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We show that there is a way to unify distribution functions that describe simultaneously a classical
signal in space and (spatial) frequency and position and momentum for a quantum system. Probably
the most well known of them is the Wigner distribution function. We show how to unify functions of the
Cohen class, Rihaczek’s complex energy function, and Husimi and Glauber—Sudarshan distribution
functions. We do this by showing how they may be obtained from ordered forms of creation and anni-

hilation operators and by obtaining them in terms of expectation values in different eigenbases. © 2008

Optical Society of America
OCIS codes:  270.0270, 030.0030, 070.0070.

1. Introduction

Distribution functions are widely used in optical phy-
sics (see [1] for a review) and in quantum mechanics,
where they are usually called quasi-probability distri-
bution functions [2—4]). Probably the best known quasi-
probability distribution is the Wigner function [2,5],
with applications in reconstruction of signals [6], image
processing [7], and resolution [8] in the classical world
and reconstruction of quantum states of different sys-
tems such as ions [9] or quantized fields [4,10-12] in
the quantum world. In this contribution we would like
to reintroduce a lesser known quasi-probability distri-
bution function, namely the Kirkwood—Rihaczek func-
tion [1,13-16], show how it can be related to the Wigner
function, and express it as an expectation value in
some eigenbasis, just as the other quasi-probability
functions may be also expressed.
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2. Best known quasi-probability distribution functions

A. Wigner function

We start by introducing the Wigner function, prob-
ably the best known. It may be written in two forms:
series representation (see for instance [17]) and inte-
gral representation:

1 . u u
Wig.p) =g [ due(g+Glpla-5). (1

For simplicity we use the Dirac notation here (see
Appendix A). In Eq. (1), p is the so-called density ma-
trix. In 1932, Wigner introduced this function W(q, p),
which is known now as his distribution function [2,5]
and contains complete information about the state of
the system (p = |y) ().

It may also be written in terms of the (double)
Fourier transform of the characteristic function:

Wia) =5 [ @explar -ap)Clp).  (2)
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with a= (¢ +ip)/v2 and p= (u+iv)/V2, being
d?p = dudv. C(p) in terms of annihilation and crea-
tion operators,

_Gtip 9td . _a-ip 9 4
=R TR T w @
is given by
C(p) = Tr{pexp(pa’ - fa)}, (4)

also known as the ambiguity function in classical op-
tics [18,19].

B. Q-function

The @ or Husimi function [20]is expressed as the coher-
ent state expectation value of the density operator,

1
Q) == [ Epexplay
- a'f)Tr{pexp(-fa)exp(fa’)},  (5)
and the alternative form is

Q@) = (alpla). 6)

C. Relating Q and Wigner functions in a differential form

It is possible to group the Wigner and the Husimi
functions,

1
Flas) =, [ @HCp9) explap -ap). (1)
where C(f, s) is the characteristic function of order s,

C(p.s) = Tr{D(p)p} exp(s|f|*/2), (8)

with s a parameter that defines which function we
want to obtain. For s = 1 it is obtained as the P func-
tion, for s = 0 the Wigner function, and for s = -1 the
@ function.

The @ function is then

Qa) = [ Epa@ explap ~ap). (O
and for s — 0 the Wigner function
Wia) = [ 4G explap - a'p)exp(pP/2), (10)
where

G(p) = %TF{D(I)’)/J} exp(—|f[*/2), (11)

with D(f) = ef*'#@ the so-called Glauber displace-
ment operator. The equation for D(5) above may
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be written as an infinite (Taylor) series and inserted
into Eq. (10) to obtain

Wi =325 [ o) explap - apipi (12

Considering the equality

0 d
aﬁexp(aﬂ* - a'f) = —|p* exp(ap* — '), (13)

we can insert Eq. (12) into

W(a) = exp <—%%%>Q(a). (15)

The analysis just done will help us to relate the
Kirkwood—Rihaczek function with the Wigner function.

D. Glauber—Sudarshan

In order to complete the set of distribution functions
most used in quantum mechanics, we introduce the
well-known Glauber—Sudarshan P function [21,22].
First let us note that by using the coherent state ei-
genbasis, we can express the density matrix as the
following double integral:

o= [ [ Eapaplaw

This representation involves off-diagonal elements
(alp|p)and two integrations in phase space. The next
diagonal representation was introduced indepen-
dently by Glauber and Sudarshan [21,22],

p= [ EaP@la)lal, (17)

and involves only one integration. Using the equa-
tion above, we can write the Glauber—Sudarshan P
function in the form

Pla) = [ @pexplap
— @) Tripexp(pa)exp(-pa)},  (18)

or

Pla) = F(a1) = [ @C(. exp(ap ~a'p). (19)

There are integral and differential relations be-
tween the three main quasi-probabilities used in
quantum mechanics. In the next section we will



show differential relations between them and a les-
ser known distribution function.

E. Cohen-class distribution functions

A function of the Cohen class is described by the gen-
eral formula [1,23]

_ i '3,/ 1 / *
= 2ﬂ///dydxdu¢(y+2x)¢
* (y - %x/> k(y7 u, x,7 u/)e—i(ux’—u’x+u’y)7 (20)

and the choice of the kernel k(y,u,x’,u’) selects one
particular function of the Cohen class. The Wigner
function, for instance, arises for k(y,u,x’,u') =1,
whereas the ambiguity function is obtained for
kly,u,x',u') = 2r8(y —x")6(u — u').

3. Lesser known distribution function: the Kirkwood-
Rihaczek quasi-distribution function

Now we turn our attention to a lesser known distri-
bution, the Kirkwood—Rihaczek function, which may
be written using the notation above as [24]

($) = / A2aef P 2" FC a). (21)

This equation has been obtained from an equation
similar to Egs. (2), (5), and (18), i.e., taking the double
Fourier transform

K(q,p) = / dudve™#PeaTr{ peivdeP} (22)

and taking the trace as in Eq.(A18) in Appendix A.

We will now do an analysis similar to the one done
in Subsection 2.D. We relate the Kirkwood—Rihaczek
function to the Wigner function by using Eq. (21), via
the following exponential of derivatives:

192 192

K(p) = e e W(p). (23)

We now use the nonintegral expression for the
Wigner function [17]:

W(p) = Tr((-1)*D"(8)pD(p)], (24)

with 72 = a'a, the so-called number operator. We cast
the above equation into the form

W(p) = Tr((-1)"pD(2p)], (25)

where we have used the trace property Tr(AB) =
Tr(BA) and the identities (-1)"D"(8) = D()(-1)".

Now we use the factorized form of the Glauber dis-
placement operator [25], D(2) = =2 e2ha’e20a 1
obtain

W(p) = Tel(~1)pe- 202’ o=20e] . (26)

Therefore, the Kirkwood—Rihaczek function may be
written as

_192 192
K(ﬁ’/}*) —e 4()2/16432/J*W(ﬂ’ﬁ*)
o192 192
= Tr[(-1)"pe "™ D(2p)]. (27)
The calculation of the exponential of derivatives of
the Glauber operator will be tedious but straightfor-

ward. We will just write the main steps to obtain the
final form; for instance, it is not difficult to show that

192

&P D(2f) = e e2la’ral)ga’g=20"a (28)

By using [26]

—t2 2 _

ZHk a3 (29)

we can express the above equation as
192 - ,Bk o
e"rD(2B) = > Hpla" +a- B fe2a (30)
k=0
with H,(x) as the Hermite polynomials. From the
above equation, is easy to obtain
a2n fd

and therefore

ZHk+2n k' ) (31)

_192 192 * S (=1
e 4a2/fe4a2/f* Zﬂ = Z Z 4| Hk+2n aT +a
n=0 k=0 n:
) O e 32)

Now we use the integral form of the Hermite polyno-
mials [26],

» 2
- 7/ dt(x + it)Pe (33)
T
to obtain
e_ﬂize_2ﬁ/f*
KB.pg)=-_°
(B.B") N
/ dx / dte(-2V2x+25" +2p)it -2 p2 V2 +P)
(xle*e2 (1) plx) (34)

by using
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/ dte ™ = 275(k) (35)

and taking k = 2v/2x — 24* — 25, we have

K(p.p) =2/t e [ dxo

% (2\/5.76 ~- 28" - 2ﬂ)e_2x2€2 \/ix(ﬁ*+/f)7
x (x|e*’e2a(=1)p|x). (36)

Making use of the identity &(ax) :‘Sl(Tx‘) we finally
obtain

K(p.p) = e 2 e

% o(E) /B + P
\@e “)<¢§

% 37
e(a—/i*)z(_l)ﬂpﬂ +ﬂ>’ (37)

V2

or

K(p.p) = @w—w (XID' (=" )" D(=p) (-1 pIX).
(38)

with X = £,

In this form, we have succeeded in obtaining the
Kirkwood—Rihaczek function as an expectation value
in terms of position eigenstates, just as we did the @
function in terms of coherent states [see Eq. (5)] and
the Wigner and Glauber—Sudarshan functions in
terms of number states [17].

4. Conclusions

We have shown that some distribution functions may
be related through a method that allows the con-
struction of some quasi-probability functions such
as the Wigner, Glauber—Sudarshan, and Husimi
functions [27]. This method consists of obtaining
the distribution functions from a double Fourier
transform of an averaged exponential operator. If
we use the exponential operator in terms of creation
and annihilation operators we construct the already
mentioned distribution functions. Using this meth-
od, but leaving the exponential operator in terms
of position and momentum and ordering (factorizing)
the exponential in a convenient way, another lesser
function used in classical optics, namely, Kirkwood—
Rihaczek’s distribution function, may be obtained.
This function was recently introduced in quantum
mechanics by Praxmeyer and Wédkiewicz [15,16]
to have a phase representation of the hydrogen atom.
The connection between Glauber—Sudarshan and
Husimi functions and functions of the Cohen class
has been given, i.e., the adequate kernels. Finally,
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the Kirkwood—Rihaczek function has been given in
terms of an expectation value and in terms of posi-
tion eigenstates, just as other distribution functions
may also be given in terms of (sums of) expectation
values. This may be of interest because it has been
already exploited the fact that these forms allow re-
construction of quasi-probability distribution func-
tions [11,12].

Appendix A

In Dirac notation, we denote functions “/” by means
of “kets” |f). For instance an eigenfunction of the har-
monic oscillator [26],

7-1/4

is represented by the ket |n), with n =0,1,2,... In
quantum mechanics, these states are called number
or Fock states (see for instance [3]). Any function can
be expanded in terms of eigenfunctions of the harmo-
nic oscillator:

e I2H, (x), (A1)

F) =S eal®), (A2)
n=0
where
¢ = / o (o), (A3)

and in the same way any ket may be expanded in
terms of |n):

f)=> cln), (A4)
n=0
where the orthonormalization relation
min) = [ di @) =dw (45)

has been used. The quantity (m| is a so-called “bra.”

The basis set of kets |n) is a discrete one. However,
there are also continuous bases. We can form one con-
tinuous basis for example with the function e’ //2z
and the corresponding ket |p). First note that

) =5 [ Qe —ap-p). (46)
so that
P4\ 2 = / " dps(p - p')e®? /v/2x, (A7)

or, in bra-ket notation we have



— ["pato-p)o) = [ dploblp) (A8)
rearranging terms we have
— ([ @ el ) =1 a9
i.e., we have the completeness relation
| ool =1 (A10)

Finally note that the functlon e’Pd / /2 is an eigenfunc-
tion ofthe operator —i & 4 4 \with eigenvalue p. For position,
an “eigenket” of ¢ is

qlq) = qlq) (A11)
and an “eigenbra”
(q'le" = (d'lq. (A12)
We therefore find
(@'lg)(@' -q) =0, (A13)
which has as a solution [3]
(q'lg) = 6(q' - q). (Al4)
We then can express the completeness relation
1= [ dala)tal. (A15)

such that

) =11 = ["dala)al¥) = [ da¥(@la)
(A16)
where W(q) = (¢||'¥) = (q|¥). The density matrix p is
defined simply as the ket-bra operator p = |¥)(P|.

The completeness relation serve us among other
things to calculate averages, for instance

(WANY) = (PALY) = (A [ dqlg)(all¥)
~ [ da(¥iAig)al¥), (A17)

or finally,

WAN) = [Tdgl@¥) (WAl (A19

Note that in the above equation we are simply adding
“diagonal” elements, i.e., we have the trace of the op-

erator |¥)(W|A. As the trace is independent of the ba-
sis, we can have it in terms of the discrete basis |n):

(PIA|P) :inw (PlAjn) =Tr{pA}.  (A19)

n=0
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