filling) samples. The difficulty arises in deciding what to do when
simulated data from different scans or detectors fall in the same
pixel: one might want the ‘‘generated signal’’ (and not necessarily
the noise) to be identical in both measurements, in order to satisfy
the mapmaking hypothesis. If this condition is not satisfied, then
some artifacts may be introduced into both maps. Here is a solu-
tion to this problem:

1. Generate a first set of maps A and B after filling the gaps in
the time streams with white noise plus a linear baseline.

2. Fill the gaps in the data with the best estimate of the signal
in map A together with white noise plus a baseline that is fitted in
the gap vicinity of the data ‘‘minus’’ signal time stream.

3. Recompute maps A and B. Step 2 ensures that the signal is
the same for each generated sample falling in the same pixel of
map B.

This approach can also be coupled with the procedure for es-
timating the noise power spectra described in x 3.5. Preliminary
results indicate that this approach works in practice. Detailed
studies will be presented in a future publication.

3.7. Pixel Constraints

For some specific observed fields we may have strong priors
about the sky emission at a given location. For instance, we know
that over some regions the astronomical signal should vary very
smoothly or should be very weak with respect to the noise, at least
outside some localized region. This is the case in particular when
we map bright extragalactic sources in order to calibrate the de-
tectors and estimate the beams; in these cases, regions beyond
some predefined distance from the beam center can be assumed to
have null flux (or a constant relative flux in the map, since we do
not have access to the DC level in maps). If we really have strong
prior knowledge that we are dealingwith a bright localized region,
thenwe can take a further drastic step: we can constrain themap to
have the same value in some domains of the sky by defining a
single pixel containing all the data samples falling in that region.

In practice, we define a small box centered at the source lo-
cation and constrain the part of the map outside this box to have
a constant value. This is a very efficient way to remove stripes
from the map, since the extremities of all the paths across the
map are readjusted. We have used this technique to make maps
of the isolated calibrators observed byBLAST (Truch et al. 2008).

3.8. Error Estimation

The variance of the noise in each pixel of the final map and its
correlations are directly given by the pixel-pixel covariance ma-
trix Npp 0 ¼ (AtN �1A)�1. This is true given the following as-
sumptions: that our model of the data holds, in particular that the
noise is a purely Gaussian random process, which may not be
the case in practice at low frequencies; and that our estimate of the
sample-sample noise covariance matrix Ntt 0 is accurate enough
that the errors do not propagate significantly into the final map.
As already mentioned, we never explicitly compute the covari-
ance matrix, but rather its inverse. The direct inversion would
take a prohibitive computation time for most applications. How-
ever, to first order, we can obtain an estimate of the errors by

inverting the diagonal part of N �1
pp 0 only, neglecting the off-

diagonal terms. This is equivalent to assuming that the noise in
the final map is white. We have checked with the help of simula-
tions that this very simple approximation is accurate to better than
10% for all our BLAST05 fields, even for those with very poor
cross linking.

Provided that the size of the map is reasonably small, so that
we are able to explicitly calculateNpp 0 , we can obtain an accurate
estimate of the errors for a limited (and small ) number of pixels
in the map. The variance for pixel p, and the covariance with
respect to the other pixels of the map, can be computed by solv-
ing the linear system:

ny
pnp 0

D E
¼ Np 0pup; ð30Þ

where up is a unitary vector with a single 1 for pixel p. If the
Cholesky decomposition of thematrix has already been performed
for the mapmaking procedure, the computation of equation (30)
is relatively fast and hence can be carried out for a grid of non-
adjacent pixels, for example. This can be used to check the val-
idity of the error prediction approximation described in the previous
paragraph.

3.9. Computational Requirements

For the brute-force inversion algorithm (in which the full in-
verse pixel-pixel covariance matrixN �1

pp 0 is computed), 5 minutes
of computation with a single 3 GHz processor are needed to pro-
cess 2 hr of data from a single detector at a rate of 100 Hz. The
computational time is proportional to the number of samples if this
is longer than the assumed correlation length of the noise in the
data (which has been evaluated to be kc ¼ 200 s in BLAST05
time streams). If noise correlations between detectors are also to
be accounted for, the computational time is proportional to the
square of the number of detectors.

Most of the computing time is spent on calculating N
�1
pp 0 .

Inversion of the linear system to estimate the map s is relatively
fast (a few minutes to a few hours for maps of several square
degrees in size).

For the iterative algorithm, about 2 minutes of computational
time is required for 2 hr of data (under the same conditions de-
scribed above). This assumes that 100 iterations are necessary to
reach convergence (which is a realistic number for most appli-
cations), and the algorithm scales with nslog ns . The situation is
much better than for the brute-force inversion algorithm if cor-
relations between detectors are included. In that case, the algo-
rithm scales with the square of the number of detectors if this
exceeds about 40. If there are fewer than about 40 detectors, then
the algorithm scales linearly with the number of detectors. As an
example, if there are 100 detectors, then including noise corre-
lations between the detectors increases the computational time
by a factor of 4 with respect to the ‘‘no-correlation’’ case. The full
processing of 10 hr of BLAST05 data at all wavelengths, includ-
ing detector-detector correlations, can be done with a single pro-
cessor in a few days.

In terms ofmemory, the brute-force inversion algorithm requires
storage of the full N �1

pp 0 matrix. However, for the iterative algo-
rithm, only vectors of the size of the maps need to be kept in
memory, which is much less demanding.

4. SIMULATIONS FOR TESTING SANEPIC

We now focus on the application of SANEPIC to data. Our
aim is to develop tests to validate our method using simulated
BLAST observations. We derive conclusions about how well
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low-frequency noise in the maps can be reduced, depending on
observational parameters such as scanning strategy, andwe com-
pare the results obtained with those from simpler methods based
on filtering the data, e.g., common-mode subtraction. In this sec-
tion we describe the simulations performed to test the SANEPIC
method.

We have generated several different sets of simulations of
BLAST time streams. Each set of simulated time streams, rep-
resenting one particular observed field, is generated for all the
BLAST detectors used for the analysis of real data (132 at 250�m,
78 at 350 �m, and 39 at 500 �m) and is the sum of simulated
astrophysical signal, independent noise, and common-mode noise
between all detectors. The noise is generated randomly with
Gaussian statistics, given fixed power spectra derived from real
BLAST05 data. Figure 3 shows an example of the power spec-
trum of the noise in the data used as input to the simulations for
one of the fields. The part of the noise that is independent be-
tween detectors is generated for every detector time stream and
has a power spectrum well described on average by a relatively
flat plateau for frequencies larger than about 0.05 Hz, and by a
part proportional to (1/f )2:5 for smaller frequencies (these char-
acteristics vary slightly from detector to detector). Our knowl-
edge of the real bolometer noise power spectrum at low frequency
is limited by the very dominant commonmode. In simulations, the
common-mode noise is generated once for all detectors and has
a power spectrum very well fitted by a power law with an index
equal to approximately 2.5, together with some broad peaks, the
largest being at the scanning frequency (the amplitude of the
peak depends on the scanning strategy and the observed field).
The common-mode power spectrum has an amplitude such that
it reaches the level of the independent noise at about 0.3 Hz (see
Fig. 3). The generated common-mode time stream is multiplied
by an amplitude factor that varies from detector to detector by
�10% and is added to the simulated detector time streams. The
amplitude factors used for the simulations have been estimated
from the data themselves.

In order to represent the astrophysical signal, we have simulated
simple maps of diffuse emission with a power spectrum propor-
tional to k�3, as for typical Galactic cirrus emission (e.g., Miville-
Deschênes et al. 2007). Maps are generated following Gaussian
statistics with a resolution of 100, much higher than the typical
pixel sizes in the final maps, in order to reduce artifacts due to
repixelization. The amplitude of the fluctuations of the simulated
map is chosen to match the expected level of signal in each ob-
served field. The simulated maps are scanned using BLAST05
pointing, and pure signal time streams are generated for each
detector. Signal and noise time streams are added at the end of
the procedure (but see x 5 for an explanation of why this oper-
ation is not always carried out).

We have generated two sets of simulations that correspond to
two different fields observed by BLAST. We selected two fields
that were observed with very different scanning strategies, since
the performance of the mapmaking procedure is very dependent
on scanning strategy; this allows us to test SANEPIC in two very
different configurations. In the first case the scanning was per-
formed mainly in a single direction over a short time interval,
while in the second case the field was observed several times
during the flight at different scanning angles, to achieve significant
cross linking in the map.

The first data set uses observations of the Cas A supernova
remnant emission, which comprises about 20 minutes of data.
BLAST observations of this field and derived conclusions will
be described in detail in P. C. Hargrave et al. (2008, in preparation).
The rectangular regionmapped has a size of the order of 0.5 deg2

and was scanned two times back and forth over a short time in-
terval. We have generated simulations corresponding to all the
detectors at 250 �m (we used a total of 132 detectors).
The second data set reproduces the observations of the

intermediate-velocity cloud (IVC)G86.5+59.6 (hereafter ‘‘G86’’).
Simulations include four different visits of the field performed
during the flight at very different time intervals (ranging from a
few hours to more than a day). Each continuous observation seg-
ment has a size that varies from 1 to 2 hr. Two scanning direc-
tions are dominant, which form an angle close to 50�. The region
covered has a size of about 2 deg2 on the sky. Simulations for
this field are performed specifically for all the 500 �m detectors
(41 detectors used). Similar Monte Carlo simulations at 250 �m
would have taken a factor of 10 longer, while we believe that the
conclusion would remain unchanged.
A total of 20 sets of simulations of the observations for each

field have been performed. For each set we vary the realization of
the noise and of the signal input map. About 4 hr of computing
time are needed to create one realization of a full set of simula-
tions of G86 with a single processor, compared to a few minutes
for the Cas A simulations. This is using the precomputed full
pixel-pixel covariance matrix, which was also used to analyze the
real data.

5. RESULTS FROM SIMULATIONS

We now present the results obtained with SANEPIC applied
to the two sets of simulated data. In each case, we compare the
final map with other maps obtained using simpler mapmaking
procedures. For these tests we have assumed that the noise power
spectra are perfectly known, rather than estimated separately
from each data set; in practice, we fix the noise power spectra to
be the ones from the simulations. We have verified that relaxing
this constraint has almost negligible change on the final maps.
For these simulated data sets, we have applied some prepro-

cessing of the time streams before applying SANEPIC, just as
we do for the real data. We have systematically removed a fifth-
order polynomial from each time stream segment and weakly
high-pass filtered the data, as described in x 2.2. Finally, for the
gap filling we flag the simulated data at the same locations as in
the real data in order to check the influence of the flagging pro-
cedure in the final maps.
In the following we have applied SANEPIC independently

to pure noise time streams (containing independent noise and
common-mode noise, but without simulated astrophysical signal)
and to pure signal time streams. This procedure allows us to easily
derive conclusions about the noise properties in the final maps,
as well as about the signal, without biasing the results, because
SANEPIC is a linear method (as shown by eq. [5]). This is only
strictly true if the noise power spectrum is fixed, as done here,
and not estimated simultaneously along with the maps. Then, ap-
plying SANEPIC on pure noise time streams and pure signal time
streams independently and adding the two finalmaps is rigorously
equivalent to applying SANEPIC on signal plus noise time streams.
This has been checked numerically, and we find that the differ-
ence is consistent with double floating precision error. An im-
portant consequence of this is that the properties of the noise in
the final map are independent of the signal-to-noise ratio.

5.1. Case without Cross Linking

5.1.1. Noise-only Time Streams

We first study the maps resulting from the noise-only time
streams in the configuration of Cas A observations. The chosen
pixel size of the map is 2500 and matches the pixel size of the
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maps discussed in P. C. Hargrave et al. (2008, in preparation).We
compare the noise maps obtained from three different procedures:

1. Use SANEPIC with the correct treatment of the correlated
noise.

2. Use SANEPIC fixing the correlation of noise between de-
tectors to zero and fixing the noise power spectrum for each de-
tector to the power spectrum of the sum of uncorrelated noise and
common mode. This procedure is very similar to more standard
mapmakers in the literature (e.g., Stompor et al. 2002).

3. Make a simple reprojection of the data onto a pixelized map
by simply averaging the data falling in each pixel, after having
filtered the time stream data with the same very weak low-pass
filter used for SANEPIC. This procedure is sometimes called
‘‘co-addition.’’

Figure 4 shows computed noise maps for one of the realiza-
tions of the noise in each of the three cases.

As expected, the map obtained with the simple pixel binning
approach contains a very large amount of low-frequency noise,
with strong striping visible along the scan direction. Residual
low-frequency noise can also be seen in the map obtained using
SANEPICwithout accounting for the noise correlations between
detectors.We do not expect this method to be very efficient, since
it is very nonoptimal in cases (such as this example) where a very
large fraction of the noise is correlated between detectors. In con-
trast, the noise map obtainedwith SANEPIC is quite satisfactory,
showing reduced power at low frequency as compared to the
previous case. Nevertheless, some very weak excess power is
seen in the cross-scan direction. This is expected, since the map
is not cross linked, and very poor constraints can be put on the
cross-scan directions at low spatial frequencies (two positions in
the map separated by more than the size of the array in the cross-
scan direction are observed far apart in time).

In order to quantify the level of low-frequency noise in the
maps, we compute the one-dimensional (1D) power spectra of
the maps, averaged over the 20 realizations of the simulated data.
For the computation of power spectra, we take into account only
the central part of each map, where the level of redundancy in the
observations is high (we use only the highest signal-to-noise ra-
tio region in the maps). To do so, we apply an apodized mask to
themaps going smoothly from 0 at the edges to 1. Figure 5 shows
the noise power spectra in the three cases.

The noise level in the simple reprojection map is obviously
very poor at all scales. Both of the other mapmakers reach the
white-noise level for scales smaller than 30 and have excess
power at larger angular scales. Nevertheless, the gain between

full SANEPIC and SANEPIC without correlations is very im-
portant at all scales larger than about 20 and reaches a maximum
value of about 10 at around 200 angular scales. An interesting fact
is that the knee frequency of the noise power spectrum in the
optimal case here corresponds to the inverse of the physical scale
of the detector array in the cross-scan direction (which is of the
order of 60). Indeed, there are no observational redundancies on
scales larger than the array in the cross-scan direction in the ab-
sence of cross linking in the map. Thus, the very long timescale
1/f noise present in the time streams is not efficiently removed
and reprojects in the final map at large angular scales. This effect
is also present along the scan direction, but with a lower am-
plitude as the map is scanned back and forth. The trend of the
large angular scale power spectrum of the noise in the map just

Fig. 4.—Finalmaps computed from simulated pure noise time streams in the configuration of theBLAST05CasAobservations,which have a dominant scan direction.Left
to right: Maps obtained with SANEPIC including noise correlations, SANEPIC with no noise correlations included in the model, and simple pixel binning (see text for more
details). Note the extended dynamic range of the simple co-added map (right). The maps have a size of about 400 in the cross-scan direction and about 1� along the scan. The
pixel size is 2500.

Fig. 5.—1Dpower spectra of the noise (rebinned in frequency) in the final noise
maps after mapmaking in the BLAST05 Cas A configuration. Power spectra are
averaged over the 20 realizations of the simulated data. The dashed line is for the
simple reprojection map, the dot-dashed line for SANEPIC with no noise corre-
lation between detectors, and the double-dot–dashed line for SANEPIC including a
treatment of the correlations. The horizontal line indicates the level of white noise in
themap predicted by themapmaking procedure (see x 3.8). Error bars are computed
from the dispersion of measurements among the realizations. For comparison, the
upper dotted line (decreasing almost like a power law at all scales) represents the
power spectrum of the pure simulated signal in the final map. The solid line rep-
resents the power spectrum of the finalmap obtainedwith real data using SANEPIC,
with correlations included. This shows the benefit of taking into account corre-
lations of the noise between detectors in the mapmaking procedure, reducing the
noise structure far below that of the signal in the map. The real data power spec-
trum shows that the signal dominates at all angular scales larger than about 30, and
at smaller scales we can see that white noise at the expected level dominates in the
map. The drop of power at around a 30 scale is due to the BLAST05 beam.
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follows the trend of the low-frequency noise power spectrum in
the time streams. We see in x 5.2 that this effect is reduced when
there are multiple scanning directions in the map.

In order to determine the direction in which the noise power is
strongest in the map, we have also computed the two-dimensional
(2D) noise power spectrum. Themap of the 2Dpower spectrumof
the noise obtainedwith SANEPIC (noise correlations included) is
shown in Figure 6.

The large bright spot around the center corresponds to a rel-
atively isotropic component of correlated noise (at least at large
angular scales). It contains a large fraction of the noise power at
large angular scales (seen in the 1D power spectrum in Fig. 5). A
smaller but significant fraction of the correlated noise is con-
centrated in directions perpendicular to the scan direction, as can
be seen in the figure. As already discussed, the reason for this ex-
cess power is that the noise in the cross-scan direction is poorly
constrained. This cross-scan component of the noise is signifi-
cant all the way up to the pixel scale.

5.1.2. Signal-only Time Streams

We now focus on the signal-only time stream simulations. In
order to demonstrate the superior performance of SANEPIC rel-
ative to simpler methods based on data filtering, we compare
with a mapmaking method that consists of the following: we first

remove the whole array average from each detector time stream
and then make maps using SANEPIC, assuming no correlations
between detectors. Removing the array average reduces the sig-
nal to almost zero for scales larger than the array and so we expect
no large-scale structures to survive in the map. This SANEPIC
‘‘common-mode subtraction’’ method is still a better procedure
than just reprojecting the data (after common-mode subtraction)
with a well-chosen filtering to suppress noise drifts (at fcut ¼
0:02 Hz, for instance, since that corresponds to the knee frequency
of the independent part of the noise). The latter method is com-
monly used in the submillimeter community and is referred to as
‘‘sky removal’’ in reduction of SCUBA data (Jenness et al. 1998).
Figure 7 shows the input map for one of the signal realizations

(left panel ), as well as the maps obtained with SANEPIC (cor-
relations included; middle panel ) and with the common-mode
subtractionmethod (right panel ). Results are expected to be worse
in the second case because of the extra filtering and also because
SANEPIC gives less weighting to modes at lower frequency that
are more contaminated by independent noise.
We can see from Figure 7 that part of the very large scale fluc-

tuations with sizes of the order of the map are removed using
SANEPIC, but apart from those very large scales, the input map
and the SANEPIC map look very similar. More differences can
be seen in the map obtained with the common-mode subtraction
method. This is quantified in Figure 8, which compares the 1D
power spectra of the two output maps, averaged over 20 simula-
tions and multiplied by k 3. Recall that the input spectrum varies
as k�3 and so deviations from a flat line are the result of the map-
making reconstruction. Note that the vertical scale is linear in
Figure 8.
With SANEPIC, the power of the reconstructed map decreases

for scales larger than about 300. There are three reasons for this: the
power spectrum is computed over only a small fraction of the sky
(and for an apodized map), so that structures of the order of the
map size are never fully recovered; there is weak filtering of the
time streams at fcut ¼ 5 ; 10�3 Hz and through the fifth-order
polynomial subtraction; and modes in the maps that are very
weakly constrained in the mapmaking procedure tend not to be
reconstructed through the matrix inversion procedure, since the
matrix is very ill conditioned and numerical problems occur. The
last two effects are the dominant ones. As a result, modes that are
preferentially filtered are those that lie perpendicular to the scan
direction.
At angular scales smaller than about 20, the power slightly de-

creases due to the smoothing effect of the pixelization. The trans-
fer function at those scales is well described by a sinc function.
Turning now to the common-mode subtraction method, the

power in the map is significantly reduced for scales larger than

Fig. 6.—2D power spectrum of the noise maps in the BLAST05 Cas A ob-
servational configuration obtained with SANEPIC (noise correlations included)
plotted on a logarithmic contrast scale.

Fig. 7.—Left to right:Map of simulated signal used as input for one of the realizations of the simulations in the configuration of the BLAST05CasA field, reconstructed
map using SANEPIC accounting for noise correlations, and reconstructed map using the simple common-mode subtraction method (intensity units here are arbitrary).
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about 100 and drops rapidly to zero. This is because the common-
mode subtraction removes power on all scales larger than the
array. On smaller scales, the filtering effect is relatively weak and
is reduced when the number of detectors increases.

For these particular simulations the common-mode subtrac-
tion method (using SANEPIC, but with no correlations) does not
in fact perform very poorly compared to the SANEPIC optimal
approach. This is because the observed field is small, with a size
just a few times bigger than the array, and structures at scales
smaller than the array size are not strongly affected. This particular
map is also not cross linked. However, the situation is different for
large cross-linked maps like the Vulpecula field, as discussed in
x 6.2.

5.2. Case with Cross Linking

5.2.1. Noise-only Time Streams

We now focus on the set of simulations of the G86 field at
500 �m. As in the previous example, we first examine the maps
resulting from noise-only simulated time streams using three
methods: optimal SANEPIC (with noise correlations taken into
account), SANEPIC without considering noise correlations be-
tween detectors, and the simple co-addmethod. The chosen pixel

size for the reconstructed maps is 10, which allows for inversion
of the covariance matrix with a single processor and hence rapid
Monte Carlo simulations. The conclusions drawn would remain
unchanged if the pixel size was reduced.

Figure 9 shows the final noise maps in the three cases for one
realization of the simulations.

The simple reprojection map is obviously very stripy and
would be of little use as an estimate of the signal; nevertheless,
it helps to visualize the directions of scanning in the map.We can
see two main directions covering the central region of the map,
oriented at about 50� to each other. A third scanning direction is
also visible but has amuch smaller weight. The central part of the
map is the cross-linked region, where we expect the more optimal
mapmaking procedures to excel.

In themap obtained using SANEPICwithout considering noise
correlations between detectors (Fig. 9,middle panel ), some large-
scale noise is still visible in the map, even if almost no residual
striping is apparent in the cross-linked region. Indeed, too much
weight is given to the large timescales in the time streams (which
are basically common between all the detectors) as compared
to the smaller timescales for which there are more independent
measurements because the degree of correlation of the noise is
weaker. The residual noise at large angular scales is much weaker
in the SANEPIC map in which we account for the proper corre-
lations of the noise between detectors (Fig. 9, left panel ). The
noise in this map looks particularly white.

The noise level in each simulated map is quantified in Fig-
ure 10, showing the 1D power spectrum of residual noise av-
eraged over 20 simulations and computed over the cross-linked
region (which has a diameter of about 1000).

While several orders of magnitude are gained in the noise
power at all scales using the SANEPIC ‘‘no correlation’’ method
as compared to the simple reprojection method, accounting for
the correlations with SANEPIC allows us to further reduce the
noise power on scales ranging from 200 to the size of the map by
an additional factor of �5. Toward smaller scales, the gain be-
tween the SANEPIC correlation and no-correlation test cases is
still very significant down to about 100, where both methods start
to approach the white-noise level. In the optimal map obtained
with SANEPIC the ratio between the noise power spectrum at
large scales and the white-noise level is around 20, which is rel-
atively small. Figure 11 shows the 2D power spectra of the noise
in the SANEPICmap averaged over 20 realizations. As expected,
the large-scale noise is more important in directions perpendicular
to the scans.

Fig. 8.—1D power spectra of signal-only maps for the BLAST05 Cas A field
reconstructed using SANEPIC (solid line) and using the common-mode sub-
traction method (dot-dashed line). Power spectra are multiplied by k3, displayed
on a linear scale, and averaged over 20 realizations of the simulations. The large
angular scale behavior shows the effective filtering of each mapmaking pro-
cedure, while the drop-off at small scales is caused by the PSF.

Fig. 9.—Noise-only simulations (like Fig. 4) for the BLAST05 G86 scanning configuration. The maps have a size of about 1000 across the short axis and 2.5� across the
long axis. The pixel size here is 10. The three panels show themap obtainedwith SANEPIC including noise correlations (left), SANEPICwith nonoise correlations in themodel
(middle), and the simple co-added map (right). Note the different brightness scale chosen for the last map due to its larger dynamic range.
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5.2.2. Signal-only Time Streams

We now focus on signal-only simulations for G86. As in the
case of the Cas A configuration, we compare the performance of
SANEPIC with respect to the simpler common-mode subtrac-
tion method. Figure 12 shows the pure signal input map for one
realization of the simulations (left panel ) compared with two
recovered maps. The first output map is obtained with SANEPIC
including correlations between detectors (middle panel ), while
the second is obtained by subtracting the commonmode between
all detectors, followed by applying SANEPIC, but neglecting
noise correlations between detectors (right panel ). We see that
the very largest scales are not recovered by SANEPIC. This is
because of the weak filtering applied to the time streams and, to a
greater extent, because of inversion problems with SANEPIC on
scales of the order of the size of the map (these scales are very
poorly constrained by themapmaking procedure). In the common-
mode subtraction method, only the very largest scales are sup-
pressed by the mapmaking procedure itself, but the filtering effect
is more dramatic and extends to much smaller scales.

The effective filtering is quantified in Figure 13, which shows
the power spectra of output maps averaged over 20 simulations
of pure signal time streams. Again the power spectra are multi-
plied by k 3 for comparison purposes.

In this case SANEPIC works well on scales up to about half a
degree, above which it fails to recover structure in the map; this
limit corresponds to scales of about one-quarter of the map and
larger. The filtering effect is much more pronounced in the map
producedwith the common-mode subtractionmethod, being strong
for all scales above around 140. This is of course expected, since
subtracting the average of the array strongly reduces the signal
on scales larger than the array size. Therefore, in order to recover
large- and intermediate-scale structure in the maps, it is benefi-
cial to use SANEPIC instead of other methods that are based on
simply filtering the data.

5.3. Advantages of Cross Linking

The relative level of residual noise at low spatial frequency in
the maps is significantly reduced in the G86 observational con-
figuration as compared to the Cas A configuration. The funda-
mental difference is that the G86 observations contain multiple
(essentially two for most of the data) scanning directions, while
the Cas A observations are realized with only two passes across
the field in the same direction. Multiple scanning directions give
a huge number of additional constraints for the mapmaking pro-
cedure. In particular, large-scale structures in the map are much
better recovered in directions parallel to scans because the noise
there is smaller. Thus, having multiple scanning angles allows
for recovery of the sky fluctuations for all directions and ends up
giving almost no weight to the individual loosely constrained
cross-scan k-modes.
Differences in the results for maps from these two example

scanning strategies can be quantified in two ways. First of all, for
the G86 scanning strategy, the transition between white noise
and ‘‘excess’’ large-scale noise in the map occurs at a scale
around 100, while the same transition occurs at a scale of around
30 for the Cas A scanning strategy. Second, the ratio between
large-scale noise power and white-noise power is larger by more
than 2 orders of magnitude for Cas A than for G86. On the other
hand, some caution should be taken not to overinterpret this com-
parison because the pixel size we used is larger for the G86 map
(10) as compared to the CasAmap (2500), and therefore the number
of crossings per pixel is greater for the G86 map. Nevertheless,
this simulation exercise has demonstrated that cross linking in
the map is extremely beneficial, particularly for recovering the
large-scale structures in the map.

5.4. Mapmaking Transfer Function

When carrying out a complex data processing procedure, it is
important to check whether the results are biased in any way. We
have found that the transfer function of the mapmaking proce-
dure, defined as the ratio between the amplitude of fluctuations
in the output pure signal map relative to the input map, is not
always exactly unity, even for intermediate and small angular
scales in the map. For example, in the Cas A configuration at
250 �m the fluctuation amplitudes in the final map are reduced

Fig. 10.—Output power spectrum comparison of noise-only simulations after
mapmaking (like Fig. 5), for the BLAST05 G86 scanning configuration. These
power spectra are computed only in the cross-linked region of the maps, which
forms a large disk of about 1000 diameter and can be easily identified in Fig. 9.
The dashed line is for the simple reprojection map (Fig. 9, right panel), the dot-
dashed line is for SANEPIC without consideration of noise correlations between
detectors (Fig. 9,middle panel), and the double-dot–dashed line is for SANEPIC
including the correlation treatment (Fig. 9, left panel). The horizontal line in-
dicates the level of white noise in themap predicted by themapmaking procedure.
Error bars are estimated from the dispersion among measurements for all the
realizations. Residual low-frequency noise in the optimal SANEPIC map is very
low, thanks to the multiple scanning directions of this field. The situation is much
better than for the Cas A observational configuration, which had a single scan
direction (Fig. 5).

Fig. 11.—2D power spectrum of a noise-only simulation reduced using
SANEPIC (like Fig. 6) for the BLAST05 G86 scanning configuration.
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by 3%on average as compared to the inputmap, almost uniformly
across spatial frequencies and directions. This global discrepancy
reaches the level of 9% at 500 �m.Moreover, it is also present for
the G86 configuration. We believe that this reduction is due to the
fact that the pixel-pixel covariance is ill conditioned and numer-
ical imprecision occurs in the matrix inversion. We find that the
bias tends to be smaller when the number of detectors is larger and
also when the number of constraints increases, like when we have
multiple scanning directions, or when we map isolated bright
sources (presented in Truch et al. 2008) and constrain the data out-
side a defined region to have a constant flux (see x 3.7 for details
of this procedure). Since this bias can be estimated using simu-
lations, it is straightforward to correct for. We have found that it
is not always important, e.g., for the large Galactic map in the
Vulpecula region analyzed in Chapin et al. (2008) the bias is
negligible.

6. APPLICATION TO REAL BLAST05 DATA

Now that we have looked at signal-only and noise-only sim-
ulations, we now turn to real BLAST data. In this section we show
maps of two example fields from the BLAST05 data that have
been obtained using SANEPIC.

6.1. Cassiopeia A

Figure 14 shows the map obtained from the observations of
the Cas A field at 250 �m using SANEPIC including full con-

sideration of the noise correlated between detectors. Detailed
analysis of the maps at the three wavelengths is described in P. C.
Hargrave et al. (2008, in preparation). The properties of the noise
and the transfer function of the signal in the map have been stud-
ied in detail fromMonte Carlo simulations in x 5.1. Results from
such simulations are used to characterize the map. The power
spectrum of this map has been compared to results from simula-
tions in Figure 5.

The map structures are relatively smooth, due to the BLAST05
PSF, which has a width of the order of 30, causing the drop in the
1D power spectrum below those spatial scales. The signal clearly
dominates over noise on angular scales larger than about 30, and
the diffuse structure should be reliable up to a large fraction of the
overall map size.

6.2. Vulpecula Region

Another field observed during the BLAST05 campaign is cen-
tered in the Galactic plane close to the open cluster NGC 6823 in
the constellation of Vulpecula. The region mapped has a size of
about 4 deg2 and was chosen for its high-mass star formation
activity. Complete analysis of this observed field is presented in
Chapin et al. (2008).

A few hours of these data were taken at different time intervals
during the flight. By design, this field has been observed with

Fig. 12.—Signal-only simulations (like Fig. 7) for the BLASTG86 configuration. The three panels show the input signal map (left), full SANEPIC (middle), and simple
common-mode subtraction followed by application of SANEPIC without correlations (right).

Fig. 13.—Power spectrum comparison of the SANEPICmap (solid line) vs. the
simple common-mode removal map (dot-dashed line) for signal-only simulated
data, as in Fig. 8, but for the BLAST05 G86 scanning configuration. Power spectra
are multiplied by k3, so that a flat line would indicate no filtering. The drop-off at
small angular scales is due to the BLAST05 PSF.

Fig. 14.—Mapof theCasA supernova remnant at 250�mmade fromBLAST05
data using SANEPIC including noise correlations between detectors. The map is
represented in Galactic coordinates with 2500 pixels and has a size of about 0.5 deg2.
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very different scanning directions, and therefore it should be pos-
sible to recover diffuse large-scale structures.

The map of the observed region at 250 �m obtained with
SANEPIC is shown in Figure 15 (left panel ). For comparison (right
panel ), we have computed another map using a much simpler
method that consists of removing the array average signal at each
time step for all of the time streams and reprojecting the data onto
the map after filtering. This is like the ‘‘sky removal’’ procedure
often carried out for ground-based submillimeter data (see also
x 5.1.2). One can see that it suppresses almost all the diffuse
structure in the map.

No residual striping is visible in the map obtained with
SANEPIC (Fig. 15, left panel ), mainly due to the presence of
multiple scanning directions for this field. Large-scale structures
in the map are successfully recovered with SANEPIC, as can
easily be seen by comparing with the right panel of Figure 15.
This recovery applies to scales that are significantly larger than
the array size. However, the resulting effective filtering after ap-
plying the ‘‘array average subtraction’’ method induces negative
signals near bright sources in the map, while no such filter-
ing effect is seen in the SANEPIC map (except perhaps near the
edges of the map). This shows that optimal mapmaking methods
(in the sense of least squares) like SANEPIC are better suited to
recover point sources in the maps, as well as diffuse structures.

7. CONCLUSIONS

Large-format detector arrays operating at far-IR and submil-
limeter wavelengths are becoming the norm, rather than the
exception. Ground-based instruments are plagued with common-
mode emission arising from the Earth’s atmosphere. And as we
have found with BLAST, the same applies to high-frequency
balloon-borne instruments, where we see correlated noise from
thermal and atmospheric effects. There is an expectation that
even upcoming satellites might be faced with similar issues be-
cause of thermal variations in the spacecraft, for example. In
general, we expect that correlated noise between detectors will
be a major issue that all such experiments have to deal with, and

we expect that the SANEPIC approach, which we have described
here, will be widely applicable. Indeed, there is evidence from
existing arrays (e.g., SHARC-II and AzTEC) that once there are
many detectors, there are multiple correlations between subsets
of the detectors, as well as an overall common-mode term. Con-
sequently, one sees correlations between contiguous blocks of
detectors on the array, or sets of detectors that share amplifiers
or are otherwise coupled through the electronics. Provided that
these correlations can be investigated and their behavior mod-
eled, it is straightforward to extend the SANEPIC approach to
deal with several distinct sources of correlated noise. Hence,
we expect the SANEPIC approach to be applicable to future in-
struments such as SCUBA-2, SPIRE, ACT, Planck HFI, and
others. There are also many experiments being planned that use
large detector arrays to perform sensitive polarization measure-
ments, and we see no reason why the SANEPIC approach could
not also be extended to polarimetry.
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