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ABSTRACT

We investigate the influence of stochastic temperature fluctuations on the observed spectra in continuum. Temperature fluctuations
exist in the photospheres and atmospheres of stars, in interstellar media, and in the vicinity of AGN and quasars. In these cases
we observe the mean values of intensities from the objects. The particular calculations were made for the frequently used model of
semi-infinite turbulent homogeneous atmosphere with the Planck source function. We show that temperature fluctuations T ′ change
the spectral distribution of observed radiation in all regions of spectra, especially in the ultraviolet region, where they increase the
mean intensity compared with the Planck intensity Bν(T (0)) at the mean temperature T (0). In the maximum of Planck’s spectrum, the
difference between the Planck intensity Bν(T (0)) and the observed mean intensity I(0)

ν can also be large (about 5−30%). This difference
can be negative or positive depending on the particular form of the absorption coefficient. Our results demonstrate that the turbulence-
related small-scale temperature fluctuations contribute to the overall deviations from the Planck intensity. The temperature fluctuations
change the observed U − B, B− V , etc. colour indices. Our simple technique can also be used to analyze of the radiation spectra from
all sources, not only for the thermal Planck radiation.
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1. Introduction

Many photospheres and atmospheres of stars have the chaotic
(turbulent) motions of the gas (see, for example, Gray 1992;
Sobolev 1969). The motion of interstellar matter is also fre-
quently stochastic, especially in the vicinity of various active
sources such as AGN, supernova explosions, and quasars. The
stochastic motions of the matter are followed by corresponding
temperature fluctuations (see Tatarskii 1967).

In turbulent (more generally, stochastic) media, the absorp-
tion coefficient αν(T ), the intensity of radiation Iν, the tempera-
ture T , and the number density N of scattering particles are also
the stochastic values. They are characterized by its mean val-
ues − α(0)

ν , I
(0)
ν , T (0), N(0), and by the fluctuating components −

α′ν, I′ν, T ′, and N′. So, we have αν = α
(0)
ν + α

′
ν, Iν = I(0)

ν + I′ν, T =
T (0) + T ′, etc., where the mean values of fluctuating quantities
are equal to zero; for example, 〈T ′〉 = 0.

The visual semisphere of a star contains many turbulent
(stochastic) cells; i.e. we really only observe the mean radiative
flux. The only exception is the Sun. More detailed discussion of
this subject is given by Levshakov & Kegel (1997). The temper-
ature fluctuations were observed directly in the photosphere of
the Sun (see Stix 1992). Observed local variations in the surface
radiation intensity allow us to estimate the corresponding fluctu-
ations in the temperature. It turns out that the solar temperature
fluctuations T ′ are very small compared to the mean temperature
T (0): T ′/T (0) � 0.03. We demonstrate that even such low values
for temperature fluctuations give rise to rather large changes in
the observed integral spectra of radiation. An especially large
effect exists for the ultraviolet range of wavelengths.

This can be demonstrated in a simple model of two realiza-
tions. Let us observe the Planck intensity (in Wien’s region of
wavelengths) in the first realization with the temperature T (0)+T ′
and in the second realization with the temperature T (0) − T ′.

The mean value of the intensity is

〈Iν〉 ≡ I(0)
ν =

1
2

(
2hν3

c2

) [
exp

(
− hν

k(T (0) + T ′)

)

+ exp

(
− hν

k(T (0) − T ′)

)]

� Iν(T
(0)) cosh

(
hν

kT (0)
· T ′

T (0)

)
≥ Iν(T

(0)). (1)

Here and in what follows, we suppose inequality T ′ � T (0).
It is seen from Eq. (1) that the greater the parameter hν/kT (0),
the larger the difference between I(0)

ν and Iν(T (0)); hence for
hν/kT (0) = 10 and T ′/T (0) = 0.05, we have the 13% increase,
and the increase is much larger for hν/kT (0) = 20, about 54%.
This is purely statistical effect – the mean value of observed fluc-
tuating intensities is higher than the intensity corresponding to
the mean temperature. Because we only observe the mean value
of the radiation flux, this statistical effect has to be taken into
account.

The deviation in the mean intensity I(0)
ν from the Planck in-

tensity Bν(T (0)) due to the temperature fluctuations occurs in all
parts of a spectrum, including the maximum of the spectrum and
the far-infrared wavelengths where both the increase and the de-
crease of the intensity can be observed.

The goal of this paper is to give simple analytical con-
sideration of the various situations where small temperature
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fluctuations give rise to fairly large changes in the spectra. The
authors plan to apply the theory to some observing results in
subsequent papers. Below we give the detailed consideration of
these statistical effects.

2. Radiative transfer equation for the mean intensity

Silant’ev (2005) has shown that the mean intensity I(0)
ν (r, n)

satisfies the usual radiative transfer equation with the effective
kinetic coefficients and the averaged source function:

(n∇)I(0)
ν (r, n) = −α(eff)

ν I(0)
ν (r, n)

+β(eff)
ν

∫
dn′Φ(nn′)I(0)

ν (r, n′) + 〈α(a)
ν Bν(T )〉, (2)

where Bν(T ) is the Planck function, α(a)
ν the true absorption co-

efficient, and Φ(nn′) the scattering phase function (for isotropic
scattering this is simply 1/4π). The total extinction factor αν =
Nσ(s)
ν + α

(a)
ν , where σ(s)

ν is the scattering cross-section and N the
number density of the scattering particles. The effective kinetic
coefficients α(eff)

ν and β(eff)
ν have the following form:

α(eff)
ν = α(0)

ν

(
1 − 〈(α

′)2〉
(α(0)
ν )2
τ1tα

)
, (3)

β(eff)
ν = N(0)σ(s)

ν

(
1 − 〈α

′N′〉
α(0)
ν N(0)

τ1tαN

)
. (4)

Here τ1 = α
(0)
ν R1 is the mean total optical depth of the turbulent

correlation length R1. Remember that the characteristic scale R1
is determined from the condition that, outside the region∼R1, the
fluctuating quantities are practically uncorrelated one with the
other (see Tatarskii 1967). The coefficients tα � 1 and tαN � 1
are determined by the particular forms of turbulent correlation
functions, for example:

tαN =

∫ ∞

0
dx AαN(x),

〈α′(s)N′(s′)〉 = 〈α′(s)N′(s)〉AαN(R/R1). (5)

The correlation function AαN(R/R1) depends on the difference
R = |s − s′| of distances along the line of sight n and is equal
to unity at R = 0. The value 〈α′(s)N′(s)〉 is the correspond-
ing mean value at the s-point. Note that one frequently uses the
model Aα = exp (−R/R1), which gives tα = 1.

The transfer Eq. (2) is valid if τ1 � 1. This case evidently
corresponds to the small-scale turbulence in the atmosphere. If
this condition is not valid, then the propagation of radiation is
described by the effective optical depth τ(eff)

ν (see Silant’ev 2005;
and Silant’ev et al. 2006), which depends nonlinearly on the
distances.

In the theory of stellar photospheres (see Gray 1992) the
scattering term in Eq. (2) can usually be omitted. We also ne-
glect this term and consider only the source term 〈α(a)

ν Bν(T )〉
in deatail. Of course, the scattering term cannot be omitted
if the process of the Thomson scattering and the atomic and
molecular scatterings in stellar atmosphere play important roles
(see Mihalas 1978). Furthermore, for brevity, we denote the
α(a)
ν -coefficient simply as αν.

Strictly speaking, the usual hydrostatic theory of the stellar
photospheres should be based on the radiative transfer Eq. (2),
which takes the temperature fluctuations into account.

We shall see that one holds the inequality 〈(α′)2〉/(α(0)
ν )2 � 1

for small temperature fluctuations, and the coefficient α(eff)
ν prac-

tically coincides with the mean absorption coefficient α(0)
ν . The

latter depends on the mean temperature T (0) and the level of the
temperature fluctuations

η =

√〈(T ′)2〉
T (0)

, (6)

and does not coincide with the value αν(T (0)), i.e. α(0)
ν =

α(0)
ν (T (0), η). Note that in general case both T (0) and parameter η

depend on the position r in an atmosphere.
Frequently (see Rybicki & Lightman 1979), one uses the

dimensionless optical depth dτν = α
(0)
ν ds and denotes the last

source term in Eq. (2) as S ν. In this notion the source term in
Eq. (2) acquires the form

S ν(T
(0), η) =

〈αν(T (0) + T ′)Bν(T (0) + T ′)〉
α(0)
ν (T (0), η)

, (7)

which is different from the usual term Bν(T (0)) in the standard
stellar photosphere theory.

Thus, the new transfer equation due to coefficients α(0)
ν

and S ν depends on the new physical parameter η – the level
of temperature fluctuations. Of course, all the known methods
of the usual hydrostatic photosphere theory can be used to con-
struct the models of photospheres that take the existence of the
temperature fluctuations into account. In particular, such a mod-
ification of the photosphere theory may be useful for improving
the coincidence with the observed ultraviolet excesses (as in the
Sun).

For the crude estimates of the influence of the temperature
fluctuations on the spectra of cosmic objects, we use the simple
model of a homogeneous turbulent semi-infinite medium with
given level of the temperature fluctuations. In this case the source
function S ν(T (0), η) does not depend on the optical depth, and
the emerging radiation intensity is equal to this function (see
Rybicki & Lightman 1979). To estimate the difference between
the S ν – function and the Planck function Bν(T (0)), we present
expression (7) in the form

S ν(T (0), η) ≡ f (T (0), η) Bν(T (0)), (8)

where the dimensionless distortion function fν(T (0), η) charac-
terizes the degree of the difference from the Planck spectral
distribution:

fν(T
(0), η) =

〈αν(T (0) + T ′)Bν(T (0) + T ′)〉
α(0)
ν (T (0), η)Bν(T (0))

· (9)

It is clear that this function does not depend on the temperature-
independent factors in αν(T ) and Bν(T ).

There are many expressions for the absorption coefficients
that describe the absorption of radiation in various physical
situations. As typical examples, we consider below only two
forms of αν(T ), those that are simplest for calculations. The first
absorption coefficient is

αν(T ) = Cν T exp
(
− I

kT

) [
1 − exp

(
− hν

kT

)]
· (10)

This coefficient is used in stellar photosphere theory (see Gray
1992) for describing free-free transitions in the hydrogen photo-
spheres (I = 13.6 eV is the ionization energy of the hydrogen
atom).
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We introduce here the dimensionless parameters:

a =
kT (0)

hν
� λ(µm)T (0)(K)

14388
� 0.0695 λ(µm)

(
T (0)

103

)
, (11)

b =
kT (0)

I
� 0.00634

(
T (0)

103

)
· (12)

The second absorption coefficient

αν(T ) = Dν
1√
T

[
1 − exp

(
− hν

kT

)]
(13)

also describes the free-free transitions in the electron-ion plasma
(see Rybicki & Lightman 1979), where the concentrations of
free electrons and ions are considered as given values (the
Dν-term is proportional to them). The factor (1 − exp (−hν/kT ))
is a known correction Einstein’s factor for taking the stimu-
lated emission into account (see Rybicki & Lightman 1979). In
Wien’s range of the wavelengths, it tends to unity, but in the
Rayleigh-Jeans region it gives the T−3/2 – dependence of the ab-
sorption coefficient. The coefficients (10) and (13) are used in
astrophysics in various regions of frequency ν and temperature T
(see, for example Gray 1992; and Rybicki & Lightman 1979).

In the next section we calculate the distortion func-
tion fν(T (0), η) for these absorption coefficients.

3. The results of calculations

We assume that the probability that small temperature fluctua-
tions have a Gaussian form (see Van Kampen 1981). In this case
the mean value of a function G(T ) can be calculated from the
formula:

〈G(T )〉 = 1√
2π〈T ′2〉

∫ ∞

0
dT G(T ) exp

(
− (T − T (0))2

2〈T ′2〉
)

=
1√
2πη

∫ ∞

−1
dx G

(
T (0)(1 + x)

)
exp

(
− x2

2η2

)

�
1√
2πη

∫ ∞

−∞
dx G

(
T (0)(1 + x)

)
exp

(
− x2

2η2

)
· (14)

Here x = (T−T (0))/T (0). We use for the calculations the last term
in Eq. (14), which is available for low values of the parameter η.
Practically, this is possible for η ≤ 0.2.

According to Eq. (14), we calculate the values α(0)
ν and

〈αν(T )Bν(T )〉 using the following explicit formulae:

〈αν(T )〉 = 1√
2πη

∫ ∞

−∞
dxαν

(
T (0)(1 + x)

)
exp

(
− x2

2η2

)
, (15)

〈αν(T )Bν(T )〉 = 2hν3

c2

1√
2πη

∫ ∞

−∞
dx αν

(
T (0)(1 + x)

)
.

exp

(
− x2

2η2

) [
exp

(
g

1 + x

)
− 1

]−1
. (16)

The Wien approximation of Planck’s function corresponds to
a � 1. Remember that the maximum of the Planck function
occurs at λ(µm)T (0)(K) � 2900, i.e. corresponds to the value
a � 0.2.

In the standard hydrostatic theory of stellar photospheres,
one frequently uses the frequency averaged absorption coeffi-
cient α(T ) ∝ T γ. In the ionized plasma for the Rayleigh-Jeans

region of wavelengths, the absorption coefficient (13) αν ∝ T γ

with γ = −3/2. We give here the explicit formulae for the mean
values of these type absorption coefficients:

α(0)
ν

αν(T (0))
= 1 +

1
2
γ(γ − 1)η2

+
1
8
γ(γ − 1)(γ − 2)(γ − 3)η4 + ... (17)

To calculate the value 〈(α′ν)2〉 = 〈α2
ν〉 − 〈αν〉2, we need to

know 〈α2
ν〉:

〈α2
ν〉

(αν(T (0)))2
= 1 + γ(2γ − 1)η2

+
1
2
γ(γ − 1)(2γ − 1)(2γ − 3)η4 + ... (18)

These expressions give rise to the following result:

〈(α′ν)2〉
(〈αν〉)2

�
γ2η2(1 + 1

2 (γ − 1)(3γ − 5)η2)

1 + γ(γ − 1)η2 + 1
2γ(γ − 1)(γ2 − 3γ + 3)

· (19)

This formula depends on η2 � 1. It means that the term inside
the brackets in Eq. (3) is small and can be omitted, so we can
take α(eff)

ν � α(0)
ν . The numerical calculations for the absorption

coefficients (10) and (13) confirm this result. Of course, we do
not guarantee that this result exists for any forms of the absorp-
tion coefficients.

Using Wien’s approximation of the Planck intensity Bν(T ) ∝
exp (−hν/kT ) and the explicit form of the absorption coefficient

αν(T ) = DνT
γ

[
1 − exp

(
− hν

kT

)]
, (20)

one can derive the analytical formula

fν(T (0), η) = eg
Φ0(g, η)Φ1(g, η) −Φ0(2g, η)Φ1(2g, η)
Φ0(0, η)Φ1(0, η) −Φ0(g, η)Φ1(g, η)

, (21)

where functions Φ0(g, η) and Φ1(g, η) have the forms:

Φ0(g, η) =
1√

1 + 2gη2
exp

(
g2η2

2(1 + 2gη2)

)
, (22)

Φ1(g, η) =

[
1 + γ

gη2

1 + 2gη2

+
1
2
γ(γ − 1)

η2

1 + 2gη2

(
1 +

g2η2

1 + 2gη2

)]
e−g. (23)

For brevity we use here the notion g = 1/a. It is seen that func-
tion fν(T (0), η) ≡ fν(a, η) depends on the product λT (0).

The analytical expression for 〈αν(T )〉 takes the form:

α(0)
ν (T (0), η)
αν(T (0))

= Φ0(0, η)Φ1(0, η) −Φ0(g, η)Φ1(g, η). (24)

If the expression (20) for αν(T ) contains the additional factor
exp (−1/b), i.e. looks like Eq. (10), then Eqs. (21) and (24)
also take place with the evident substitutions: g → g + 1/b
and 2g → 2g + 1/b. The approximate analytical formulae (21)
and (24) represent fν and 〈αν(T )〉 rather well for small η (up
to η = 0.1) and can be used for the quick estimates in the
range 0.03 ≤ a ≤ 0.2.
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Fig. 1. The values of the distortion function fν(a, η) for absorption co-
efficient (13). The numbers denote the square values of the level of the
temperature fluctuations η2 (see Eq. (6)).

In the Rayleigh-Jeans limit (a = kT/hν � 1) Eq. (9) tends
to the expression

fν(η2)→ 〈T γ〉
T (0)〈T (γ−1)〉 �

1 + 0.5 η2 γ(γ − 1)
1 + 0.5 η2 (γ − 1)(γ − 2)

· (25)

The exact numerical calculations of the function fν(T (0), η)
are presented in Fig. 1 for the αν – coefficient (13) at η2 =
0.0005, 0.001, 0.005, and 0.01. The results for the case of the
absorption coefficient (10) are given in Figs. 2 (for η2 = 0.001)
and 3 (for η2 = 0.005). They present the fν – coefficient up to a =
0.5, i.e. include the maximum of Planck’s intensity at a = 0.2.
In Fig. 4 we present the fν(a, η) – values for the absorption co-
efficients of the type αν(T ) = DνT γ with γ = −7,−5,−3, 3, 5, 7
at η = 0.1. The distortion of Plank’s spectra by the tempera-
ture fluctuations (see Eq. (8)) with the level η = 0.1 is presented
in Fig. 5.

For convenience, we present the distortion coefficients fν for
values a = 0.06, 0.1, 0.2 and 50 in Tables 1−3. Remember that
a = 0.2 corresponds to the maximum of the Planck function
and a = 50 practically corresponds to the Rayleigh-Jeans limit.
These tables allow us to directly estimate the coefficients fν for
various values of the parameters a, b, and η.

The results of calculations demonstrate that the distortion co-
efficient fν > 1 in the far ultraviolet region (a ≤ 0.06), indepen-
dent of the form of the absorption coefficient αν(T ). This means
that the temperature fluctuations give rise to the excess of the
ultraviolet radiation.

At the maximum of Planck’s function (a = 0.2), the distor-
tion coefficient fν can acquire both fν > 1 and fν < 1 values
depending on the particular form of αν(T ). For coefficients (10)
and (13), we have fν > 1. For αν ∝ T γ we have the coefficient
fν > 1 at γ ≥ 0 and fν < 1 at γ < 0. At the Rayleigh-Jeans
limit (a � 1) the α – coefficient (10) gives rise to fν > 1, and
the coefficient (13) gives fν < 1. For the absorption coefficient
αν ∝ T γ, we have fν < 1 at γ ≤ 0 and fν > 1 at γ > 0.
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Fig. 2. The values of the distortion function fν(a, η) for absorption
coefficient (10). The square of the level of the temperature fluctua-
tions η2 = 0.001. The numbers denote the values of parameter b (see
Eq. (12)).
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Fig. 3. Same as in Fig. 2, but for η2 = 0.005.

Numerically these results strongly depend on the degree of
temperature fluctuations η. The increase in η gives rise to more
profound deviations from the Planck function Bν(T (0)).

4. Discussion and summary

The stochastic temperature fluctuations mutually exist in vari-
ous media – the stellar photospheres and atmospheres, in the
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Fig. 4. The distortion function fν(a, η) for absorption coefficient αν(T ) =
Dν T γ. The level of the temperature fluctuations η = 0.1. The numbers
denote the values of γ.

interstellar medium, in AGN, and quasars. In many cases we ob-
serve a large number of turbulent (in general, stochastic) “cells”.
This means that we observe the mean intensity I(0)

ν . The mean
intensity does not coincide with the intensity corresponding to
the mean temperature T (0). The intensity I(0)

ν depends on the
mean temperature T (0) and the level of temperature fluctuations
η =

√〈(T ′)2〉/T (0). The value η is low in the Sun’s photosphere
(η � 0.03). We do not know how much η is in various me-
dia mentioned above. It seems η is greatest in various situations
when energy escape exists more freely from the turbulent cells
than in Sun’s photosphere.

It is necessary to investigate the influence of the temperature
fluctuations in the form of observed spectra. In turbulent (more
generally, stochastic) media, the mean intensity I(0)

ν satisfies the
usual radiative transfer equation with the effective (renormal-
ized) kinetic coefficients; in particular, the usual absorption co-
efficient αν(T ) has to be replaced by the effective absorption co-
efficient that depends on η. The usual source function – Planck’s
intensity Bν(T ) also has to be replaced by the effective source
in the form fν(T (0), η) Bν(T (0)). The coefficient fν describes the
distortion of Planck’s function due to the existence of the tem-
perature fluctuations.

We presented this investigation for the various types of
the absorption coefficients αν(T ) at different values of η ≤
0.1. It was found (see Tables 1−3) that the distortion coeffi-
cient fν positive and large (can be �1) in the ultraviolet range
of wavelengths. It grows with the decrease in the parameter
a = kT (0)/hν. Because the Planck intensity at a � 1 is a very
steep function of the temperature, even very small temperature
fluctuations give rise to the large increase in the mean intensity.
The value a when the coefficient fν begins to grow drastically
depends on the particular form of the absorption coefficient, so
the value fν ≈ 2 occurs at a � 0.09 for αν ∝ T 3 and at a � 0.05
for αν ∝ T−3.

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

6000 K15000 K 3000 K

f (a) Bλ / Bλ max

λ , µm

Fig. 5. The distortion of Plank’s spectra by the temperature fluctuations
(see Eq. (8)) with the level η = 0.1. The solid lines present the Planck
spectra Bν(T (0)). The upper dotted lines present the distorted spectra for
absorption coefficient (13). The low short – dashed lines present the
distorted spectra for absorption coefficient αν(T ) ∝ T−3. The numbers
denote the mean temperature T (0).

Table 1. The distortion coefficient fν for the case of the absorption
coefficient (13).

a η = 0.022 0.032 0.071 0.1 0.224
0.06 1.058 1.117 1.651 2.468 15.417
0.10 1.018 1.035 1.177 1.357 2.900
0.20 1.002 1.005 1.025 1.049 1.223
50 0.999 0.998 0.992 0.985 0.909

Table 2. The distortion function fν for the absorption coefficient (10).

η a b = 0.02 0.04 0.06 0.08 0.1 0.2
0.0316 0.06 2.304 1.660 1.474 1.387 1.336 1.238

0.1 1.610 1.318 1.226 1.181 1.155 1.102
0.2 1.259 1.137 1.096 1.075 1.063 1.038
50 1.046 1.024 1.016 1.012 1.010 1.005

0.0707 0.06 16.601 6.881 4.740 3.851 3.373 2.532
0.1 5.086 2.929 2.314 2.028 1.736 1.550
0.2 2.221 1.664 1.469 1.370 1.310 1.188
50 1.183 1.105 1.074 1.057 1.047 1.024

In the maximum of the Planck spectrum and further, in the
infrared region of the wavelengths, the function Bν(T ) is not
steep and the distortion of the spectra is mostly due to the partic-
ular temperature dependence of the absorption coefficient. The
steeper this dependence, the larger distortion due to the tem-
perature fluctuations. If the absorption coefficient grows with
the increase in the temperature, then the mean intensity I(0)

ν is
higher than Bν(T (0)). If the αν(T ) – coefficient decreases with
the growth of the temperature, then the deviation is opposite
( fν < 1). For a rather large level of the temperature fluctuations
(η ≤ 0.1), the difference between the mean intensity and Bν(T (0))
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Table 3. The distortion coefficient fν for the absorption coefficient of
the form αν ∝ T γ at η = 0.1.

a γ = −7 −5 −3 0 3 5 7
0.06 0.973 1.326 1.768 2.454 3.780 4.733 5.856
0.10 0.722 0.892 1.084 1.385 1.803 2.092 2.407
0.20 0.736 0.830 0.927 1.068 1.230 1.335 1.441
50 0.922 0.946 0.998 1.000 1.030 1.049 1.067

at the maximum of the spectrum can reach ≈5−30%, both posi-
tive and negative.

The calculated values of the distortion coefficient fν and its
approximate analytical expression (21) can be used to estimate
of the additional terms in the colour indices U − B, B − V etc.
For example,

(U − B)add = −2.5 log
fν(λ = 0.34 µm)
fν(λ = 0.44 µm)

·

If the observed values of the colour indices differ from the
Planck values, then one can explain the difference by the in-
fluence of the temperature fluctuations and estimate the needed
level of the fluctuations. Of course, such an explanation is not
unique, and other explanations may exist.

The large distortion of the continuum spectra in the region
kT/hν ≤ 1, due to the temperature fluctuations, can be included
in the usual hydrostatic photosphere theory as a possible expla-
nation of observed ultraviolet excesses. As a result, in this theory
the new physical function η arises – the level of the temperature
fluctuations.

It seems that in modern hydrodynamical models (see Freytag
& Salaris 1999; Asplund et al. 2000, 2004; Nordlund & Stein
2001; Freytag et al. 2002; Steffen & Holweger 2002 etc.) of
stellar atmospheres, the effects of the temperature fluctuations
are included ab initio, as the result of numerical solution of the
full system of hydrodynamical and radiative transfer equations.
Of course, to obtain the mean spectra, the numerical solutions
are to be averaged during a large enough time for the calculations

(corresponding to many statistical realizations). Note that the hy-
drodynamical non-stationary theory is very complex and, up to
now, their general application has been limited (see Ludwig &
Kucinskas 2004). The most important achievements of this the-
ory are the corrections of the chemical elements distribution in-
side the atmospheres.

It should be noted that our simple method can be used for
any type of radiation source, not only for the thermal Planck ra-
diation. The temperature fluctuations change the spectra for all
sources. The simple semi-analytical theory presented here can
be used for the estimation of the level of the temperature fluctu-
ations for various cosmic objects.
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