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Abstract 
 

Pedestrian dead reckoning (PDR) is a navigation technique that provides and maintains the 

geographical position for a person travelling on foot by using self-contained sensors.  In 

PDR techniques, each new position estimate is based on the previous estimate of the last 

step taking advantage of the sequential nature of pedestrian motion. In general, a PDR 

algorithm is composed of three parts: step detection, estimation of walking distance and 

tracking of sensor attitude. Most of PDR approaches consider low cost MEMS 

accelerometers, gyroscopes and magnetometers as the source of information. However, 

these sensors are affected by sensor noise and drift, which introduce errors in the 

displacement and relative attitude changes in the sensor´s frame of reference with respect to 

the human body. In order to improve the accuracy of the attitude estimation reducing the 

time-varying drift, this work presents the development of a Kalman Filter with Neuro-Fuzzy 

adaptation (KF-NFA), relying on information derived from triaxial accelerometer and 

gyroscope sensors contained in an inertial measurement unit (IMU). The adaptation process 

is performed on the filter statistical information matrix R, which is tuned using an Adaptive 

Neuro Fuzzy Inference System (ANFIS) based on the filter innovation sequence through a 

covariance-matching technique. Besides, in order to improve the distance traveled by the 

pedestrian, and consequently the localization accuracy, different types of activities are 

classified using a Multi-layer Perceptron (MLP) Neural Network (NN) according to 

extracted features based on Wavelet Decomposition. Basic activities that a pedestrian 

performs in his daily life, such as walking, walking fast, jogging and running, are considered. 

Subsequently the step-length is dynamically estimated using a multiple-input-single-output 

(MISO) Fuzzy Inference System (FIS). Validation testing and obtained results are presented. 
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Resumen 
 

Pedestrian dead reckoning, (PDR) es una técnica de navegación que proporciona y mantiene 

la posición geográfica de un peatón que usa sensores auto-contenidos. En los sistemas PDR, 

cada nueva posición está estimada en base a una estimación anterior del último paso, así se 

toma ventaja de la naturaleza secuencial del movimiento del peatón. En general, un 

algoritmo PDR está compuesto de tres partes: detección de pasos, estimación de la distancia 

recorrida y la estimación de la orientación del sensor. La mayoría de los sistemas PDR 

consideran como fuente de información a los sensores MEMS de bajo costo, tales como 

acelerómetros, giroscopios y magnetómetros. Sin embargo, estos sensores son afectados por 

el ruido y el sesgo en las mediciones, los cuales introducen error en el desplazamiento y 

cambios en la orientación relativa en el cuadro de referencia del sensor con respecto al 

cuerpo humano. Con la finalidad de mejorar la exactitud de la orientación y reducir el sesgo 

en las mediciones que varía con el tiempo, este trabajo presenta el desarrollo de un Filtro 

Kalman con una adaptación Neuro-Difusa, que usa la información de un acelerómetro y 

giroscopio de tres ejes contenidos en una unidad de medición inercial. El proceso de 

adaptación es ejecutado sobre la matriz de información estadística del filtro, R, la cual es 

ajustada usando un Sistema Adaptativo de Inferencia Neuro-Difuso basado en la secuencia 

de innovación del filtro a través de la igualación de covarianzas. Por otra parte, para mejorar 

la estimación de la distancia recorrida por el peatón, y consecuentemente la exactitud de la 

localización, se clasifican diferentes actividades en una Red Neuronal Artificial Perceptrón 

Multicapa usando las características obtenidas de una descomposición Wavelet de la señal 

de la aceleración. Se proponen las actividades: caminar, caminar rápido, trotar y correr, y se 

incorpora un altímetro para obtener los datos de la altura.  Posteriormente la longitud del 

paso se estima dinámicamente usando un Sistema de Inferencia Difuso, de múltiples 

entradas a una salida. Se presentan las pruebas de validación y los resultados obtenidos. 
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Chapter 1 

Introduction 
 

 

Modern life style makes people increasingly mobile. This has stimulated the 

development of mobile devices fitted with communications and positioning technologies, 

e.g. Wi-Fi and global positioning system (GPS) [1]. As a result, the demand for systems 

capable to deliver information to people according to their geographical location has 

dramatically increased. To satisfy this demand, lately a new set of applications known as 

Location-Based Services (LBS) or (location-based applications) have been developed. 

 

LBS integrate satellite navigation, mobile networking, and mobile computing to 

enable such services. A broad range of LBS applications are continuously emerging in the 

following market segments [2]: emergency location, personal child security, asset tracking 

and people finder, fleet management, telematics, driving directions, wireless gaming, 

location based billing, information directory services, push/pull advertising, and many others. 

 

A fundamental component common to all LBS is the use of positioning technologies 

to track the movement of mobile users and to deliver information services to these users on 

the move at the right time and right location [3]. Therefore, the effective use of positioning 

technologies has a significant impact on the performance, reliability, security, and privacy of 

LBS systems and applications.
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Initially, many research studies were focused on LBS applications for outdoor 

environments and the Global Positioning System (GPS) as the main source of localization. 

In outdoor environments, where there is a strong satellite signal, the GPS technology is able 

to provide the user’s location with accuracy and continuity of service. However, a lot of the 

movements of persons take place indoors and in dense urban environments where buildings 

block satellite signals and, consequently, the GPS system is completely disrupted or it does 

not provide accuracy and continuity of service. 

 

1.1 Justification 

 

Location in both environments, indoors and outdoors, is difficult to obtain due to the 

lack of sensors that can work in both situations. In spite of that, location in both indoor and 

outdoor environments is a basic requirement for the development of LBS applications. For 

that reason, alternative techniques have been adapted to work on those environments, such 

as: stereo or monocular visual information [4], [5], ultrasonic sensors [6], [7] laser sensors 

[8] and Inertial Measurement Units (IMU) [9], [10], [11], [12], all of these techniques have 

advantages and disadvantages related to accuracy, availability of technology, feasibility of 

installation, etc. This work focuses on the Pedestrian Dead Reckoning (PDR) algorithms 

which provide an alternative solution as it can work in outdoor and indoor environments. 

 

Pedestrian Dead Reckoning (PDR) is a navigation technique that provides and 

maintains the geographical position for a person travelling on foot by using self-contained 

sensors. The current advancements of personal mobile devices with low cost MEMS 

(Microelectromechanical Systems) sensors such as accelerometers, gyroscopes and 

magnetometers, have made PDR a relevant approach for the development of LBS 

applications, with potential use in GPS-denied environments. 

 

In PDR algorithms, estimation of each new position is based on the previous one 

derived from the last step, taking advantage of the sequential nature of pedestrian motion. In 

general, a PDR algorithm is composed of three parts: step detection, estimation of walking 
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distance and tracking of sensor attitude. The accelerometer signals are used to detect steps 

and estimate step length, which in turn is calculated based on a walking step frequency. 

Attitude can be estimated by combining the measurement signals from the accelerometer, 

gyroscope and magnetometer included in an inertial measurement unit (IMU). Figure 1.1 

presents the general block diagram of the basic PDR algorithm. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Pedestrian Dead Reckoning. 

 

1.2 Problem definition 
 

Most of PDR approaches consider low cost MEMS accelerometers, gyroscopes and 

magnetometers as the source of information for the PDR algorithm. However, this type of 

sensors are affected by sensor noise and drift, which introduce errors in the displacement and 

relative attitude changes in the sensor´s frame of reference with respect to the human body 

[12]. 

 

On the other hand, PDR systems utilizing a magnetometer are not the best choice for 

indoor/urban navigation because magnetometers are subject to strong magnetic disturbances 

such as power lines, computers and different metal/steel objects. Therefore, if accurate 

navigation is required, the system has to rely on other means to determine attitude, such as 

gyroscopes and accelerometers, according to the angle or position representation. 
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According with this, due to the drift error of inexpensive gyroscopes and 

accelerometers and the vulnerability of magnetometers to several types of errors, it is still a 

challenge to obtain an accurate attitude and achieve a satisfactory positioning accuracy. In 

order to improve the accuracy of the attitude estimation by reducing the time-varying drift, 

the distance traveled calculation and consequently the localization accuracy, the present 

thesis work proposes a PDR algorithm which incorporates additional techniques as inertial 

measurement fusion and pedestrian activity classification. 

 

PDR algorithms have no restrictions on the location of sensor placed on the body, for 

that reason, some works incorporate sensors mounted on the pedestrian’s shoes to reduce the 

drift error of gyroscopes, making use of a step’s stance phase for the zero velocity update 

(ZUPT) [12], [13], [14]. In this work, it has been proposed the use of waist-mounted 

accelerometers and gyroscopes. This decision has been made considering future applications, 

where the proposed algorithm could be implemented on a mobile platform, such as a 

smartphone or tablet. 

 

1.3 Objectives 

 

1.3.1 General objective 

 

The main objective of this thesis is to design and develop adaptive techniques for 

estimating position and attitude in a Pedestrian Dead Reckoning system, in GPS-denied 

indoor environments, based on inertial measurements fusion and pedestrian activity 

classification. 

 

1.3.2 Particular objectives 

 

a) To develop a Neuro-Fuzzy tuning based on adaptive Kalman Filter for estimating and 

reducing the sensors drift and consequently to improve the attitude calculation. The 

adaptation process is performed on the filter statistical information matrix R. 
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b) To incorporate activity classification on Fuzzy Inference System (FIS) for step length 

estimation in order to improve the accuracy of the distance traveled calculation, and 

improving the localization accuracy. 

c) To perform MATLAB simulations of the above techniques for position and orientation 

estimation. 

d) To develop a Pedestrian Dead Reckoning system incorporating the above adaptive 

techniques using inertial measurements obtained from a three-axis accelerometer and a 

three-axis gyroscope contained into an Inertial Measurement Unit (IMU) attached to the 

waist of the wearer. 

 

1.3.3 Solution scope 

 

The solution will be developed in MATLAB code. The smartphone or tablet 

implementation is considered as future work. 

 

1.4 Background 

 

Dead reckoning is a relative navigation technique, which calculates the distance 

travelled by a moving platform starting from a known position and successively adding 

displacements. Since the past position estimates are projected through time to obtain new 

estimates in dead reckoning, position errors accumulate over time. Because of this 

cumulative error propagation, dead-reckoning estimates are unreliable if calculated over long 

periods of time. Hence, dead reckoning is seldom used alone in practice and is often 

combined with other types of position sensing to improve position accuracy [15]. 

 

Dead reckoning is employed in mobile robotics through the use of odometry and/or 

inertial navigation systems (INS). Inertial navigation is a self-contained navigation technique 

in which measurements provided by accelerometers and gyroscopes are used to track the 

position and orientation of an object relative to a known starting point, orientation and 
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velocity [16]. Fundamentally, gyroscopes provide angular rate information and 

accelerometers provide velocity rate information.  

 

INS [16] can be used for both indoor and outdoor positioning and navigation. 

Although the information provided by inertial sensors is reliable over long periods of time, 

it must be integrated to provide position, orientation and velocity estimates. Thus, even very 

small errors in the information cause unbounded growth in the error of the integrated 

measurements. As a consequence, an INS by itself is characterized by position errors that 

grow with time and distance, usually referred to as the drift error or bias error [15]. 

 

An inertial measurement unit (IMU) typically contains three orthogonal rate-

gyroscopes and three orthogonal accelerometers, measuring angular velocity and linear 

acceleration respectively. Recent advances in the construction of Microelectromechanical 

Systems (MEMS) devices have made it possible to manufacture small and light inertial 

navigation systems. If the IMU is directly mounted on the moving object, the system is called 

a strap-down INS [16]. 

 

A basic block diagram of a strap-down INS is given in figure1.2. To keep track of 

orientation the raw signals from the gyroscopes are integrated. Then, using the estimated 

orientation, accelerometer outputs should be transformed to the Earth coordinate frame. 

Thus, to track position is necessary to execute double integration of the acceleration values 

in Earth coordinate frame. 

 

Because of the integration operations involved in the position calculation, any error 

in the sensor outputs accumulates in the position output, causing a rapid drift in both the 

gyroscope and accelerometer outputs. Thus, the reliability of position estimates decreases 

with time.  For this reason, inertial sensors are usually used in conjunction with other sensing 

systems that provide absolute external reference information [15]. 
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Figure 1.2. Strap-down inertial navigation algorithm [16]. 

 

 

1.4.1 Pedestrian Dead Reckoning  

 

One application of INS is found in Pedestrian Dead Reckoning (PDR). PDR systems 

are generally used in GPS-denied environments such as inside buildings, tunnels, 

underground or dense forests and around tall buildings in urban areas where GPS data are 

not accurate or always available. PDR mechanization exploits the kinematics of human 

walking. As it was mentioned in the previous chapter, a PDR algorithm is composed of three 

parts: step detection, estimation of walking distance and tracking of sensor attitude. The 

following sections provide a brief description of the methods used to perform these tasks 

reported in the literature. 

 

1.4.1.1 Step detection 

There are two basic methods to detect pedestrian steps based on the measurements 

obtained from three orthogonal accelerometers: peak detection [17] and zero-crossing 

detection [10]. These methods compare the acceleration values with the predefined 

thresholds and take the minimum step period into account. 
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The peak detection implies the detection of the peaks of the vertical acceleration 

because the vertical acceleration is generated by vertical impact when the foot hits the 

ground. However, peak detection is not appropriate due to that peaks of acceleration also 

occur in irregular motions, such as turning when avoiding obstacles. It is hard to distinguish 

between these peaks and those measured during regular walking, thus step misdetections are 

prone to occur [18]. 

 

The zero-crossing detection counts signal crossing zero level to determine the 

occurrence of a step. Researchers usually have used time interval thresholding to reject false 

step detection. The problem comes when time interval between footfalls varied for some 

subjects, so it is quite difficult to detect step accurately using zero-crossing method without 

a calibration process. Figure 1.3 shows the difference between peak and zero-crossing 

detection. 

 

 
Figure 1.3. Peak and zero crossing as step detection method. 

 

1.4.1.2 Step length estimation 

In order to calculate the distance travelled it is fundamental to estimate the step length. 

Subsequently, to estimate the step length (or step size) the step frequency needs to be 

calculated and the relationship between step length and step frequency needs to be defined. 

The most used method to determine the frequency content of a signal is the Fast Fourier 
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Transform (FFT). Levi and Judd [9] used the FFT to determine the step frequency in the PDR 

system they proposed. However, to obtain an accurate step frequency solution based on the 

FFT a large number of acceleration samples are needed. 

 

It is known that regular human walking motion produces periodic variations in 

vertical acceleration. Therefore, when humans move faster, for stability reasons they stretch 

out their legs further. This means that as a pedestrian walks faster, both the step length and 

step frequency increases [19]. Hence, to increase the precision of the distance travelled, the 

step length parameter must be determined continuously during the walk. Levi and Judd [9] 

argued that the step length could be estimated based on a linear relationship between the 

measured step frequency and step length. 

 

Another method called zero velocity update (ZUPT) is used to estimate the distance 

travelled by a pedestrian, without any external reference sensor. The ZUPT method exploits 

the fact that during normal walking cycles, a foot touches the ground almost periodically and 

stays on the ground for a short time (usually about 0.10.3 s), which is called the zero velocity 

interval. In ZUPT algorithm, this zero velocity interval is detected and thus the velocity error 

is reset to zero [12]. The principal disadvantage in this method is that the IMU, in most cases 

must be mounted on the foot, as shown in figure 1.4, which is not applicable to waist-mounted 

devices. 

 

In the other hand, the step length is a time-varying process which is strongly 

correlated to the velocity and the step frequency of the pedestrian [17]. For that reason some 

approaches, as the used in the present work, have integrated pedestrian activity classification 

in order to improve the accuracy of the distance traveled calculation [15], [17]. The 

accelerometers are widely used in human activity classification due to that they respond to 

both, acceleration due to gravity and acceleration due to body movement [21]. 
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Figure 1.4. Foot-mounted inertial measurement unit [20] for detecting zero velocity interval 

[12]. 

 

Effective algorithms are required to interpret the accelerometer data in the context of 

different activities. The most common approaches to automatic classification of human 

activity are based on machine learning techniques, especially Hidden Markov Models 

(HMMs) [22], [23]. The use of Hidden Markov Models (HMMs) is attractive, although they 

are known for being methods potentially plagued by severe difficulties of parameter 

estimation. These techniques typically operate via two-stage process: first, features are 

obtained from sliding windows of accelerometer data and then a classifier is used to identify 

the activity [24]. 

 

A range of different approaches has been used to obtain features from accelerometer 

data, some works obtain features directly from the time-varying acceleration signal [25], [26] 

and others from frequency analysis [17]. More recently, wavelet analysis has been used to 

derive time-frequency features [24], [27], [28]. Table 1.1 presents a brief summary of the 

recent different techniques to perform step detection, step length estimation and pedestrian 

activity classification reported in the literature. 

 

In search for integrating the classification algorithm into a PDR system, this work 

proposes a dynamical method for estimating the step length using a Fuzzy Inference System 

(FIS) which use the pedestrian activity as one of its input. 
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Table 1.1. A brief summary of methods used to step detection, step length estimation and 

pedestrian activity classification using triaxial accelerometer. 

Ref Task Contribution Purpose 

[15] Activity 

classification 

This work present experimental results in 2D 

and 3D obtained from classifying three 

activities: walking, standing and turning 

activities. In order to recognize those activities 

are used sensors (3-axial accelerometer, 3-axial 

gyroscope and a 3-axial magnetomer) located on 

the right and left legs. In the 2D case it is used a 

rule-based classifier and for the 3D case is 

analyzed stairs activity using a K-nearest 

neighbors (k-nn) classifier. 

PDR system 

[20] Step length 

estimation 

The steps are detected using the relationship 

between arm’s and foot’s motion, from the 

swing of the subject’s arm the step events can be 

detected. They use two IMUs located on the foot 

and the hand. 

Mobile phone 

applications 

[22], [29] Activity 

classification 

The classification method is based on the hidden 

Markov model (HMM) where the hidden states 

are in fact different activity classes or gait 

phases: walking, running, standing, going up 

stairs and going down stairs. 

Gait Analysis 

[26] Activity 

classification 

This work presents three classifications 

techniques: decision trees, logistic regression 

and multilayer neural networks. The classified 

activities are: walking, jogging, climbing stairs, 

sitting, and standing. 

Automatic 

customization 

of the mobile 

devices 

[30] Step detection/ 

step length 

estimation 

A combination of zero-crossing, peak detection 

and time restriction is used to identify the steps. 

The step length is estimated using a linear model 

between the step length and the step frequency. 

PDR system  

[31] Step length 

estimation 

The step length estimation is conducted with an 

empirical model, which uses personal constants 

as well as the step frequency. 

PDR system 

[32] Step detection The steps are identified when the acceleration 

norm crosses g (gravitational acceleration) since 

it is followed by a rise rate and a peak height that 

exceed a threshold. 

PDR system 
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[33] Step length 

estimation 

The step length is estimated using the double 

integral of acceleration and is used zero velocity 

update (ZUPT) to calibrate the sensor data. 

PDR system 

[34] Step detection/ 

step length 

estimation 

The detection of successive steps is based on a 

peak and threshold analysis with the energy of 

the acceleration signal. The step length is 

calculated from the maximum and minimum 

measured acceleration in z-direction. 

PDR system 

[35] Activity 

classification 

HMM as classification method. The activities 

are: walking, running, standing, stair climbing, 

sitting, lying and cycling. 

Healthcare 

monitoring 

devices 

[36] Activity 

classification 

This work presents activity and environment 

classification using a foot mounted device with 

IMUs and a GPS receiver, and is proposed an 

algorithm that classifies the following activities: 

stationary, crawling, walking, running, biking, 

moving in vehicle, level up or down elevator and 

up or down stairs.  Multiple probability density 

functions that map each feature (i.e. metric) to 

an activity are provided, and a naive Bayesian 

probabilistic model is used to determine the 

probability of each activity. 

Foot mounted 

navigation 

systems 

 

 

1.4.1.3 Attitude estimation 

  Attitude can be estimated by combining the measurement signals from the 

accelerometer, gyroscope and magnetometer included in an inertial measurement unit (IMU). 

Attitude estimation methods in pedestrian navigation are classified as quaternion method 

[37], [38], direction cosine matrix method [39], [40], or Euler angles method [41], [42]. 

 

The Euler angles method has the merit of being a more meaningful attitude expression 

than either the quaternion method or the direction cosine matrix method, and the user can 

recognize the attitude directly [43]. Kalman-based sensors fusion has been extensively used 

to pursue attitude estimation through inertial measurement units in navigation systems [44], 

[45], [46]. A problem with Kalman filter formulation is that it requires a priori knowledge of 

the process and measurement noise statistics. Furthermore, inadequate initial statistics of the 
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filter will reduce the precision of the estimated states or will introduce biases to the estimates. 

Adaptive Kalman Filter (AKF) can be used to deal with such a problem [47], [48], [49]. 

 

Previous studies have investigated the fuzzy and neuro-fuzzy adaptation of Kalman 

filtering [49], [50], [51], and they have used covariance-matching based approaches to 

perform the process of adapting the statistics of the filter in mobile applications. In [49] and 

[50] a fuzzy adaptive Kalman Filter algorithm is applied to an Attitude and Heading 

Reference System (AHRS). Usually, an AHRS consists of MEMS gyroscopes, 

accelerometers and magnetometers providing three axes signals. The authors use 

magnetometers to provide a measure of the attitude of the mobile device. By detecting the 

magnetic field information, they can compensate the errors of attitude caused by drifts of 

MEMS gyros and accelerometers. 

 

However, the use of magnetometers is not appropriate in PDR systems, where the 

indoor/urban navigation is essential and the magnetometers can be easily disturbed. In [51] 

the authors report a two-input ANFIS approach similar to our proposal, with the difference 

that they do not use inertial measurements, and therefore a bias correction is not required. 

 

The main problem when using inertial sensors to obtain orientation information of a 

moving platform is the accumulation of errors due to the bias and off-set inherently present 

in those sensors. As stated previously, several adaptive Kalman filter formulations can be 

found in the literature to deal with the orientation estimation problem. However, none of 

them seems to estimate the bias present in the inertial measurements. 

 

Therefore, the main purpose of this work is to develop an adaptive technique for the 

estimation and reduction of the inertial sensor bias. This in turn will reduce the error in the 

estimation of the orientation applied for pedestrian navigation. 
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1.5 Thesis organization 

 

The organization of this document is as follows: Chapter 2 presents an information 

compilation regarding the topics related to the system developed in this work. Chapters 3 and 

4 describe the proposed methodology. Chapter 5 present the experimental results. Finally, 

conclusions and future work are discussed in Chapter 6. 
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Chapter 2 

Theoretical framework 
 

In order to describe the PDR system, this chapter presents an introduction about the 

topics related to the system developed in this thesis work. 

 

2.1  Kalman filtering 

 

The Kalman Filter algorithm was first published in 1960 by R. E. Kalman. In his 

famous paper, Kalman described a recursive solution to the discrete data linear filtering 

problem [52]. Since then, the Kalman filter has been the subject of extensive research and 

application, particularly in the area of autonomous or assisted navigation. Kalman-based 

sensors fusion has been extensively used to pursue attitude estimation through inertial 

measurement units in navigation systems [44], [45], [46].  

 

2.1.1  The Kalman filter algorithm 
 

The Kalman filter is a set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state of a process, in a way that minimizes 

the mean of the squared error. The filter is very powerful in several aspects: it supports 

estimations of past, present, and even future states, and it can do so even when the precise 

nature of the modeled system is unknown [53]. 
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The Kalman filter addresses the general problem of trying to estimate the state 

nx  of a discrete-time controlled process that is governed by the linear stochastic 

difference equation: 

kkkkk wBuxAx 1       (2.1) 

with a measurement 
mz   that is 

kkkk vxHz            (2.2) 

where [54]: 

 xk = (n1) state vector at time k. 

 Ak = (nn) state transition matrix. 

 Bk = (nl) matrix that relates the control input 
l

ku  to the state vector xk. 

 uk = (l1) vector of the input forcing function. 

 wk = (n1) process noise vector. 

 zk = (n1) measurement vector at time k. 

 Hk = (mn) matrix giving the ideal connection between the measurement and the state 

vector at the time k. 

 vk = (n1) vector of additive measurement noise. 

 

The random variables, wk and vk, represent the process and measurement noise, 

respectively. They are assumed to be uncorrelated zero-mean Gaussian white noise 

sequences with covariances: 

 

 









ki,

ki,Q
wwE

kT
ik

0
    (2.3) 

 









ki,

ki,R
vvE

kT
ik

0
    (2.4) 

  ikvwE T
ik  and  allfor 0                (2.5) 
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where E{} is the statistical expectation operator, Qk is the process noise covariance matrix, 

and Rk is the measurement noise covariance matrix. 

 

In accord with Welch and Bishop [53], the Kalman filter estimates a process by using a 

form of feedback control: the filter estimates the process state at some time and then obtains 

feedback in the form of (noisy) measurements. As such, the equations for the Kalman filter 

fall into two groups: time update equations and measurement update equations. The time 

update equations are responsible for projecting forward (in time) the current state and error 

covariance estimates to obtain the a priori estimates for the next time step. The measurement 

update equations are responsible for the feedback, i.e. for incorporating a new measurement 

into the a priori estimate to obtain an improved a posteriori estimate. 

 

The time update equations can also be thought of as predictor equations, while the 

measurement update equations can be thought of as corrector equations. Therefore, the 

specific Kalman filter equations are organized into two groups. 

 

1) Time update (or prediction) equations 

kkkk Bux̂Ax̂ 
1      (2.6) 

k
T
kkkk QAPAP 

1      (2.7) 

The time update equations project the current state and error covariance estimates, 

from time step k to step k+1, to obtain a priori estimates, denoted by a super minus (), for 

the next time step. 

 

2) Measurement update (or correction) equations 

  1  RHPHHPK T
k

T
kk          (2.8) 

   kkkkk x̂HzKx̂x̂        (2.9) 
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   kkk PHKIP      (2.10) 

These equations incorporate a new measurement into the a priori estimates to obtain the 

improved a posteriori estimates. The first task during the measurement update is to compute 

the Kalman gain, Kk. The next step is to actually measure the process to obtain, and then to 

generate an a posteriori state estimate by incorporating the measurement as in (2.9). The final 

step is to obtain an a posteriori error covariance estimate via (2.10). 

 

After each time and measurement update pair, the process is repeated with the 

previous a posteriori estimates used to project or predict the new a priori estimates. This 

recursive nature is one of the very appealing features of the Kalman filter. A graphical 

representation of the Kalman filter algorithm is presented in figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Graphical representation of the Kalman filter algorithm [53]. 
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(1) Project the state ahead 
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Measurement Update (“Correct”) 

(1)  Compute the Kalman gain 

 

 

(2)  Update estimate with measurement zk 

 

 

(3)  Update the error covariance 
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In the measurement update equations, kx̂  is an estimate of the system state vector kx  

and kP is the covariance matrix corresponding to the state estimation error defined by: 

   T
kkkkk x̂xx̂xEP           (2.11) 

In equation (2.9) the term 

kx̂H  is referred to as the one-stage predicted 

measurement, which is the best prediction of what the measurement at time k will be before 

it is actually taken. The difference between the actual measurement zk and its one-stage 

prediction is called the measurement residual or innovation sequence,  rk or Innk  [54], defined 

as: 

  kkkk x̂HzInnr      (2.12) 

The innovation represents the additional information available to the filter in 

consequence to the new observation zk. For an optimal filter the innovation sequence is a 

sequence of independent Gaussian random variables. The weighted innovation,

  kkk x̂HzK , acts as a correction to the predicted estimate 

kx̂  to form the estimation kx̂  

 

2.2  Neuro-Fuzzy systems 

 

There are two concepts that are inherent to the human reasoning: imprecision and 

uncertainty. Because of that, our perception of the real world is pervaded by concepts which 

do not have sharply defined boundaries, for example: many, tall, much larger than, young, 

etc. These concepts are true only to some degree and they are false to some degree as well, 

therefore, this way of thinking is not captured in traditional logic and traditional computing. 

This fact has been perceived by several thinkers that in the past have tried to develop a 

mathematical structure capable of capturing this characteristic of the human way of thinking 

[54], [55]. 
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The Fuzzy Logic theory was introduced in 1965, by Lotfi Zadeh, and is a 

mathematical tool for dealing with uncertainty. Fuzzy logic provides an inference 

morphology that enables approximate human reasoning capabilities to be applied to 

knowledge-based systems. The theory of fuzzy logic provides a mathematical strength to 

capture the uncertainties associated with human cognitive processes, such as thinking and 

reasoning. 

 

Artificial Neural Networks can be considered as simplified mathematical models of 

brain-like systems and they function as parallel distributed computing networks. However, 

in contrast to conventional computers, which are programmed to perform specific tasks, most 

neural networks must be taught, or trained. They can learn new associations, new functional 

dependencies and new patterns [56]. 

 

Neuro-fuzzy systems integrate two complementary approaches: fuzzy logic and 

neural networks. Neural networks are capable of recognizing patterns and adapting 

themselves to cope with changing environments; if there is data available, or if it can be 

learned from a simulation or real task, then a neural network can be used. Fuzzy inference 

systems incorporate human knowledge and perform inference and decision making; if there 

is knowledge that can be expressed in rules, then a fuzzy system can be built [54]. 

 

2.2.1  Fuzzy Inference Systems 

 

The main purpose of fuzzy logic is to allow the use of vague concepts to characterize 

the variables of a system and its interrelations using words or propositions expressed in a 

natural or artificial language. This is possible because, in fuzzy sets theory, an object is no 

longer restricted to be totally a member or not a member of a set. Instead, an element can 

have a grade of membership intermediate between full membership and non-membership, in 

the whole range [0-1]. Therefore, using fuzzy logic, systems can be designed to be able to 

capture, in the form of heuristic rules, the ability that all human beings possess to model a 

system or process using natural language [54], [55]. 
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A fuzzy inference system (FIS), also known as fuzzy rule-based system, is a computing 

framework based on the concepts of fuzzy logic. A FIS provides a formal methodology for 

representing, manipulating, and implementing a human’s heuristic knowledge about how to 

control a system. The basic structure of a FIS, with five functional blocks, is shown in figure 

2.2. The function of each block is as follows [57]: 

 a rule base containing a number of fuzzy IF–THEN rules; 

 a database which defines the membership functions of the fuzzy sets used in the fuzzy 

rules; 

 a decision-making unit which performs the inference operations on the rules; 

 a fuzzification interface which transforms the crisp inputs into degrees of match with 

linguistic values; and 

 a defuzzification interface which transforms the fuzzy results of the inference into a 

crisp output. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Fuzzy inference system [57]. 

 

The performance of a FIS is as follow: the crisp input is converted into fuzzy values 

by using a fuzzification method. After fuzzification the rule base is evaluated in the decision-

making unit by fuzzy reasoning. The rule base and the database are jointly referred to as the 

knowledge base. A defuzzification method is used to convert fuzzy values to the real world 

values which are the FIS outputs. 

Database     Rule-base 
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Defuzzification 

interface 
Fuzzification 
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Decision-making 
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output input 
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(fuzzy)                                                        (fuzzy) 
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The steps of fuzzy reasoning, i.e. the inference operations upon fuzzy IF–THEN rules, 

performed by a FIS are: 

1. Compare the input variables with the membership functions on the antecedent part to 

obtain the membership values in each fuzzy set denoted by a linguistic label. This 

step is the fuzzification process 

2. Combine the membership values on the premise part to get the firing strength (weight) 

value for each rule. 

3. Generate the qualified consequents (either fuzzy or crisp) of each rule depending on 

the firing strength. 

4. Aggregate the qualified consequents to produce a crisp output. This step is the 

defuzzification process. 

 

2.2.1.1 Fuzzification 

In order to perform inferences inside the FIS, using an inference engine and fuzzy 

operators, it is necessary to transform the real-valued input information into fuzzy sets. This 

transformation is carried out through a process known as fuzzification. In general the purpose 

of fuzzification is to map the inputs to values from 0 to 1 using a set of input membership 

functions.  

 

Specifically, if x is an input variable to the FIS, and x = x0 ∈ U is an input value, then 

the output of the process of fuzzification is a fuzzy set in U, F = fuzzifier(x0); where the 

operator fuzzifier transforms the real input value x0 to a linguistic value or fuzzy set, F. In 

FIS, singleton fuzzification is the most utilized. This method maps the input x to a fuzzy 

singleton, F, with membership function: 

 


 


caseother any in 0

if 1 0xx
xF          (2.13) 
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2.2.1.2 The inference mechanism 

The inference mechanism is an interpreter of the rule base, the task of the inference 

mechanism is the calculation of a fuzzy conclusion from a set of fuzzy IF-THEN rules and 

one or more conditions. The fuzzy conclusion is obtained employing an inference mechanism 

called approximate reasoning, derived from fuzzy logic theory. A fuzzy rule base is 

integrated by a set of linguistic rules expressed in the form IF-THEN. The part IF of the rule 

is known as the antecedent, and the part THEN of the rule is known as the consequent. 

Suppose two input variables x and y, a fuzzy control rule is: 

i: IF (x is Ai and y is Bi) THEN (z is Ci)   (2.14) 

where i = 1, 2, …, n; n = number of rules; x, y and z are linguistic variables; Ai, Bi and Ci are 

linguistic values of the linguistic variables x, y and z in the universes of discourse U, V and 

W, and characterized by the membership functions  x
iA ,  x

iB  and  x
iC , respectively. 

 

Now, suppose that the rule base (2.14) includes a single rule written as “IF x is A and 

y is B THEN z is C”: 

 

Premise 1 (fact): x is A and y is B 

Premise 2 (rule): IF x is A and y is B THEN z is C 
  

Consequence (conclusion): z is C 

 

where A is a fuzzy set close to A and B is a fuzzy set close to B. The rule in premise 2 is 

implemented by a fuzzy implication (or relation) Ri and is defined as: 

WVUCBAR            (2.15) 

which membership function is specified by [58]: 

     

     zyx

z,y,xz,y,x

CBA

CBAR







 

         (2.16) 



CHAPTER 2. Theoretical framework   

 
 

 
24 

where the symbol  is used to denote the fuzzy operator of intersection (min), or fuzzy AND. 

Applying the compositional rule of inference [59], the fuzzy conclusion C´ of the inference 

procedure is expressed as: 

 
   CBA'B'A

R'B'A'C








    (2.17) 

where   denotes the composition operator. Thus, using (2.16), the membership function of 

C is evaluated as: 

             

          

             zyyxx

zyxyx

zyxyxz

CB'ByA'Ax

CBA'B'Ay,x

CBA'B'Ay,x'C













 (2.18) 

where the symbol is used to denote the fuzzy operator of union (max), or fuzzy OR. Then: 

    xxw A'AxA           (2.19) 

    yyw B'ByB           (2.20) 

where wA represents the degree of compatibility between A and A; similarly, wB represents 

the degree of compatibility between B and B. Substituting (2.19) and (2.20) in (2.18) results: 

   zwwz CBA'C          (2.21) 

but, if it is defined w = wA  wB, then (2.21) transforms to: 

   zwz C'C                 (2.22) 

In (2.22) w is called the firing strength of this rule, and it represents the degree to 

which the antecedent part of the rule is satisfied [58]. A graphical interpretation of this result 

is shown in figure 2.3 when the fuzzy operators for union and intersection are selected to be 

the maximum (max) and minimum (min), respectively. In this case the symbol ‘  ’ is called 
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the max-min composition operator [60], and the whole inference procedure is called the max-

min compositional rule of inference [61]. Observe in figure 2.3 that the resulting membership 

function for C is equal to the membership function of C clipped by the firing strength w. 

 

 

 

Figure 2.3. Approximate reasoning for a rule with two antecedents [54]. 

 

The previous development can be extended for the case of a rule base with n rules [54]: 

fact:      x is A’ and y is B’ 

1:  IF x is A1 and y is B1 THEN z is C1 

2:  IF x is A2 and y is B2 THEN z is C2 

  … 

  … 

n:  IF x is An and y is Bn THEN z is Cn 
   

Conclusion:  z is C 

 

Then, each rule can be implemented as a fuzzy relation: 

niCBAR iiii ...,,2,1for     (2.23) 

Applying the max-min compositional rule of inference, the fuzzy conclusion C´ of the 

inference procedure is expressed as: 

   
        

n

n

n

'C'C'C

R'B'AR'B'AR'B'A

RRR'B'A'C













21

21

21

  (2.24) 

U                                               V                                                       W 

                                                                                                         
A         A                                   B           B                                             C  
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where i'C  is the inferred fuzzy set for rule i. Then, the membership function of each fuzzy 

set i'C  is obtained as: 

     nizwz
ii CiC ,,2,1for '  

         (2.25) 

Finally, the membership function of the resulting fuzzy set C inferred from the 

complete set of fuzzy rules is given by the union of the resulting conclusion derived from 

individual rules: 

          zwzwzwz
nCnCC'C   

21 21
         (2.26) 

where wi indicates the degree of fulfillment of the i-th rule;  z
nC  is the membership function 

of the fuzzy set Ci (i =1, 2, ..., n; n = number of rules). Figure 2.4 shows a graphical 

representation of the operation of fuzzy reasoning for the case described. Note, that in this 

case the singleton fuzzification procedure has been used to transform the inputs x0 and y0 into 

fuzzy sets [55]. 

 

The fuzzy reasoning in figure 2.4 employs max and min operators for fuzzy union and 

fuzzy intersection, respectively. However, there are others types of fuzzy reasoning or 

composition operators, the three most used are: max-min, max-product and sum-product [54], 

[55]. Table 2.1 presents a resume of the types of fuzzy reasoning. 

 

Table 2.1. Types of fuzzy reasoning [54] 

Composition 

operator 

Union 

operator 

Intersection 

operator 

max-min max min 

max-product max product 

sum-product sum product 
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Figure 2.4. Fuzzy reasoning mechanisms, max-min compositional rule of inference [55]. 

 

The figure 2.5 presents the fuzzy reasoning when the max-product compositional rule 

of inference is used. The calculation of the fuzzy conclusion for this case is obtained as: 

          zwzwzwz
nCnCC'C   

21 21
      (2.27) 

 If the sum-product compositional rule is used the fuzzy conclusion is obtained as: 

   



m

j

Cj'C zwz
j

1

     (2.28) 
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Figure 2.5. Fuzzy reasoning procedure, max-product compositional rule of inference [54]. 

 

2.2.1.3 Defuzzification 

The defuzzification process is the conversion of a fuzzy set defined over an output 

universe of discourse into a space of crisp (non-fuzzy) values. In other words, the 

defuzzification process transforms the fuzzy conclusion C´ into a crisp and concrete value z0, 

which is given as the FIS output. The most often used defuzzification operators are: 

 Center of Area-Gravity: this procedure, also called centroid, is the most prevalent and 

physically appealing of all the defuzzification methods. The centroid defuzzification 

method returns the center of area under the aggregated output membership function, 

 z'C . It is given by the algebraic expression: 

 

 




W

'C

W

'C

dzz

dzzz

z




0      (2.29) 

 Bisector: the defuzzified value of a fuzzy set C´ is defined as the value where a vertical 

line divides the set into two sub-regions of equal area. 
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 Mean of Maximum (MOM): the defuzzified value of a fuzzy set C´ is defined as a mean 

of all values of the universe of discourse, having maximal membership grades: 






'Z

'Z

dz

dzz

z0       (2.30) 

where Z = {z  C(z) = *}. In particular, if C(z) has a single maximum at z = z*, then 

z0 = z* [54]. 

 Smallest of Maximum (SOM): the SOM defuzzification method gives as crisp output 

the minimum, in terms of magnitude, of the maximizing z. 

 Largest of Maximum (LOM): the LOM defuzzification method gives as crisp output 

the maximum, in terms of magnitude, of the maximizing z. 

 

The figure 2.6 shows a graphic comparison of the different FIS crisp outputs obtained 

with each defuzzification method for a given fuzzy set C’. 

 

 

 

 

Figure 2.6. Defuzzification methods [54]. 

 

2.2.1.4 Types of Fuzzy Inference Systems 

There are two principal models of fuzzy inference systems, Mamdani Fuzzy Inference 

model and Takagi-Sugeno Fuzzy Inference model, the main difference between the two 

models lies in the consequent part of the fuzzy rules. Mamdani fuzzy systems use fuzzy sets 
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as rule consequents whereas Takagi-Sugeno fuzzy systems employ linear functions of input 

variables as rule consequents [55]. 

 

1) Mamdani Fuzzy Inference model: is the most important fuzzy inference method. 

It was proposed by Mamdani and Assilian [62] as an attempt to control a steam engine and 

boiler combination by synthesizing a set of linguistic control rules obtained from experienced 

human operators. The distinctive characteristic of this type of FIS is that in both antecedent 

and consequent parts of the rules, the values of the variables used are defined by membership 

functions. Examples of Mamdani fuzzy inference systems are shown in figures 2.4 and 2.5, 

and they were discussed in the previous section. 

 

2) Takagi-Sugeno Fuzzy Inference model: is so-called Sugeno or Takagi–Sugeno–

Kang Fuzzy Inference model, this system was introduced by Takagi, Sugeno and Kang [63], 

in an effort to formalize a system approach to generating fuzzy rules from an input–output 

data set. The main characteristic of this type of FIS is that the fuzzy rules used have the form: 

IF x is A and y is B THEN z = f (x,y)    (2.31) 

where x, y and z are linguistic variables, A and B are fuzzy sets in the antecedent, and                          

z = f(x,y) is a crisp function in the consequent, but it can be any other function that can 

appropriately describe the output of the system within the fuzzy region specified by the 

antecedent of the rule. When f(x, y) is a first-order polynomial, we have the first-order 

Sugeno fuzzy model. When f is a constant, we then have the zero-order Sugeno fuzzy model, 

which can be viewed either as a special case of the Mamdani FIS where each rule’s 

consequent is specified by a fuzzy singleton. 

 

The overall output of a Sugeno FIS model is obtained via a weighted average of the 

crisp outputs given by the fired rules, as it is graphically represented in figure 2.7 for a first-

order Sugeno model. 
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w1 

A N T E C E D E N T                                                   C O N S E Q U E N T 
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Figure 2.7. A first-order Sugeno fuzzy model [57]. 

 

2.2.2 Artificial neural networks 

 

Artificial neural systems can be considered as simplified mathematical models of 

brain-like systems and they function as parallel distributed computing networks. However, 

in contrast to conventional computers, which are programmed to perform specific task, most 

neural networks must be taught, or trained. They can learn new associations, new functional 

dependencies and new patterns. Although computers outperform both biological and 

artificial neural systems for tasks based on precise and fast arithmetic operations, artificial 

neural systems represent the promising new generation of information processing networks 

[64]. 

 

An artificial neural network or simply a neural network (NN) is defined as a collection 

of processing elements (called neurons) and connection weights (generally denoted as w). 

These neurons and weights are structured to perform a mapping from an input space to an 

output space RnRm [65]. A NN can have several layers, and each layer can have more than 

one neuron. Figure 2.8 shows a typical feedforward NN, which in practice is one of the most 

used. 
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Figure 2.8. A typical feedforward Neural Network [54]. 

 

The main function of each neuron in a NN is the collection of all its weighted inputs, 

an evaluation of a predefined mathematical operation, usually a dot product followed by a 

non-linear function, and the production of a single output. A neuron with R inputs is shown 

in figure 2.9. The individual inputs p1, p2, …, pR are each weighted by corresponding 

elements w1,1, w1,2, …, w1,R of the weight matrix W, the neuron has a bias b, which is summed 

with the weighted inputs [56]. Mathematically, the neuron output can be written as: 

 bfy  Wp          (2.32) 

where f is some activation function [56]. 

 

 

 

 

 

Figure 2.9. Multiple-input neuron [56]. 
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The main characteristic of a NN is the storage of knowledge in the connection 

weights. This knowledge is acquired using a procedure called the learning algorithm. This 

algorithm successively adjusts the connection weights to find those values for which a better 

approximation is obtained to the desired output. There are many types of neural network 

learning algorithms. They fall into three broad categories: supervised learning, unsupervised 

learning and reinforcement (or graded) learning [56]. 

 

In supervised learning, the learning rule is provided with a set of examples (the 

training set) of proper network behavior: 

     QQ ,,,,,, tptptp 2211     (2.33) 

where pQ is an input to the network and tQ is the corresponding correct (target) output. As 

the inputs are applied to the network, the network outputs are compared to the targets. The 

learning algorithm is then used to adjust the weights and biases of the network in order to 

move the network outputs closer to the targets [56].  

 

Reinforcement learning is similar to supervised learning, except that, instead of being 

provided with the correct output for each network input, the algorithm is only given a grade. 

The grade (or score) is a measure of the network performance over some sequence of inputs. 

This type of learning is currently much less common than supervised learning. In 

unsupervised learning, the weights and biases are modified in response to network inputs 

only [54], [56]. 

 

The network structure, which includes many neurons and connection weights, is what 

gives a NN its computational capabilities. The arrangement of neurons in layers or stages of 

processing is supposed to mimic the layered structure of a certain portion of the human brain. 

This scheme of multilayer NN (MNN) has tested better computational capabilities than the 

one with a single layer. In particular, MNNs, which use the error back propagation learning 
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algorithm, have been successfully applied in several areas including pattern recognition, 

system identification, and control systems [54], [56]. 

 

2.2.3 Adaptive Network based Fuzzy Inference System (ANFIS) 

 

 The ANFIS, the abbreviated of adaptive-network-based fuzzy inference system, is a 

fuzzy inference system implemented in the framework of adaptive networks. ANFIS can 

construct an inputoutput mapping based on both human knowledge, in the form of fuzzy 

IF-THEN rules, and stipulated inputoutput data pairs [57]. 

 

To describe ANFIS, consider the firstorder Sugeno fuzzy inference system 

presented in figure 2.7. This system has two inputs x and y and one output z. Suppose that 

the rule base contains two fuzzy IFTHEN rules of Takagi-Sugeno type: 

Rule 1:  If x is A1 and y is B1, then f1 = p1x + q1y + r1 

Rule 2:  If x is A2 and y is B2, then f2 = p2x + q2y + r2 

The corresponding equivalent ANFIS architecture to this fuzzy reasoning is 

illustrated in figure 2.10. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.10. ANFIS architecture for a firstorder Sugeno fuzzy inference system [57]. 
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The node functions in the same layer are of the same function family as described 

below [57]: 

 

 Layer 1: Every node i in this layer is a square node with a node function: 

 xO
iAi 1

         (2.34) 

where x is the input to node i, and Ai, is the linguistic label (small, large, etc.) associated 

with this node function. In other words, 
1
iO  is the membership function of Ai and it 

specifies the degree to which the given x satisfies the quantifier Ai. Usually, 
iA  is a 

bellshaped function with maximum equal to 1 and minimum equal to 0, such as: 
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     (2.35) 

where ai, bi and ci form the parameter set. As the values of these parameters change, the 

bell-shaped functions vary accordingly, thus exhibiting various forms of membership 

functions on linguistic label Ai. In fact, any continuous and piecewise differentiable 

functions, such as commonly used trapezoidal or triangular-shaped membership functions, 

are also qualified candidates for node functions in this layer. Parameters in this layer are 

referred to as premise parameters. 

 Layer 2: Every node in this layer is a circle node labeled  which multiplies the incoming 

signals and sends the product out. For instance, 

    21,i,yxw
ii BAi       (2.36) 

each node output represents the firing strength of a rule. 

 Layer 3: Every node in this layer is a circle node labeled N. The ith node calculates the ratio 

of the ith rule’s firing strength to the sum of all rules’ firing strengths: 
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     (2.37) 

For convenience, outputs of this layer will be called normalized firing strengths. 

 Layer 4: Every node I in this layer is a square node with a node function 

 iiiiiii ryqxpwfwO 4
   (2.38) 

where iw  is the output of layer 3, and {pi, qi, ri} is the parameter set. Parameters in this 

layer will be referred to as consequent parameters. 

 Layer 5: This single node in this layer is a circle node labeled  that computes the overall 

output as the summation of all incoming signals, i.e., 






i i i

i ii

iii
w

fw
fwO output overall5

   (2.39) 

Actually, one of the ANFIS advantages is that it uses a hybrid learning procedure for 

estimation of the premise and consequent parameters. In this process by keeping fixed the 

premise parameters, it estimates them in a forward pass and then in a backward pass by 

keeping fixed the consequent parameters the process would be continued. In the first path, 

the input would be forward and propagated and then by applying the least squared method 

the error would be calculated where is the third layer. Also, in the second path, the error 

which happens during the first step would be backward to and the premise parameters are 

updated by a gradient descent method. The details of the hybrid learning procedure that is 

used in an ANFIS are given in Jang [57], [58]. 

 

2.3  Discrete Wavelet Transform 

 

The Discrete Wavelet Transform (DWT) is a transformation that can be used to 

analyze the temporal and spectral properties of non-stationary signals. The DWT is defined 

by the following equation [66]: 
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       

j k

jj kxxfk,jW 22 2    (2.40) 

The set of functions )(, nkj  is referred to as the family of wavelets derived from      

)(n , which is a time function with finite energy and fast decay called the mother wavelet. 

The basis of the wavelet space corresponds then, to the orthonormal functions obtained from 

the mother wavelet after scale and translation operations. The definition indicates the 

projection of the input signal into the wavelet space through the inner product, then, the 

function f (x) can be represented in the form [66]: 

    k,j

k,j

j kdxf       (2.41) 

where dj(k) are the wavelet coefficients at level j. The coefficients at different levels can be 

obtained through the projection of the signal into the wavelets family as expressed in 

equations (2.42) and (2.43). 

1 k,j

l

lk,j ,fd,f       (2.42) 

121
2

1
 k,j

l

lk,j ,fc,f          (2.43) 

The DWT analysis can be performed using a fast, pyramidal algorithm described in 

terms of multi-rate filter banks. The DWT can be viewed as a filter bank with octave spacing 

between filters. Each sub-band contains half the samples of the neighboring higher 

frequency sub-band. 

 

In the pyramidal algorithm the signal is analyzed at different frequency bands with 

different resolution by decomposing the signal into a coarse approximation and detailed 

information. The coarse approximation is then further decomposed using the same wavelet 

decomposition step. This is achieved by successive high-pass and low-pass filtering of the 

time signal and a down-sampling by two [67], as defined by the following equations: 
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      
m

jj makmhka 12     (2.44) 

      
m

jj makmgkd 12     (2.45) 

Figure 2.11 shows a two-level filter bank. Signals  ka j  and  kd j are known as 

approximation and detail coefficients, respectively. This process may be executed iteratively 

forming a wavelet decomposition tree up to any desired resolution level. 

 

 

 

 

 

 

Figure 2.11. Two-level discrete wavelet filter bank scheme [67]. 

 

2.4 Summary 

 

In this chapter an introduction about the main theoretical topics related to the system 

developed in this work was present. Kalman filter provides an efficient computational means 

to estimate the state of a process, in a way that minimizes the mean of the squared error. FISs 

form a consistent methodology to capture the uncertainties associated with human cognitive 

processes, such as thinking and reasoning. NNs are capable of learning from examples and 

store this knowledge in network weights distributed throughout the net and ANFIS is a fuzzy 

inference system implemented in the framework of adaptive networks. The DWT is a 

transformation that can be used to analyze the temporal and spectral properties of non-

stationary signals. The concepts presented here will be used in the next chapters to develop 

the PDR system. 
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Chapter 3 

Attitude estimation using Neuro 

Fuzzy Adaptive Kalman Filter 
 

The traditional Kalman filter formulation (from here referred to as TKF) assumes 

complete a priori knowledge of the process and measurement noise statistics, matrices Q and 

R. However, in most practical applications these matrices are initially estimated or, in fact, 

are unknown. The problem here is that the optimal performance of Kalman filtering strongly 

depends on stablishing correct initial process and measurement noise statistics. Inadequate 

initial statistics would be reflected in inaccuracies of estimated states, or it would introduce 

undesired biases to the estimates. In fact, in extreme cases, incorrect a priori information can 

cause practical divergence of the filter [69], [70]. 

 

The purpose of an adaptive Kalman filter formulation is to reduce the errors in the 

estimation by modifying or adapting the Kalman filter to the real data. Thus, adaptive filter 

formulation deals with the problem of having imperfect a priori information and provides an 

improvement in performance over the fixed filter approach [70]. 

 

This chapter presents the development of a Kalman Filter with Neuro-Fuzzy 

adaptation (KF-NFA) which is applied in attitude estimation, relying on information derived 

from triaxial accelerometer and gyroscope sensors contained in an inertial measurement unit 

(IMU). The adaptation process is performed on the filter statistical information matrix R, 

which is tuned using an Adaptive Neuro Fuzzy Inference System (ANFIS) based on the filter 

innovation sequence through a covariance-matching technique.
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3.1  IMU data fusion for attitude estimation through Kalman filtering 

 

Euler angles are defined as the rotation angles from the body frame to the navigation 

frame. Euler angles, roll , pitch  and yaw ,  can be derived from measurements provided 

by inertial sensors such as gyroscopes and accelerometers. In a conventional inertial 

navigation system, the attitude is calculated by integrating the angular rate obtained from the 

gyroscope signals. However, the gyroscope signals undergo an effect called bias or drift, 

which is the average output from the gyroscope when it is not undergoing any rotation [16]. 

 

Accordingly, the angular rate integration is not appropriate for calculating the attitude 

of pedestrians because the bias makes the attitude error to diverge over time. The bias effect 

on the integrated signal of a triaxial gyroscope can be seen in figure 3.1, which presents the 

results from an experiment where the gyroscope was rotated from 90° to 90° arbitrarily on 

each axis from an initial position of 0°. 

 

 

Figure 3.1. Bias effect over the Euler angles obtained by integration of the gyro signal. 

 

The roll and pitch angles can be estimated using a triaxial accelerometer [ax ay az] 

through a geometric relation between the accelerations that act on each axis [71], according 

to the Eq. (3.1) and Eq. (3.2): 
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The results of applying (3.1) and (3.2) are shown in figure 3.2 following the same 

procedure described previously. It is observed that these angles are very noisy and the bias 

effect is lower in comparison to the angles calculated with the integration of gyro signals.  

However, the principal disadvantage of this method is that the calculation of the angles could 

be affected by external accelerations. 

 

         

Figure 3.2. Euler angles, Roll and Pitch angles, calculated by a triaxial accelerometer. 

 

In the case of the yaw angle, it can be calculated based on the roll and pitch values 

and the measurements from a triaxial gyroscope, as follows: 

𝜓̇ =  coscoscossinsin zyx     (3.3) 

where x, y and z are the angular rates along the three axis. Therefore, the yaw angle can 

be obtained by numerical integration of Eq. (3.3), and it is shown in figure 3.3. 
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Figure 3.3. Yaw angle calculated by a triaxial gyroscope and the pitch and roll angle. 

 

Kalman-based sensor fusion is a common approach to pursue attitude estimation in 

navigation systems. For that purpose, several tuning procedures based on the innovation 

sequence have been proposed [69], [70]. In this work, the fusion of gyroscope and 

accelerometer measurements is carried out using the Kalman filter algorithm with a Neuro-

fuzzy adaptive tuning procedure based on the innovation sequence. Figure 3.4 shows a block 

diagram of the scheme used to perform attitude estimation based on the IMU information. 

 

 

 

 

 

 

 

 

 

Figure 3.4. Kalman filter structure for attitude estimation. 

 

0 2 4 6 8 10 12 14 16 18 20

-100

-50

0

50

100

Time(s)

E
u

le
r 

A
n

g
le

s
 (

°)

 

 

Yaw

Process model Kalman Filter 

Measurement 

model 

Attitude update 

Attitude calculated 

by Gyro and Acc 

Attitude 

Innovation 

sequence 

Tunning 

factor 

Gyro 

raw data 

Acc   

raw data 

Neuro-Fuzzy 

Adaption 



CHAPTER 3. Attitude estimation using Neuro Fuzzy Adaptive Kalman Filter   
 

 
43 

3.1.1 The process and measurement model 

 

The process model is represented by the equations (3.4) and (3.5), where the state 

vector is xk, , , and  are the estimated roll, pitch, and yaw angles in degrees, respectively; 

b, b, and b are the bias which are estimated by the filter in degrees per second, dt is the 

sample rate and uk is the input vector containing the gyroscope raw data. 

kkk uBxAx 1      (3.4) 
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       (3.5) 

During the process, the angles , , and  are updated integrating the gyroscope raw 

data and performing a correction in order to eliminate the estimated bias: 

  dtb
kkxkk   1  

kk
bb  

1
     (3.6) 

  dtb
kkykk   1  

kk
bb  

1
            (3.7) 

  dtb
kkzkk   1  

kk
bb  

1
           (3.8) 

The measurement model uses the angles obtained from the triaxial accelerometer and 

the gyroscope, providing an estimation of the zk vector: 

kkk xHz       (3.9) 

where:  



CHAPTER 3. Attitude estimation using Neuro Fuzzy Adaptive Kalman Filter   
 

 
44 



















010000

000100

000001

kH     (3.10) 

Noise arising from angular velocities measurements affects the process model as they 

are governing the general behavior of the process, whereas measurements obtained from 

inertial sensors are subject to measurement noise. These noise signals are assumed to be 

uncorrelated zero-mean Gaussian white noise sequences, with covariance matrices Q and R, 

representing process noise and measurement noise covariance matrices, respectively. 

 

As described in the previous section, the Kalman filter formulation requires 

statistical information of matrices Q and R. In this work the values of Q and R matrices were 

acquired experimentally by maintaining the inertial module iNEMO [72] to stand for one 

week in a vibration free environment. Tables 3.1 and 3.2 show the statistical moments 

obtained from the experiment. The process noise and measurement noise covariance 

matrices are then represented as expressed in equations (3.11) and (3.12): 

 222222diag
zzyyxx bbbQ


 

   (3.11) 

 222diag
zyx accaccaccR 

    (3.12) 

 

Table 3.1. Gyroscope measurement statistical moments. 

Parameter X-axis Y-Axis Z-axis Units 

mean () 0.0130 -3.7636 4.7626 °/sec 

var (2) 0.0450 0.2270 0.2218 °/sec 

 

Table 3.2. Accelerometer measurement statistical moments. 

Parameter X-axis Y-Axis Z-axis Units 

mean () 15.4932 -6.5478 48.4429 mg 

var (2) 3.6190 3.6278 5.1917 mg 
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Optimal performance of Kalman filtering strongly depends of correct initial process 

and measurement noise statistics. Inadequate initial statistics would be reflected in 

inaccuracies of estimated states, or it would introduce undesired biases to the estimates, 

generating, in extreme cases, filter divergence. Adaptive filter formulation deals with the 

problem of having imperfect a priori information and provides an improvement in 

performance over the fixed filter approach. 

 

3.2  Attitude estimation using Neuro-Fuzzy Adaptive Kalman Filtering 

 

There are two approaches to the adaptive Kalman filtering problem: innovation-

based adaptive estimation (IAE) and multiple-model-based adaptive estimation (MMAE) 

[73]. In IAE the adaptation is carried out on the covariance matrices of measurement and/or 

process noise, based on the changes in the innovation or residual sequences. In MMAE a 

bank of Kalman filters runs in parallel with different models for satisfying filter’s true 

statistical information. MMAE has been used in several applications such as positioning 

systems [74] and attitude determination systems in microsatellites and spacecrafts [75], [76], 

with good results, however a drawback is its processing time and computational complexity. 

The work presented in this paper is based on an IAE approach. 

 

3.2.1 Innovation based adaptive estimation algorithm 

 

The innovation based adaptive estimation (IAE) approach is based on the 

improvement of the filter performance through the adaptive estimation of the filter statistical 

information, the matrices Q and/or R. The innovation sequence or filter residual sequence is 

the difference between the actual measurement vector and its estimate [70]: 

 kkkk xHzInn      (3.13) 

The innovation sequence represents the additional information available to the filter 

as a result of a new measurement zk. For this reason the innovation sequence represents the 
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information content in the new observation and is considered the most relevant source of 

information for the filter adaptation. The occurrence of bad data first shows up in the 

innovation vector. In this way the innovation sequence reports the discrepancy between 

predicted and actual measurement. For an optimal filter, the innovation sequence is a linear 

combination of independent Gaussian random variables. Therefore, the innovation is a white 

Gaussian sequence of mean zero and covariance: 

k
T
kkkk RHPHS  

     (3.14) 

by checking whether the innovation sequence indeed possess their theoretical statistical 

properties the performance of the Kalman filter can be assessed. 

 

In this work, an IAE scheme based on a neuro-fuzzy system is used to carry out the 

adaptation process on the statistical information contained in matrix R. The general idea 

behind this technique is that the actual value of the covariance of the residuals matches with 

its theoretical value. When the statistical values of the innovation sequence show 

discrepancies between the theoretical and actual covariance values, then a Neuro-Fuzzy 

inference system (FIS) adjusts a tuning factor applied to the matrix R causing a reduction in 

the discrepancy. 

 

3.2.2 Adaptive adjustment of the measurement noise covariance matrix R with 

Q known 

 

The adaptation process is carried out through the adjustment of the measurement 

noise covariance matrix R with Q known. Figure 3.5 shows a block diagram which 

schematically describes the whole process. The covariance matrix R represents the accuracy 

of the measurement instrument. Assuming that the noise covariance matrix Q is known, an 

IAE approach employing the principles of fuzzy logic is used to adaptively adjust the matrix 

R. 
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Figure 3.5. Kalman filter structure for attitude estimation. 

 

This adaptation is carried out in three steps. First, the theoretical covariance of the 

innovation sequence is obtained from the Kalman filter algorithm by the equation (3.14). 

Second, the actual covariance 
kInnĈ  is defined as an approximation of the Innk sample 

covariance through averaging inside a moving estimation window of size M: 



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ii

T
iiInn InnInn
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Ĉ

k

0

1
    (3.15) 

where i0 = k M + 1 is the first sample inside the estimation window. Third, if it is found 

that the actual value of the covariance has a discrepancy with its theoretical value Sk, then 

an adaptation algorithm derives adjustments based on the size of this discrepancy. The 

covariance matching technique is employed by the adaptation algorithm. Hence, a new 

variable called Degree of Matching (DoM) is defined to indicate the degree of discrepancy 

between Sk and 
kInnĈ ; this is expressed as: 

kInnkk CSDoM ˆ      (3.16) 
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From equation (3.14), note that an increment in R will increment S, and vice versa. 

Then the basic idea of the adaptation is to adjust Rk to vary Sk in accordance with the value 

of DoMk, in order to reduce the discrepancy between Sk and 
kInnĈ . 

 

The adaptation of the (i,i) element of Rk is  performed in accordance with the (i,i) 

element of DOMk using the following general rules: 

1. IF S and 
kInnĈ match almost perfectly (DoM  0) THEN keep R unchanged. 

2. IF S is greater than its actual value 
kInnĈ  (DoM > 0) THEN decrease R. 

3. IF S is smaller than its actual value 
kInnĈ DoM < 0) THEN increase R. 

therefore, R is adjusted as follows: 

    kkk RiiRiiR   ,, 1     (3.17) 

An Adaptive Neuro Fuzzy Inference System (ANFIS) is used to generate the tuning 

factors Rk for the diagonal elements of Rk, as represented in the block diagram shown in 

figure 3.5. ANFIS combines the learning capabilities of neural networks with the 

approximate reasoning of fuzzy inference systems. 

 

The advantage of ANFIS over fuzzy systems is the use of a hybrid learning algorithm 

to identify the parameters of Sugeno-type fuzzy inference systems. The optimization method 

used for training the FIS membership function parameters is a combination of the least-

squares estimation algorithm with the backpropagation gradient descent algorithm [57], 

[58]. 

 

In this work, the ANFIS architecture is the foundation to build the previous collection 

of IF-THEN rules with the appropriate membership functions to model a set of given input-

output data. The input-output pairs are comprised by DoMk (i,i) as the input linguistic 

variable and Rk as the output variable. 
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3.3 The Neuro-Fuzzy Adaptive Kalman filtering test 

 

The proposed system was implemented in MATLAB using the ANFIS model 

included in the fuzzy logic toolbox. Figure 3.6 presents the obtained transition functions 

corresponding to input DOMk related to the output Rk, for the case of the roll (), pitch (), 

and yaw () angles. Note how the ANFIS output follows the transition function. Figure 3.7 

shows the Gaussian membership functions for the input DOMk that resulted from the training 

of the ANFIS. The number of membership functions was established empirically. 

 

       

 

Figure 3.6. Outputs and the transition functions. 
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Figure 3.7. Gaussian membership functions for the input DOMk. 
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diagonal of R, produced by the equation 3.17. Figures 3.9 and 3.10 present the pitch and 

yaw adaptation results, respectively. 

 

 

                                              (a)                                                                                    (b)  

Figure 3.8. (a) Kalman filter without adaptation at roll angle. (b) Kalman Filter with 

Neuro-Fuzzy adaptation at roll angle. 

 

   

                                              (a)                                                                                    (b)  

Figure 3.9. (a) Kalman filter without adaptation at pitch angle. (b) Kalman Filter with 

Neuro-Fuzzy adaptation at pitch angle. 
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                                              (a)                                                                                    (b)  

Figure 3.10. (a) Kalman filter without adaptation at pitch angle. (b) Kalman Filter with 

Neuro-Fuzzy adaptation at pitch angle. 

 

3.4 Summary 
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adjusting the measurement noise covariance matrix R of a Kalman filter. This method uses 

the covariance-matching technique to determinate if adjustments to R are needed. 

 

 An experiment was developed to demonstrate the efficiency of the KF-NFA for 

attitude estimation. The description of this experiment and the obtained results will be 

discussed in Chapter 5. 
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Chapter 4 

Step length estimation and activity 

detection in a PDR system 
 

As mentioned in the previous sections, in Pedestrian Dead Reckoning (PDR) 

techniques, the estimation of each new position is based on the previous one derived from 

the last step, taking advantage of the sequential nature of pedestrian motion. Furthermore, 

displacements are calculated based on the estimation of a step length. The step length is a 

time-varying process which is strongly correlated to the velocity and the step frequency of 

the pedestrian [17]. For that reason some works have incorporated pedestrian activity 

classification in order to improve the accuracy of the calculation of the traveled distance, 

and consequently the localization accuracy [15], [17], [29], [36]. 

 

In this chapter, a fuzzy model aiming to perform step length estimation and activity 

detection in the context of a pedestrian dead reckoning system using inertial sensors, is 

presented. The fuzzy model uses a single inertial measurement unit with a triaxial 

accelerometer and gyroscope, which have adequate characteristics to be used in human 

activity analysis [21]. Effective algorithms are required to interpret the accelerometer data 

in the context of different activities. In this work a wavelet analysis is applied to triaxial 

accelerometer data in order to identify points in the signal where a pedestrian changes from 

one activity to another. 
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In search of incorporating the classification algorithm into a PDR system this work 

aggregates a dynamical method for estimating the step length using a Fuzzy Inference 

System (FIS), which uses the pedestrian activity as an additional input. The system uses a 

single device attached to the pedestrian waist rather than multiple devices distributed across 

the body or on the user’s foot. In that way, the developed techniques can be easily 

incorporated into personal smartphones with IMU sensors, which nowadays are becoming 

of popular use. With that purpose, this work considers activities that a pedestrian performs 

in his daily life, such as: walking, walking fast, jogging, and running. Additionally, with the 

information provided by an altimeter, the system can detect when the pedestrian is going up 

or down stairs. 

 

4.1 Fuzzy model for step length estimation 

 

The task of determining the activity a pedestrian is executing is inherently a 

classification problem. Some researchers, particularly in the field of biomechanics, have 

determined that gait trajectory signals have nonlinear and non-stationary characteristics [77]. 

In nonlinear or complex classification problems, neural networks, which have gained 

prominence in the area of pattern recognition, have several properties that make them 

attractive. 

 

Figure 4.1 presents the general block diagram of the proposed algorithm. Step length 

is estimated using a fuzzy inference system, with information obtained from positive-going 

and negative-going zero crossing direction of normalized signals obtained from the three-

axis accelerometer. The system incorporates information corresponding to the subject 

activity, which is simultaneously obtained from the IMU signals. A feature vector 

constructed with statistical information obtained from wavelet coefficients, is fed into a 

multilayer perceptron neural network, which provides information about the subject activity. 
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Figure 4.1. Block diagram of the proposed architecture for activity classification and step-

length estimation. 

 

4.2 Pedestrian activity classification algorithm 
 

Classification of pedestrian activity is achieved by using the measurements from the 

three axial accelerometer clusters of the STEVAL-MKI062V2 [72]. The STEVAL-

MKI062V2 is an inertial measurements unit (IMU) which includes accelerometers, 

gyroscopes and magnetometers, as well as pressure and temperature sensors to provide 3-

axis sensing of linear, angular and magnetic motion, complemented with temperature and 

barometer/altitude readings. Therefore, this unit constitutes a platform with 10 degrees of 

freedom (DOF). The STEVAL-MKI062V2 includes the LSM303DLH, which is a system-

in-package featuring a 3D digital linear acceleration sensor. The LSM303DLH has a full-

scale linear acceleration of ±2 g / ±4 g / ±8 g, which can be selected by the user as needed. 

Figure 4.2 shows the wearable sensor module and the way it is attached to the test subject. 
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Figure 4.2. Wearable sensor module and the way it is attached to the test subject. 

 

Four types of activity patterns were collected from 26 subjects. The height of these 

subjects is located in a range between 1.50 and 1.78 m. The four activity patterns types were 

specifically walking, walking fast, jogging and running. The data were collected from the 

triaxial accelerometer every 20 ms, which corresponds to 50 samples per second. A typical 

example of two seconds raw acceleration signal is shown in figure 4.3. Features were 

extracted from the norm of the acceleration raw signals corresponding to the three axis Ax, 

Ay, Az, at the time k. The norm vector is obtained as: 

222

kkk zyxk AAAA         (4.1) 

The mean of the norm signal is obtained through averaging over a sliding window of 

N samples, with N=100 in this experiment. 





k

Nk

kk A
N

A
1

1
           (4.2) 

which in this case is equivalent to two seconds of data at a sampling frequency of 50 Hz. 

Subtracting (4.2) from the norm acceleration signal results in: 

kkk AAAcc            (4.3) 

where Acck is the normalized acceleration signal at time k, with the effect of gravity 

removed. 
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Figure 4.3. Raw and filtered normalized acceleration signal acquired during walking. 
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these coefficients is used to form the feature vector for classification purposes in a dynamical 

way [78]. Figure 4.4 shows a three-level filter bank. Sets cA and cD are known as 

approximation and detail coefficients, respectively. 

 

The wavelet decomposition is obtained through a sliding window of 100 samples, 

using the wavelet toolbox included in MATLAB, with a three-level wavelet 

decomposition applied to the norm of the acceleration signal and a Daubechies 5/7 mother 

wavelet. Figure 4.4 shows in shaded boxes the target frequency band signals selected for 

feature extraction. Two statistical features, mean and standard deviation, were extracted 
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from each coefficient, giving a total of eight attributes in order to discriminate the four 

activities; walking, walking fast, jogging, and running. 

 

 

 

 

 

 

 

 

Figure 4.4. Wavelet decomposition. 

 

4.3 Classification using a multi-layer perceptron neural network 

 

Activity classification was performed using a feed forward multilayer perceptron 

neural network. The perceptron used in this work was trained using the Levenberg-

Marquardt back propagation algorithm [79]. The backpropagation algorithm used in the 

training of multilayer perceptrons, is formulated as a non-linear least-squares problem. 

Essentially, the Levenberg-Marquardt algorithm is a least-squares estimation method based 

on the maximum neighborhood idea. Let E(w) be an objective error function made up of m 

individual error terms 
2

ie (w) as follows: 

2

1

2 )()()( 



m

i

i wfwewE           (4.4) 

where 

22 )()( idii yywe         (4.5) 

diy  is the desired value of output neuron i, and iy  is the actual output of that neuron. 

Acceleration Signal 

cA1 cD1 

cD2 cA2 

cA3 cD3 
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The aim of the Levenberg-Marquardt algorithm is to compute the weight vector w

such as )(wE is minimized. In each iteration the weight vector is updated according to 

equation (4.6): 

kkk www 1               (4.6) 

where 

   1
)(


 IJJwfJw k

T

kk

T

kk      (4.7) 

 

kJ  is the Jacobian of f evaluated at kw ,  is the Marquardt parameter, and I is the identity 

matrix. 

 

The number of epochs in the training phase differs from one example to another, 

however, the Levenberg-Marquardt back propagation algorithm provided a fast 

convergence. Structure of the neural network consisted of two hidden layers with eight 

neurons and one output layer with four neurons corresponding to the four classification 

conditions. The neural networks toolbox included in MATLAB was used in this 

experiment. Two-fold cross validation was employed in the validation stage. The procedure 

is explained in detail in the chapter 5. 

 

4.4 Step length estimation algorithm 
 

Pedestrian dead reckoning (PDR) is a navigation technique based on position 

estimation of a person travelling on foot. A PDR algorithm is expected to provide 

information about a pedestrian position during a natural walk. A PDR algorithm can be 

divided into three principal parts: step detection, step length estimation and heading 

determination. In this work, a proposal for step detection and step length estimation to be 

used in a PDR algorithm is presented. Next subsections describe in detail the proposed 

procedures. 
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4.4.1  Step detection 

 

The step detection stage is fundamental in a PDR algorithm; if the step detection is 

inaccurate, then it will not be possible to determine the distance traveled by the subject, and 

consequently an estimation of the current position is not feasible [80]. There are two basic 

methods to detect pedestrian steps based on the measurements provided by the 

accelerometers: peak detection [81] and zero-crossing detections [18]. These methods 

consist of comparing the acceleration values with the predefined thresholds and taking the 

minimum step period into account. 

 

In waist attached devices, peak detection is not appropriate because peaks of 

acceleration also occur in irregular motions, such as turning when avoiding obstacles on a 

crowded road. It is difficult to distinguish between these peaks and those measured during 

regular walking, thus step misdetections are prone to occur. Furthermore, methods based on 

comparing the acceleration values with the predefined thresholds are not appropriate when 

the pedestrian activity is not constant because the time and amplitude characteristics of the 

acceleration measures change during the walk. 

 

So, in order to make the step count more reliable and to improve the accuracy of the 

distance traveled calculation we propose an algorithm to identify valid steps. Detection is 

performed by the positive-going and negative-going zero crossing direction of the 

normalized signal obtained from the three-axis accelerometer according to equation (4.3). 

In order to improve the performance of the step detection, an initial smoothing of the 

acceleration signal is performed. Raw normalized acceleration signals are passed through an 

exponential weighted moving average filter defined in equation (4.8), as follows: 

  11  kkk ccÂAccccÂ 
           (4.8) 

where ccÂ  indicates the estimated filtered acceleration signal, Acc is the raw acceleration 

signal, 0 <  < 1 is a filter parameter, and k is the discrete time variable. In this application 
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 = 0.3 and the initial condition is assumed as the initial measured value of the acceleration 

signal. An example of the raw and filtered signals is shown in figure 4.5. Then, positive-

going and negative-going zero crossing direction of the signal ccÂ  are detected in order to 

determine the interval where a step has occurred. Once the algorithm determines the zero 

crossing positions it proceeds to detect the maximum peak position which is present between 

two consecutive zero crossings. An example of this procedure is shown in figure 4.6. 

Squares indicate the maximum peaks and circles indicate the zero crossings detected. 

 

 

Figure 4.5. Normalized raw and filtered signals obtained during walking. 

 

 
Figure 4.6. Zero Crossing and Maximum peaks detection. 
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The next procedure is to determine which of those peaks represent valid steps. A 

valid step occurs when the foot touches the ground and this is recorded by the accelerometer 

as a peak of large magnitude with short duration. As shown in figure 4.6, the valid steps 

correspond with the largest peaks. It can be noticed the presence of peaks with smaller 

magnitudes which do not correspond to valid steps. 

 

In some reported works, valid steps are detected by comparing the acceleration 

signals with some predefined threshold [12], [18]. The proposed algorithm identifies the 

valid steps by calculating the area under each peak, using Riemann sum: 

    iii

n

i

iii xxxxxxfS  



 *

1

1

1

* ,

   (4.9) 

in this case,  1 ii xx is the sample time 0.02 seconds. The procedure starts measuring the 

width of each detected peak in the time domain, which corresponds to the range comprised 

between two consecutive zero crossing with alternate directions. The length of the measured 

width is stored in a variable called range (Rng) as shown in figure 4.7. Then, the equation 

4.9 is computed using all the acceleration values contained inside Rng. These values 

correspond to *

ix . 

<  

Figure 4.7. Scheme of peaks discrimination. 
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The algorithm compares the value of S against a sliding window average (Smean). This 

comparison is performed by computing the ratio between S and Smean. If the ratio is greater 

than some value previously specified the event is considered a valid step and its position is 

stored. Once the pedestrian’s steps are detected, the step frequency is calculated based on 

the step period, which is obtained by measuring the time between consecutive valid steps. 

 

4.4.2 Step length estimation 

 

The step length assessment is fundamental to the calculation of distance traveled. In 

this work the step length is dynamically estimated using a Fuzzy Inference System (FIS). In 

the proposed FIS, three inputs linguistic variables are defined: step frequency, with partition 

in three fuzzy sets labeled as slow, regular and fast; pedestrian activity, defined by four 

fuzzy sets with labels walking, walking fast, jogging, and running; and pedestrian height, 

which is defined by three membership functions with labels short, medium, and high. The 

membership functions of the input linguistic variables are shown in figure 4.8. 

 

The output variable is defined as step length, the linguistic values are defined by 

eight Gaussian fuzzy sets: small (SM), normal (NL), little large (LL), medium large (ML), 

large (LG), very large (VL), giant (GT) and very giant (VG). These eight fuzzy sets are 

shown in figure 4.9. Therefore, 36 rules complete the rule base defined in the FIS system. 

An example of these rules is: 

IF (step-freq is slow) AND (activity is walk) AND (height is short) 

THEN (step-length is small) 

the fuzzy operators min, max-product and centroid method are used as the fuzzy operators 

of the intersection compositional rule of inference and for the defuzzification, respectively. 
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Figure 4.8. Membership functions of the input linguistic variables. 

 

 

Figure 4.9. Membership functions of the output linguistic variable. 
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4.5 Summary  

 

In this chapter an approach on Pedestrian Dead Reckoning (PDR) which incorporates 

activity classification over a Fuzzy Inference System (FIS) for step length estimation has 

been presented. In the proposed algorithm, the pedestrian is equipped with an Inertial 

Measurement Unit (IMU) attached to the waist, which provides three-axis accelerometer and 

gyroscope signals. The main goal is to integrate the activity classification and step-length 

estimation algorithms into a PDR system. 

 

In order to improve the step-length estimation, several types of activities are classified 

using a Multi-Layer Perceptron (MLP) neural network with feature extraction based on 

statistical parameters from wavelet decomposition. This work focuses on classifying 

activities that a pedestrian performs routinely in his daily life, such as walking, walking fast, 

jogging and running. The step-length is dynamically estimated using a multiple-input–single-

output (MISO) fuzzy inference system. The experimental tests and results will be described 

in the Chapter 5.
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Chapter 5 

Experimental results 

 

In order to validate the entire PDR system, in this chapter the description and results 

of the different experiments carried out are presented. 

 

5.1  KF-NFA attitude estimation results 
 

In order to demonstrate the efficiency and validity of the Kalman filter with Neuro-

Fuzzy adaptation (KF-NFA) for attitude estimation, an experiment where the gyroscope was 

rotated from 90° to -90° on each axis from an initial position of 0° was performed. For 

comparison purposes, figures 5.1 and 5.2 present the attitude obtained using KF-NFA, the 

traditional Kalman filter (T-KF), and the attitude obtained from the gyroscope integration. 

Figure 5.1(b) shows a zoom of the roll angle in the interval where the sensor recorded an 

approximate rotation of -90°. The KF-NFA output is closer to -90°; hence a filter 

performance improvement is obtained. 

 

In a previous work [82], a fuzzy scheme for the adaptation of the Kalman filter (KF-

FLA) was reported. The drawback of a fuzzy logic approach is the definition of the fuzzy 

sets used in the fuzzy rules. A neuro-fuzzy adaptation scheme offers the advantage of 

adjusting, in an automatic way, the fuzzy sets used in the fuzzy rules. A Neuro-Fuzzy 

Inference System (ANFIS) is used to adaptively adjust the measurement noise statistical 

information for the Kalman filter based on the filter innovation sequence, which performs 

sensor fusion of gyroscope and accelerometer measurement signals.
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                                              (a)                                                                                    (b)  

  Figure 5.1. (a) Roll angle results. (b) 90° Roll angle. 
 

  
                                              (a)                                                                                    (b)  

Figure 5.2. Euler angles results. (a) Pitch angle. (b) Yaw angle. 

 

A comparison on percent mean square error (MSE) measured in each case using zero 

level as reference indicates an improvement when ANFIS-based adaptation (KF-NFA) is 

used, as indicated in Table 5.1. 

 

Table 5.1. % MSE measured in the different adaptations 

 Roll Pitch Yaw 

Integration 19.01% 35.67% 53.37% 

T-KF 8.9977% 7.9327% 29.9536% 

KF-FLA 8.3975% 7.9145% 16.5305% 

KF-NFA 8.3880% 7.7953% 16.5296% 

0 2 4 6 8 10 12 14 16 18 20

-100

-50

0

50

100

Time (s)

R
o

ll
 a

n
g

le
 (

°)

 

 

Roll

T-KF

KF-NFA

1.5 2 2.5 3 3.5 4 4.5

-100

-80

-60

-40

-20

0

20

Time (s)

R
o

ll
 a

n
g

le
 (

°)

 

 

Roll

T-KF

KF-NFA

0 2 4 6 8 10 12 14 16 18 20
-100

-50

0

50

100

150

Time (s)

P
it
c
h

 a
n

g
le

(°
)

 

 

Pitch

T-KF

KF-NFA

0 2 4 6 8 10 12 14 16 18 20
-150

-100

-50

0

50

100

150

200

250

Time (s)

Y
a

w
 a

n
g

le
 (

°)

 

 

Yaw

T-KF

KF-NFA



CHAPTER 5. Experimental results   
 

 
68 

5.2  Activity detection results 
 

Several tests were carried out with 26 subjects wearing the IMU STEVAL-

MKI062V2 attached to the waist. The height of these subjects is located in a range between 

1.50 and 1.78 m. The subjects were asked to walk in a straight line a distance of 100 meters 

in each activity pattern twice. Data processing for activity classification and step-length 

estimation was carried out off-line using the described algorithm. 

 

This experiment corresponds to the neural network-based activity classification. The 

available data is divided into two groups in order to perform two-fold cross validation. The 

first set is used for training and the second set is used for generalization; later on, both sets 

are interchanged and the process is repeated. Average classification rate is presented in the 

form of confusion matrices. Table 5.2 presents the confusion matrix obtained from the 

classification rate of the four activity patterns during the training process. Table 5.3 shows 

similar results corresponding to the generalization process. 

 

Table 5.2. Classification accuracy (%) confussion matrix for the four walking 

patterns obtained by applying the training process 

 Walking Walking fast Jogging Running 

Walking 92.3 7.7 0 0 

Walking Fast 7.7 92.3 0 0 

Jogging 0 0 88.45 11.55 

Running 0 0 7.7 92.3 

Overall Accuracy 91.33% 

 

 
Table 5.3. Classification accuracy (%) confussion matrix for the four walking 

patterns obtained by applying the testing process 

 Walking Walking fast Jogging Running 

Walking 84.61 15.39 0 0 

Walking Fast 3.85 88.45 7.7 0 

Jogging 0 7.7 84.6 7.7 

Running 0 0 7.7 92.3 

Overall Accuracy 87.49% 
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The activity detection procedure was then incorporated in the step length estimation 

procedure as represented in the block diagram of figure 4.1. Subsequently, step length 

estimation and attitude estimation were used to develop a PDR system. The PDR system has 

been developed to provide information about location and movements of a person travelling 

in a GPS-denied environment. The next section provides the description of the different 

experiments performed to validate the PDR system. 

 

5.3 PDR system results 
 

In order to validate the PDR system, several experiments were performed in 

combined indoor/outdoor trajectories inside the building number one at the INAOE. In order 

to represent the trajectories of the true path, a 3-D computer assisted design (CAD) model 

of the building was built using CATIA V5, as shown in figure 5.3. The signal acquisition 

was carried out based on the inertial module iNEMO®, described in chapter 4, and in order 

to include height measurements, the DEMOSTBMPL3115A2 [83] was incorporated. 

 

The DEMOSTBMPL3115A2 is a low-cost development kit for the Freescale 

MPL3115A2 pressure sensor. As shown in figure 5.4, this kit is bundled with all three boards 

that include the USB communication board, the interface board and the pressure sensor 

evaluation board. The MPL3115A2 employs a MEMS pressure sensor with I2C interface to 

provide accurate pressure/altitude (50 to 110 kPa) and temperature (-40°C to 85°C) data. 

            

                  

                               (a)                                                                             (b)  

Figure 5.3. (a) Building one at the INAOE. (b) CAD model of the building. 
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Figure 5.4. DEMOSTBMPL3115A2 [83].  

 

As it was mentioned in the previous chapter, the sensors modules were attached to 

the waist of the test subject. Data were collected in real-time while the user completed the 

trajectories proposed in the different experiments. Each experiment was performed 5 times 

by 14 subjects.  The height of these subjects is located in a range between 1.55 and 1.92 m. 

The data processing was performed off-line using the proposed PDR system implemented 

in MATLAB. 

 

5.3.1  Experiment 1 
 

The first experiment is a combined indoor/outdoor trajectory. The trajectory is a 

closed path followed by a pedestrian who walks a straight line inside the building in order 

to get out and go around the building, returning to the starting point. The starting point is an 

access door to the building, which was established as the point [0, 0, 0]. The total distance 

of this trajectory is 299 m. From figure 5.5 to figure 5.7 the pedestrian position obtained 

with the proposed PDR system is presented. These figures show several views of the 

building, with a superimposed trajectory obtained through the PDR system, based on data 

collected during the experiments. Tables 5.4 and 5.5 present the quantitative results obtained 

from the step detection stage and the total distance derived from the step length estimation. 
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Figure 5.5. 3-D side view from experiment 1. 

 

 

 

Figure 5.6. Lateral view from experiment 1. 

 

 

Figure 5.7. Top view from experiment 1. 
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Table 5.4. Step detection results from experiment 1. 

Subject/ 

Height (m) 

Number of detected steps 
Error 

(%) 
test 1 test 2 test 3 test 4 test 5 

Real Detec. Real Detec. Real Detec. Real Detec. Real Detec. 

S1 1.55 491 490 491 490 490 489 490 489 491 490 0.204% 

S2 1.63 461 460 461 460 462 461 461 460 461 460 0.217% 

S3 1.64 435 434 435 434 435 434 434 433 434 433 0.230% 

S4 1.65 388 387 388 387 389 388 387 386 387 386 0.258% 

S5 1.66 421 420 422 421 421 420 420 419 420 419 0.238% 

S6 1.68 389 388 390 389 389 388 389 388 388 387 0.257% 

S7 1.71 418 417 418 417 417 416 417 416 418 417 0.239% 

S8 1.73 358 357 358 357 357 356 357 356 359 358 0.279% 

S9 1.74 414 413 414 413 414 413 413 412 413 412 0.242% 

S10 1.75 380 379 380 379 379 378 379 378 381 380 0.263% 

S11 1.80 380 379 381 380 379 378 379 378 380 379 0.263% 

S12 1.82 334 333 333 332 335 334 333 332 334 333 0.300% 

S13 1.86 296 295 295 294 296 295 295 294 295 294 0.339% 

S14 1.92 295 294 294 293 294 293 296 295 296 295 0.339% 

% Overall error 0.262% 

% Overall accuracy 99.738% 

 

Table 5.5. Travelled distance estimation results for experiment 1 (299 m). 

Subject 
Step length 

average (m) 
Estimated distance (m) Error 

(%) test 1 test 2 test 3 test 4 test 5 

S1 0.581 300.045 300.1 298.8 300.53 299.62 1.37% 

S2 0.657 301.728 301.638 301.738 302.59 302.718 0.59% 

S3 0.674 291.734 299.304 298.084 299.51 300.434 1.54% 

S4 0.669 258.38 299.51 299.06 299.49 299.00 13.23% 

S5 0.696 291.523 299.18 300.97 300.93 299.38 1.01% 

S6 0.721 279.076 299.31 298.01 297.52 297.09 6.37% 

S7 0.739 307.256 301.84 301.2 301.20 301.55 4.35% 

S8 0.75 267.101 300.57 298.81 298.82 299.2 10.20% 

S9 0.733 302.108 299.72 299.16 300.40 299.66 0.35% 

S10 0.751 283.759 299.83 300.45 298.04 299.74 4.41% 

S11 0.754 277.313 298.43 297.53 298.1 297.87 6.97% 

S12 0.774 257.021 298.66 298.41 300.39 300.36 13.43% 

S13 0.898 263.936 299.61 300.04 299.53 301.93 11.65% 

S14 839 312.976 299.89 300.42 301.27 300.01 4.86% 

% Overall error 5.737% 

% Overall accuracy 94.263% 
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5.3.2 Experiment 2 
 

5.3.2.1 Test 1 

This trajectory corresponds to an indoor situation which includes level changes. For 

the first test, the trajectory starts again in the access door to the building, the user walks a 

straight line inside the building until she/he arrives to the stairs, walk up the stairs to the next 

level, turn right and walks straight up towards the reading room “Guillermo Haro” and stops 

exactly in the office 1204, located at the first level of the building. The total distance of this 

trajectory is 48 m. From figure 5.8 to figure 5.11 the pedestrian position obtained with the 

proposed PDR system is shown. These figures show several views of the building, with a 

superimposed trajectory obtained through the PDR system, based on data collected during 

the experiments. Tables 5.6 and 5.7 present the quantitative results obtained from step 

detection stage and the total distance derived from the step length estimation. 

 

 
Figure 5.8. 3-D side view from experiment 2, test 1. 

 

 
Figure 5.9. Top view from experiment 2, test 1. 
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Figure 5.10. Lateral view from experiment 2, test 1. 

 

 

Figure 5.11. Frontal view from experiment 2, test 1. 

 

Table 5.6. Step detection results from experiment 2, test 1. 

Subject/ 

Height (m) 

Number of detected steps 
Error 

(%) 
test 1 test 2 test 3 test 4 test 5 

Real Detec. Real Detec. Real Detec. Real Detec. Real Detec. 

S1 1.55 79 78 78 77 79 78 80 79 78 77 1.269% 

S2 1.63 77 76 76 75 77 76 78 77 78 77 1.295% 

S3 1.63 70 69 71 70 69 68 71 70 69 68 1.429% 

S4 1.65 61 60 60 59 61 60 60 59 61 60 1.650% 

S5 1.66 69 68 69 68 70 69 69 68 70 69 1.441% 

S6 1.68 73 72 74 73 73 72 73 72 74 73 1.362% 

S7 1.71 66 65 66 65 67 66 65 64 67 66 1.511% 

S8 1.73 58 57 57 56 59 58 59 58 58 57 1.718% 

S9 1.74 64 63 65 64 63 62 64 63 64 63 1.563% 

S10 1.75 67 66 66 65 67 66 68 67 68 67 1.488% 

S11 1.8 64 63 65 64 64 63 65 64 65 64 1.548% 

S12 1.82 57 56 56 55 57 56 57 56 58 57 1.755% 

S13 1.86 51 50 50 49 50 49 51 50 52 51 1.969% 

S14 1.92 50 49 49 48 49 48 50 49 51 50 2.008% 

% Overall error 1.572% 

% Overall accuracy 98.428% 
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Table 5.7. Travelled distance estimation results for test 1 of the experiment 2 (48 m). 

Subject 
Step length 

average (m) 
Estimated distance (m) Error 

(%) test 1 test 2 test 3 test 4 test 5 

S1 0.575 46.147 48.43 48.88 49.82 48.97 4.68% 

S2 0.67 50.257 49.992 49.70 50.642 50.33 2.45% 

S3 0.676 45.957 46.48 47.28 46.84 47.00 7.73% 

S4 0.695 40.978 49.47 49.58 48.62 47.35 8.34% 

S5 0.696 46.631 45.67 46.49 46.18 45.42 0.85% 

S6 0.729 50.319 50.32 50.61 50.21 50.44 3.80% 

S7 0.757 48.461 48.82 48.06 47.08 47.68 0.21% 

S8 0.739 41.36 43.45 42.99 44.29 42.09 1.91% 

S9 0.761 47.195 48 48.23 46.01 46.63 2.27% 

S10 0.767 49.836 48.64 50.51 49.47 48.84 4.69% 

S11 0.875 54.25 50.75 49.57 48.8 48.61 14.24% 

S12 0.875 48.125 47.81 47.51 49.35 50.08 0.77% 

S13 0.99 48.531 49.92 50.01 50.48 48.91 11.03% 

S14 1.047 53.388 53.07 54.54 55.34 55.27 2.98% 

% Overall error 4.710% 

% Overall accuracy 95.290% 

 

5.3.2.2 Test 2 

The second test uses the same path of test 1, but in the reverse direction. In this case 

the path starts from the office 1204 in front of the reading room “Guillermo Haro” at the 

first level, and ends at the access door of the building. The total distance of this trajectory is 

48 m. From figure 5.12 to figure 5.15 a view of the building and the pedestrian position 

obtained with the proposed PDR system are shown. Tables 5.8 and 5.9 present the 

quantitative results. 

 

 
Figure 5.12. Side 3-D view from experiment 2, test 2. 
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Figure 5.13. Lateral view from experiment 2, test 2. 

 

 

 
Figure 5.14. Top view from experiment 2, test 2. 

 

 

Figure 5.15. Frontal view from experiment 2, test 2. 
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Table 5.8. Step detection results from experiment 2, test 2. 

Subject/ 

Height (m) 

Number of detected steps 
Error 

(%) 
test 1 test 2 test 3 test 4 test 5 

Real Detec. Real Detec. Real Detec. Real Detec. Real Detec. 

S1 1.55 78 77 76 75 77 76 78 77 77 76 1.295% 

S2 1.63 79 78 78 77 81 80 79 78 80 79 1.260% 

S3 1.64 68 67 66 65 71 70 69 68 67 66 1.467% 

S4 1.65 61 60 63 62 62 61 62 61 61 60 1.618% 

S5 1.66 69 68 69 68 69 68 68 67 70 69 1.449% 

S6 1.68 73 72 72 71 74 73 72 71 74 73 1.370% 

S7 1.71 66 65 67 66 64 63 67 66 66 65 1.516% 

S8 1.73 58 57 60 59 57 56 57 56 58 57 1.725% 

S9 1.74 66 65 64 63 68 67 66 65 65 64 1.520% 

S10 1.75 67 66 68 67 70 69 67 66 67 66 1.475% 

S11 1.80 66 65 65 64 64 63 66 65 67 66 1.525% 

S12 1.82 56 55 54 53 56 55 56 55 57 56 1.793% 

S13 1.86 53 52 53 52 52 51 53 52 52 51 1.901% 

S14 1.92 51 50 50 49 50 49 52 51 51 50 1.969% 

% Overall error 1.563% 

% Overall accuracy 98.437% 

 

 

Table 5.9. Travelled distance estimation results for test 2 of the experiment 2 (48 m). 

Subject 
Step length 

average (m) 
Estimated distance (m) Error 

(%) test 1 test 2 test 3 test 4 test 5 

S1 0.575 48.43 47.71 48.93 47.3 47.83 0.42% 

S2 0.67 49.992 49.772 52.042 51.172 50.292 2.20% 

S3 0.676 46.48 45.74 45.41 47.68 47.32 5.72% 

S4 0.695 49.47 48.27 49.95 49.59 48.37 11.77% 

S5 0.696 45.67 45.56 47.87 45.92 46.63 3.59% 

S6 0.729 50.32 49.85 50.01 50.53 49.4 0.22% 

S7 0.757 48.82 47.85 49.33 48.98 48.96 8.21% 

S8 0.739 43.45 44.86 44.42 44.25 43.45 12.63% 

S9 0.761 48.00 47.87 46.46 48.87 47.79 8.49% 

S10 0.767 48.64 50.36 49.18 48.65 48.77 1.22% 

S11 0.875 50.75 49.91 49.82 48.81 50.21 9.18% 

S12 0.875 47.81 50.05 50.3 49.4 49.63 9.67% 

S13 0.99 49.92 49.66 48.43 49.97 48.75 8.72% 

S14 1.047 53.07 55.58 53.39 54.48 54.36 1.63% 

% Overall error 5.976% 

% Overall accuracy 94.024% 
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5.3.3 Experiment 3 
 

5.3.3.1 Test 1 

For the first test in this experiment, the trajectory starts in the first floor, exactly in 

front of the office 1204 located in front of the reading room “Guillermo Haro”. The user 

walks in a straight line until he/she arrives to the stairs, then he/she goes downstairs to the 

ground floor, turns left and walks in a straight line towards the access door and stops. The 

total distance of this trajectory is 66 m. From figure 5.16 to figure 5.19 and tables 5.10 and 

5.11 present the results. 

 

 
Figure 5.16. Side 3-D view from experiment 3, test 1. 

 

 

 
Figure 5.17. Top view from experiment 3, test 1. 
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Figure 5.18. Lateral view from experiment 3, test 1. 

 

 

Figure 5.19. Frontal view from experiment 3, test 1. 

 
Table 5.10. Step detection results from experiment 3, test 1. 

Subject/ 

Height (m) 

Number of detected steps 
Error 

(%) 
test 1 test 2 test 3 test 4 test 5 

Real Detec. Real Detec. Real Detec. Real Detec. Real Detec. 

S1 1.55 96 95 97 96 96 95 96 95 96 95 1.040% 

S2 1.63 95 94 94 93 94 93 94 93 94 93 1.062% 

S3 1.64 95 94 95 94 96 95 94 93 95 94 1.053% 

S4 1.65 84 83 84 83 85 84 84 83 84 83 1.188% 

S5 1.66 95 94 94 93 95 94 96 95 96 95 1.050% 

S6 1.68 87 86 88 87 87 86 87 86 87 86 1.147% 

S7 1.71 91 90 90 89 90 89 91 90 91 90 1.104% 

S8 1.73 81 80 82 81 80 79 82 81 80 79 1.235% 

S9 1.74 89 88 88 87 90 89 88 87 90 89 1.124% 

S10 1.75 82 81 82 81 81 80 82 81 82 81 1.223% 

S11 1.80 80 79 81 80 80 79 80 79 80 79 1.247% 

S12 1.82 73 72 72 71 72 71 74 73 74 73 1.370% 

S13 1.86 70 69 71 70 71 70 70 69 69 68 1.425% 

S14 1.92 67 66 68 67 67 66 67 66 67 66 1.488% 

% Overall error 1.197% 

% Overall accuracy 98.803% 
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Table 5.11. Travelled distance estimation results for test 1 of the experiment 3 (66 m).  

Subject 
Step length 

average (m) 
Estimated distance (m) Error 

(%) test 1 test 2 test 3 test 4 test 5 

S1 0.687 46.147 67.13 66.81 66.28 67.95 23.76% 

S2 0.698 71.918 65.63 65.92 66.04 65.66 4.01% 

S3 0.702 65.273 65.253 67.103 66.613 65.653 5.41% 

S4 0.71 56.99 67.98 67.48 66.06 66.08 8.20% 

S5 0.703 65.393 67.363 65.173 66.413 65.253 4.02% 

S6 0.7226 61.772 62.182 61.012 60.882 62.442 0.92% 

S7 0.802 71.388 72.138 71.188 70.808 72.388 1.36% 

S8 0.862 68.128 69.098 69.028 69.168 67.338 3.11% 

S9 0.875 76.152 76.552 78.102 75.192 76.812 2.69% 

S10 0.907 72.55 72.15 74.55 73.22 72.95 3.68% 

S11 0.978 76.299 76.439 75.589 77.459 77.719 2.63% 

S12 0.971 68.959 69.609 68.179 68.969 68.649 0.62% 

S13 9.83 66.963 67.783 67.243 68.853 66.663 4.02% 

S14 1.014 66.495 67.955 66.635 67.905 67.945 6.71% 

% Overall error 5.082% 

% Overall accuracy 94.918% 

 

5.3.3.2 Test 2 

The second test uses the same path of test 1, but in the reverse direction. In this case 

the person starts from the access door at the ground floor and stops in front the office 1204, 

at the first floor. The total distance of this trajectory is 66 m. From figure 5.20 to figure 5.23 

and tables 5.12 and 5.13 present the results. 

 

 

Figure 5.20. Side 3-D view from experiment 3, test 2. 
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Figure 5.21. Lateral view from experiment 3, test 2. 

 

 

Figure 5.22. Top view from experiment 3, test 2. 

 

 

Figure 5.23. Frontal view from experiment 3, test 2. 
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Table 5.12. Step detection results from experiment 3, test 2. 

Subject/ 

Height (m) 

Number of detected steps 
Error 

(%) 
test 1 test 2 test 3 test 4 test 5 

Real Detec. Real Detec. Real Detec. Real Detec. Real Detec. 

S1 1.55 94 93 93 92 96 95 95 94 93 92 1.062% 

S2 1.63 93 92 94 93 91 90 92 91 94 93 1.078% 

S3 1.64 95 94 94 93 96 95 94 93 94 93 1.057% 

S4 1.65 85 84 84 83 85 84 85 84 86 85 1.177% 

S5 1.66 96 95 94 93 96 95 96 95 95 94 1.048% 

S6 1.68 86 85 86 85 84 83 85 84 85 84 1.174% 

S7 1.71 91 90 90 89 93 92 92 91 92 91 1.092% 

S8 1.73 78 77 80 79 77 76 77 76 79 78 1.279% 

S9 1.74 90 89 89 88 89 88 91 90 89 88 1.116% 

S10 1.75 81 80 81 80 84 83 81 80 80 79 1.229% 

S11 1.80 82 81 80 79 80 79 81 80 81 80 1.238% 

S12 1.82 76 75 76 75 79 78 76 75 75 74 1.309% 

S13 1.86 67 66 66 65 66 65 68 67 66 65 1.502% 

S14 1.92 65 64 63 62 63 62 65 64 65 64 1.558% 

% Overall error 1.208% 

% Overall accuracy 98.792% 

 

 

Table 5.13. Travelled distance estimation results for test 2 of the experiment 3 (66 m). 

Subject 
Step length 

average (m) 
Estimated distance (m) Error 

(%) test 1 test 2 test 3 test 4 test 5 
S1 0.687 66.14 67.3 67.04 65.2 65.15 1.26% 

S2 0.698 65.88 67.58 65.65 66.5 68.13 1.86% 

S3 0.702 67.413 66.463 66.093 66.933 66.363 10.57% 

S4 0.71 67.35 66.57 65.75 67.53 65.68 4.36% 

S5 0.703 65.643 65.463 65.813 64.443 66.973 2.10% 

S6 0.7226 62.352 61.852 60.982 60.922 61.052 2.75% 

S7 0.802 72.418 72.838 71.638 72.888 71.178 5.63% 

S8 0.862 69.988 68.068 68.538 67.168 68.618 2.55% 

S9 0.875 77.842 76.892 77.132 75.232 76.682 3.97% 

S10 0.907 73.65 72.49 73.44 73.03 73.64 4.82% 

S11 0.978 76.209 75.759 75.729 77.889 75.649 0.34% 

S12 0.971 69.089 68.029 68.719 68.629 69.499 1.20% 

S13 9.83 68.573 66.053 67.733 67.803 68.423 5.63% 

S14 1.014 67.935 66.575 66.335 67.755 65.775 2.86% 

% Overall error 3.565% 

% Overall accuracy 96.435% 
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5.3.4 Experiment 4 
 

5.3.4.1 Test 1 

For the first test, the trajectory starts from the office 1204 in front of the reading 

room “Guillermo Haro”, located at the first floor of the building one. The user walks in a 

straight line until he/she arrive to the stairs, then he/she goes upstairs to the third floor, turns 

right and walks in a straight line towards the last cubiculum. This trajectory include three 

level changes with a total distance of 51 m. From figure 5.24 to figure 5.28 and tables 5.14 

and 5.15 present the results. 

 

 
Figure 5.24. Side 3-D view from experiment 4, test 1. 

 

 

 

Figure 5.25. Side 3-D view 2 from experiment 4, test 1. 
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Figure 5.26. Lateral view from experiment 4, test 1. 

 

 

Figure 5.27. Top view from experiment 4, test 1. 

 

 

Figure 5.28. Frontal view from experiment 4, test 1. 
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Table 5.14. Step detection results from experiment 4, test 1. 

Subject/ 

Height (m) 

Number of detected steps 
Error 

(%) 
test 1 test 2 test 3 test 4 test 5 

Real Detec. Real Detec. Real Detec. Real Detec. Real Detec. 

S1 1.55 84 83 83 82 85 84 85 84 83 82 1.191% 

S2 1.63 82 81 83 82 81 80 82 81 83 82 1.217% 

S3 1.64 74 73 74 73 74 73 75 74 74 73 1.348% 

S4 1.65 72 71 71 70 71 70 73 72 73 72 1.389% 

S5 1.66 76 75 77 76 75 74 77 76 75 74 1.316% 

S6 1.68 65 64 66 65 65 64 64 63 65 64 1.539% 

S7 1.71 69 68 69 68 69 68 70 69 69 68 1.445% 

S8 1.73 62 61 61 60 63 62 61 60 61 60 1.624% 

S9 1.74 68 67 69 68 68 67 69 68 69 68 1.458% 

S10 1.75 67 66 68 67 68 67 67 66 66 65 1.488% 

S11 1.80 63 62 62 61 63 62 62 61 64 63 1.593% 

S12 1.82 55 54 55 54 54 53 54 53 54 53 1.838% 

S13 1.86 50 49 50 49 51 50 50 49 49 48 2.000% 

S14 1.92 54 53 54 53 54 53 53 52 54 53 1.859% 

% Overall error 1.522% 

% Overall accuracy 98.478% 

 

 

Table 5.15. Travelled distance estimation results for test 1 of the experiment 4 (51 m). 

Subject 
Step length 

average (m) 
Estimated distance (m) Error 

(%) test 1 test 2 test 3 test 4 test 5 

S1 0.694 46.147 54.485 53.175 53.475 52.255 8.13% 

S2 0.705 56.376 55.586 56.706 57.166 57.656 2.86% 

S3 0.702 50.511 52.451 51.821 50.831 50.451 6.95% 

S4 0.705 49.315 50.795 50.815 48.925 49.095 4.81% 

S5 0.707 52.305 51.715 53.275 51.635 51.645 1.82% 

S6 0.724 45.591 50.32 50.93 50.75 50.1 14.33% 

S7 0.792 53.071 54.171 53.201 52.951 54.841 5.43% 

S8 0.868 52.08 53.66 52.82 53.84 53.85 11.23% 

S9 0.877 57.865 57.165 57.535 58.075 57.985 1.21% 

S10 0.91 59.151 60.841 58.381 58.771 59.221 1.03% 

S11 9.74 59.416 59.046 60.346 58.996 59.406 0.22% 

S12 0.975 51.67 51.81 52.35 53.24 52.71 6.64% 

S13 0.978 49.92 51.44 51.57 51.06 50.64 4.22% 

S14 1.054 53.255 54.735 53.975 54.965 54.615 9.90% 

% Overall error 5.625% 

% Overall accuracy 94.375% 
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5.3.4.2 Test 2 

The second test is based on the same path described above in the previous test, but 

in this case starting from the third floor, and ending at the reading room “Guillermo Haro”, 

at the first floor. The results are presented in the figures 5.29 to 5.32 and the tables 5.16 y 

5.17. 

 

 

Figure 5.29. Side 3-D view from experiment 4, test 2. 

 

 

Figure 5.30. Lateral view from experiment 4, test 2. 

 

 

Figure 5.31. Top view from experiment 4, test 2. 
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Figure 5.32. Frontal view from experiment 4, test 2. 

 

 

Table 5.16. Step detection results from experiment 4, test 2. 

Subject/ 

Height (m) 

Number of detected steps 
Error 

(%) 
test 1 test 2 test 3 test 4 test 5 

Real Detec. Real Detec. Real Detec. Real Detec. Real Detec. 

S1 1.55 84 83 86 85 82 81 83 82 84 83 1.194% 

S2 1.63 85 84 85 84 87 86 85 84 86 85 1.168% 

S3 1.64 74 73 73 72 77 76 75 74 74 73 1.341% 

S4 1.65 74 73 72 71 74 73 73 72 75 74 1.359% 

S5 1.66 73 72 72 71 75 74 73 72 74 73 1.363% 

S6 1.68 66 65 64 63 65 64 67 66 66 65 1.525% 

S7 1.71 71 70 71 70 72 71 71 70 71 70 1.405% 

S8 1.73 61 60 61 60 61 60 61 60 61 60 1.639% 

S9 1.74 68 67 69 68 70 69 67 66 68 67 1.462% 

S10 1.75 67 66 67 66 69 68 66 65 66 65 1.493% 

S11 1.80 65 64 65 64 63 62 65 64 65 64 1.548% 

S12 1.82 55 54 53 52 53 52 55 54 56 55 1.839% 

S13 1.86 49 48 50 49 47 46 48 47 49 48 2.059% 

S14 1.92 54 53 55 54 57 56 53 52 54 53 1.833% 

% Overall error 1.516% 

% Overall accuracy 98.484% 
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Table 5.17. Travelled distance estimation results for test 2 of the experiment 4 (51 m). 

Subject 
Step length 

average (m) 
Estimated distance (m) Error 

(%) test 1 test 2 test 3 test 4 test 5 

S1 0.694 54.605 53.635 52.305 54.115 51.855 5.10% 

S2 0.705 57.106 58.136 55.576 57.946 57.856 8.41% 

S3 0.702 50.431 51.771 51.531 50.141 51.121 4.83% 

S4 0.705 51.375 49.385 48.985 48.955 48.515 1.30% 

S5 0.707 54.385 52.735 51.915 51.585 52.265 2.60% 

S6 0.724 51.68 52.9 52.61 51.95 52.62 13.25% 

S7 0.792 52.811 54.101 54.261 52.291 52.461 1.07% 

S8 0.868 51.34 53.08 53.24 53.55 54.07 9.37% 

S9 0.877 57.535 57.175 59.135 57.395 58.575 0.85% 

S10 0.91 59.891 60.141 59.151 58.261 59.431 1.89% 

S11 9.74 59.736 59.146 59.326 59.076 59.876 0.13% 

S12 0.975 52.46 53.36 53.04 53.09 52.33 11.48% 

S13 0.978 51.27 50.62 51.25 51.84 50.28 5.47% 

S14 1.054 54.375 54.615 53.835 53.265 53.245 5.75% 

% Overall error 5.107% 

% Overall accuracy 94.893% 

 

 

5.3.5 General results 

 

In general the step detection algorithm successfully detects the pedestrian steps, even 

when a change in the activity occurred. Table 5.18 presents the general results with a 

detection rate of 98.736%. Table 5.19 presents the results corresponding to step-length 

estimation, and the computation of total travelled distance presented an accuracy of 94.88% 

in average. 

 

Table 5.18. Accuracy (%) results of step detection 

Experiment 

1 

Experiment 2 Experiment 3 Experiment 4 Overall 

accuracy  

(%) 

Overall 

error 

(%) Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

99.73 98.428 98.437 98.803 98.792 98.478 98.484 98.74% 1.26% 
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Table 5.19. Accuracy (%) results of distance estimation 

Experiment 

1 

Experiment 2 Experiment 3 Experiment 4 Overall 

accuracy 

(%) 

Overall 

error 

(%) Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

94.263 95.290 94.024 94.918 96.435 94.375 94.893 94.88% 5.12% 

 

The position error was measured using only the results of the experiment 1, because 

this trajectory represents the longest travelled distance, therefore it presents the major 

cumulative error. Then, the mean position error is 0.77 m. Figure 5.33 shows the trajectories 

of the real trajectory and the obtained trajectory for the experiment 1. 

 

 

5.33. Comparison between the real route and the obtained trajectory. 

 

In order to compare the results presented in the table 5.19 with others results reported 

in the recent literature, table 5.20 presents a brief summary of other PDR systems. It is 

noteworthy to mention that all of these works use a higher number of sensors than the 

scheme proposed in this work. In [84] a sensor fusion framework for combining WiFi, PDR 

and landmarks is presented. The work in [85] proposes a new method for step detection and 

stride estimation in a PDR system. In [86] an axis-exchanged compensation and gait 

parameter analysis algorithm to improve the navigation accuracy in a PDR system is 

presented. The work presented in [87] proposes a new pedestrian dead reckoning (PDR)-

based navigation algorithm which uses an extended Kalman filter to determinate the user's 

heading direction for each step by using magnetic, angular rate, and gravity (MARG) 
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sensors. Finally, in [88], the positioning algorithm implements a loosely coupled GPS/PDR 

integration. 

 

Table 5.20. A brief summary of the PDR systems reported recent literature. 

Ref. 
Publication 

Year 
System sensors 

Evaluated 

test 

Test 

subjects 

Error 
mean position 

error 

mean distance 

error 

[84] 2015 Smartphone 

sensors: 

accelerometer, 

magnetometer, 

gyroscope, and 

barometer. 

Walking in a 

2-D indoor 

trajectory 

1 0.9945 m  

       

[85] 2015 Accelerometer, 

magnetometer, 

and gyroscope 

mounted on the 

ankle. 

Walking in a 

2-D indoor 

trajectory 

1  2.35% of a 

travelled 

distance of 

66.6 m 

       

[86] 2015 Accelerometer, 

gyroscope, and 

magnetometers 

mounted on the 

waist. 

Walking in a 

2-D indoor 

trajectory 

10  0.42% of a 

travelled 

distance of 

40 m 

       

[87] 2014 Accelerometer, 

gyroscope, and 

magnetometers 

mounted on the 

waist. 

Walking in a 

2-D outdoor 

trajectory 

10 5.638 m  1.5821% of 

a travelled 

distance of 

400 m 

       

[88] 2014 Accelerometer, 

gyroscope, 

magnetometers, 

and GPS. 

Walking in a 

2-D outdoor 

trajectory 

1 5 m Below 3% 

of the total 

traveled 

distance.  

 

5.4 Summary 
 

 In this chapter, the description and results obtained from the different developed 

experiments, in order to validate the PDR system, were presented. In relation to attitude 

estimation, the experimental results indicate an improvement when ANFIS-based adaptation 

(KF-NFA) is used. The activity detection procedure was incorporated into the step detection 

and the step length estimation algorithms providing an average classification rate of 87.49%. 

Attitude estimation and step length estimation were integrated into a Pedestrian Dead 

Reckoning system. 
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Chapter 6 

Conclusions 
 

This work presented the development of a Pedestrian Dead Reckoning (PDR) 

system, relying on information derived from triaxial accelerometer and gyroscope sensors 

contained in an inertial measurement unit (IMU), which was attached to the pedestrian waist. 

The PDR system has been developed aiming to provide information about location and 

movements of a person travelling in a GPS-denied environment. 

 

In order to improve the accuracy of the attitude estimation reducing the time-varying 

drift, a Kalman Filter with Neuro-Fuzzy adaptation (KF-NFA) was developed. The purpose 

of an adaptive Kalman filter formulation is to reduce the errors in the estimation by 

modifying or adapting the Kalman filter to the real data. The adaptation process was 

performed on the filter statistical information matrix R, which is tuned using an Adaptive 

Neuro Fuzzy Inference System (ANFIS) based on the filter innovation sequence through a 

covariance-matching technique. 

 

The KF-NFA estimates and corrects the Euler angles (roll, pitch and yaw) through 

the fusion of inertial measurements. The process model was modeled with linear equations 

representing the gyroscope, accelerometer and bias measures. Because of this, it was 

discarded the use of another fusion technique, as the Extended Kalman filter (EKF). The test 

results showed a better performance of the KF-NFA when it is compared with a traditional 

Kalman Filter, which was reflected in a better performance on the attitude estimation.
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Besides, in order to improve the calculation of the distance traveled by the pedestrian, 

and consequently the localization accuracy, a dynamical method for estimating the step 

length using a Fuzzy Inference System (FIS) was developed, which uses the pedestrian’s 

activity as an additional input. The valid steps are detected by calculating the area under 

each accelerometer peak and the different types of activities are classified using a Multi-

layer Perceptron (MLP) Neural Network (NN) according to features extracted based on 

wavelet decomposition. The wavelet decomposition is applied to triaxial accelerometer data 

in order to identify points in the signal where a pedestrian changes from one activity to 

another. 

 

The activity classification was focused on activities that a pedestrian performs 

routinely in his daily life, such as walking, walking fast, jogging and running. Results 

provided an accuracy of 98.74% for step detection, together with an average correct 

classification rate of 87.49%, which prove that wavelet decomposition and neural networks 

represents a good choice of feature extraction and classification system, respectively. 

Subsequently, the step length was dynamically estimated using a FIS which incorporates 

classification activity during the estimation process. This operation allows the system to 

adjust the computation of the total distance travelled by a pedestrian according to the 

ongoing activity. The accuracy on step-length estimation is about 94.88% in average. 

 

The final tests includes the integration of height measurements obtained from the 

altimeter DEMOSTBMPL3115A2, which was attached over the IMU STEVAL-MKI062V2 

to the pedestrian waist. This was done considering future applications, where the proposed 

algorithm could be implemented on a mobile platform, such as a smartphone or tablet. The 

use of the altimeter allowed to perform extensive testing in walking paths including stairs. 

The experiments were performed in combined indoor/outdoor trajectories in the premises of 

the building number one at the INAOE. The trajectories followed in these experiments were 

designed in such a way that level changes and 90° turns were present. The general results 

show a good performance in the PDR system. As future work it is proposed: 
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 To incorporate a GPS sensor to the PDR system. Thus, it will be possible in order to 

maintain a geographical reference of the pedestrian position when she is traveling in a 

GPS environment. 

 To implement a real-time PDR system into a smartphone or tablet. Thus, a located based 

service (LBS) can be developed. Possible applications are information directory 

services to be used in public places, such as museums and shopping centers. 

 To improve the classification accuracy.
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