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Abstract
Dissipative multi-pulse three-wave coupled states, appearing with collinear Bragg light
scattering in a two-mode square-law nonlinear medium with linear non-optical losses, are
revealed. Both the localization conditions and the spatio-temporal distributions of their optical
components are studied theoretically in quasi-stationary and non-stationary regimes. Then,
dissipative multi-pulse three-wave coupled states have been observed within the acousto-optical
experiments in a calcium molybdate crystalline collinear cell. The obtained experimental results
are in rather good agreement with the non-stationary theory developed.

Keywords: dissipative multi-pulse three-wave coupled states, square-law nonlinearity,
linear non-optical losses, co-directional collinear Bragg interaction, acousto-optics

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Usually, scattering light in a medium modulated periodically
by relatively slow non-optical waves represents the parametric
process in a system with square-law nonlinearity. This effect
makes possible shaping spatio-temporal multi-wave coupled
states and solitons, whose field components can have different
physical natures but are coupled with each other [1]. Such a
type of multi-pulse three-wave coupled state has been already
investigated in lossless two-mode media, waveguides and
crystals [2, 3]. Here, a new specific regime is considered,
which is related to shaping three-wave Bragg weakly coupled
states within the co-directional collinear interaction in a
two-mode medium exhibiting the linear losses for a slow
non-optical wave. We develop both quasi-stationary and
non-stationary analytic models describing the localization
processes for multi-pulse three-wave coupled states and
present the corresponding computer simulations. Within

our quasi-stationary analysis, the mechanism of originating
a background, associated with the coupled states under
consideration, is investigated, so that these results are taken
into account within the non-stationary analysis to examine
only background-free regimes of shaping those coupled states.
Finally we present and discuss the data obtained due to
our experiments with multi-pulse three-wave acousto-optical
coupled states in a calcium molybdate (CaMoO4) crystalline
collinear cell.

2. General consideration: a three-wave collinear
interaction with phase mismatches and linear
non-optical losses

A three-wave co-directional collinear interaction with the
mismatched wavenumbers in a two-mode medium is described
by a set of three nonlinear partial differential equations [4].
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Here, we consider the regime of a weak coupling [2, 3],
when two light modes are scattered by a relatively slow wave,
being non-optical by its nature and exhibiting linear losses,
when essentially the effective Bragg scattering of light can be
achieved without any observable influence of the scattering
process on that non-optical wave, because the number of
interacting photons is a few orders less than the number of the
scattering quanta injected into a medium. Then, the velocities
of light modes can be approximated by the same value c,
because usually the length of the crystalline materials does
not exceed 10 cm. In this regime, the above-mentioned set
of equations falls into an equation for the complex amplitude
U(x, t) of a slow wave (v is the velocity of this wave) and
a pair of combined equations for the complex amplitudes
C0(x, t) and C1(x, t) of the incident (pumping) light wave and
scattered one, respectively:

∂U

∂x
+ 1

v

∂U

∂ t
= −αU, (1a)

∂C0

∂x
+ 1

c

∂C0

∂ t
= −q1C1U∗ exp(2iηx), (1b)

∂C1

∂x
+ 1

c

∂C1

∂ t
= q0C0U exp(−2iηx). (1c)

Here, the factor α describes the linear losses of the non-
optical wave, q0,1 are the constants of interaction and 2η is the
mismatch of wavenumbers inherent in the interacting waves.
Now, we go to the tracking coordinates (x, τ = t − x/c) and
assume that the non-optical wave, governed by equation (1a)
and described by U = u[x(1 − v/c) − vτ ] exp(−αx) exp(iϕ),
has the constant phase ϕ, so that one can convert equations (1b)
and (1c) into equations of the second order

∂2C0,1

∂x2
−
(

1

u

∂u

∂x
− α ± 2iη

)
∂C0,1

∂ x

+ q0q1u2 exp(−2αx)C0,1 = 0. (2)

We put C0,1 = a0,1(x, t) exp[i�0,1(x, t)] and γ0,1 = ∂�0,1/∂x
and then divide the real and imaginary parts in equation (2) as

∂2a0,1

∂x2
−
(

1

u

∂u

∂x
− α

)
∂a0,1

∂x

+ [
q0q1u2 exp(−2αx) − γ 2

0,1 ± 2ηγ0,1
]

a0,1 = 0, (3)

2
(
γ0,1 ∓ η

) ∂a0,1

∂x
+
(

∂γ0,1

∂x
− γ0,1

u

∂u

∂x
+ αγ0,1

)
a0,1 = 0.

(4)

Equation (4) has the following general solutions:

γ0,1 = ±ηua−2
0,1 exp(−αx)

∫
u−1(∂a2

0,1/∂x)

× exp(αx) dx + 	0,1ua−2
0,1 exp(−αx), (5)

where 	0,1 are the integration constants.

3. The quasi-stationary background-free
continuous-wave regime; originating the localization
condition

At first, we restrict ourselves by the simplest choice of 	0,1 = 0
in equation (5) and study the phenomenon in the continuous-
wave regime for both the incident light and the non-optical

wave when u[x(1 − v/c) − vτ ] = U0 is constant. We
analyze equations (3) and (4) with the fixed magnitude of the
mismatch η and the practically natural boundary conditions
a0(x = 0, t) = 1, (∂a0/∂x)(x = 0, t) = 0, a1(x = 0, t) = 0,
(∂a1/∂x)(x = 0, t) = q0U0 in a half-infinite medium. In so
doing, let us estimate γ0,1 approximately. Due to the smallness
of the factor α, one can suggest that the spatial scale of varying
the term exp(αx) is much larger than the scale of varying
the derivative ∂a2

0,1/∂x in equation (5), so the term exp(αx)

can be factored out from the integral. As a result, we yield
γ0,1 ≈ ±η and −γ 2

0,1 ± 2ηγ0,1 = η2. Thus, with the notation
q0q1U 2

0 = σ 2, equation (3) takes the form

∂2a0,1

∂x2
+ α

∂a0,1

∂x
+ [

σ 2 exp(−2αx) + η2
]

a0,1 = 0. (6)

Recently, equation (6) has been analyzed in the case of α = 0
and η �= 0 [2, 3], while now another possibility will be
considered. It should be noted that equation (6) has the
following exact analytical solutions in terms of the Bessel
functions

a0,1 = B0,1 exp
(
−αx

2

)
Jν

[
exp(−αx)

σ

α

]

+ D0,1 exp
(
−αx

2

)
J−ν

[
exp(−αx)

σ

α

]
, (7)

where B0,1 and D0,1, are the integration constants; ν =
(2α)−1

√
α2 − 4η2. In the regime of an exact phase

synchronism, i.e. with η = 0 and α �= 0, when the indices
of Bessel functions in equation (7) are equal to ±1/2, these
solutions can be reduced to

a0,1 = K0,1 sin
{σ

α

[
1 − exp(−αx)

]}

+ L0,1 cos
{σ

α

[
1 − exp(−αx)

]}
(8)

with

B0,1

√
2α

πσ
= K0,1 cos

(σ

α

)
+ L0,1 sin

(σ

α

)

and

D0,1

√
2α

πσ
= K0,1 sin

(σ

α

)
+ L0,1 cos

(σ

α

)
.

Applying the above-mentioned natural boundary conditions to
equation (8), one can obtain

|C0 (x)|2 = cos2
{σ

α

[
1 − exp(−αx)

]}
, (9a)

|C1 (x)|2 = q0

q1
sin2

{σ

α

[
1 − exp(−αx)

]}
. (9b)

It is seen from equations (9) that the contribution of the linear
losses from the non-optical wave exhibits itself like some
spatial scaling in light scattering, while the efficiency of light
scattering can nevertheless achieve 100% with η = 0 and
α �= 0.

However, the form of general solution to equation (6),
represented by equation (7), is not quite convenient in
practically important cases of large phase mismatches, when
η > α. To construct the other form of the solution we use the

2
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Figure 1. Restricting the number N of pulses inherent in a
three-wave coupled state in the case of η = 0 and α �= 0; for an
example of α = 0.1 and σ = 1, one can find that N � 3.

conservation law q0a2
0 + q1a2

1 = q0 − const, resulting from
equations (1). Combining equation (6) for a0 and a1, one can
obtain a pair of the following equations:

∂(a2
0,1)

∂x
= 2

√
a2

0,1(q
−1
0,1q0 − a2

0,1)[σ 2 exp(−2αx) + η2], (10)

whose solutions with arbitrary integration constants θ0,1 are
given by

a2
0,1 = q−1

0,1q0 sin2
[
θ0,1 + G (x)

]
, (11a)

G (x) =
∫ √

σ 2 exp(−2αx) + η2 dx . (11b)

Using the above-noted boundary conditions, we arrive at

θ0 = arcsin
[
σ−1

√
σ 2 + η2

]
− G(0), (12a)

θ1 = −G(0), (12b)

G(x) = 1

α

[
−
√

η2 + σ 2 exp(−2αx)

+ η ln

{
2α

η2

[
η exp(αx) +

√
σ 2 + η2 exp(2αx)

]}]
(12c)

G (0) = 1

α

(
−
√

η2 + σ 2 + η ln
{

2αη−2
[
η +

√
σ 2 + η2

]})
(12d)

so that the stationary intensities of the pumping and scattered
light waves can be expressed as

|C0(x)|2 = η2

σ 2 + η2
+ σ 2

σ 2 + η2
cos2[G(x) − G(0)], (13a)

|C1(x)|2 = q0

q1

σ 2

σ 2 + η2
sin2[G(x) − G(0)]. (13b)

These solutions include contributions of two types. The
first summand in the intensity |C0|2 represents a background
determined by the mismatch η; the second one gives the
oscillations imposed on that background. The scattered light
wave contains only oscillations, so that one can write the
localization condition

G(x) − G(0) = π N, (14)

where (N = 1, 2, . . .). Of course, when η = 0, we yield
G(x) = −α−1σ exp(−αx), θ0 = α−1σ + (π/2) and θ1 =

α−1σ , so that equations (13) take the form of equations (9).
The fact of the existence of this localization condition means
the dissipative collinear three-wave coupled states appearing in
a two-mode medium with square-law nonlinearity and linear
losses for a slow non-optical wave; and they can include more
than one pulse when N > 1.

Additionally, it should be noted that a pair of the obtained
solutions for the intensities I0,1 = |C0,1|2 described by
equations (13) satisfy the following differential equations:
(

dG

dx

)−2
∂2 I0

∂x2
+ α

(
dG

dx

)−4
[(

dG

dx

)2

− η2

]
∂ I0

∂x

+ 4I0 = 2

(
σ 2 + 2η2

σ 2 + η2

)
, (15)

(
dG

dx

)−2
∂2 I1

∂x2
+ α

(
dG

dx

)−4
[(

dG

dx

)2

− η2

]
∂ I1

∂x

+ 4I1 = 2q0

q1

(
σ 2

σ 2 + η2

)
(16)

with the previously noted boundary conditions I0(x = 0) = 1,
I1(x = 0) = 0 and (∂ I0/∂x)(x = 0) = (∂ I1/∂x)(x = 0) =
0. The relation q0(∂ I0/∂x) = −q1(∂ I1/∂x) takes place, of
course, within the process under consideration.

Then, the number of bright or dark pulses N in the
corresponding component of the coupled state is conditioned
by both the frequency mismatch η as well as by the losses α.
Let us consider a few particular cases. In the first lossless case
of α = 0 and η �= 0, one can obtain from equation (14)

η2 = π2 N2x−2
C − σ 2, (17a)

G(x) − G(0) = π Nx

xC
, (17b)

where xC is the spatial length of localization. One can
substitute this formula into equation (13b) and yield the
dependence of the scattered light intensity I1 on the number
N of pulses in a coupled state in the form

I (N)
1 (x, α = 0) = q0

q1

σ 2x2
C

π2 N2
sin2

(
π Nx

xC

)
. (18)

It is seen from equation (18) that, as the number N grows, the
intensity I1 of the scattered light component in a three-wave
coupled state decreases as N2, because the mismatch increases
following equation (17). At the same time, the spatial width
xC/(π N) of each partial optical pulse inherent in this coupled
state narrows as N−1.

By contrast, in the second particular case of an exact phase
synchronism when η = 0 and α �= 0, equation (14) leads to the
formula α−1σ [1 − exp(−αx)] = π N . Because the left-hand
side of this formula is limited, one can find that N � σ/(απ),
i.e. the whole number N comes to be restricted. For example,
when α = 0.1 and σ = 1, we yield N � 3, see figure 1.

In the general case, when η �= 0 and α �= 0, a
transcendental equation relative to both η and α appears from
equations (14) and (12). That is why this case requires
numerical simulations presented in figure 2.
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(a) (b)

(c) (d)

Figure 2. The possibility of shaping multi-pulse coupled states in the case of η �= 0 and α �= 0; for an example of α = 0.1 and σ = 1, one can
realize: (a) N = 1, (b) N = 2, (c) N = 3 and (d) N = 5.

Nevertheless, in the practically important case of low
losses for the non-optical wave, one can develop an
approximate approach illustrating the effect of losses. In this
case, one can put in the first approximation that exp(−2αx) ≈
1 − 2αx and integrate equation (11b) as

G (x, α → 0) =
√

σ 2(1 − 2αx) + η2

×
(

2x

3
− σ 2 + η2

3ασ 2

)
, (19a)

G (x = 0, α → 0) = − (σ 2 + η2)3/2

3ασ 2
. (19b)

Equations (19) lead to

G (x, α → 0) − G (x = 0, α → 0)

= (σ 2 + η2)3/2 − (σ 2 + η2 − 2αx)3/2

3ασ 2
. (20)

In the first approximation with respect to the factor α,
equation (12) takes the form

G (x, α → 0) − G (x = 0, α → 0)

= x
√

σ 2 + η2 − αx2σ 2

2
√

σ 2 + η2
. (21)

Consequently, using equations (21) and (17b), one can rewrite
the localization condition as

G (x = xC, α → 0) − G (x = 0, α → 0)

= xC

√
σ 2 + η2 − αx2

Cσ 2

2
√

σ 2 + η2
= π N. (22)

Considering equation (22) as the algebraic quadratic equation
relative to

√
σ 2 + η2, one can find

√
σ 2 + η2 = π N

xC
+ αx2

Cσ 2

2π N
. (23)

Substituting this formula into equation (13b), one can estimate
the factor

σ 2

σ 2 + η2
≈ x2

Cσ 2

π2 N2 + αx3
Cσ 2

, (24)

so that equation (18) takes the following approximate form:

I (N)
1 (x, α �= 0) = q0

q1

x2
Cσ 2

π2 N2 + αx3
Cσ 2

sin2

(
π Nx

xC

)
. (25)

It is seen from equation (25) again that, as the number N
of pulses in a coupled state grows, the intensity I (N)

1 of the
scattered light decreases, but now even a little bit faster than
as N2, as it was in equation (18), due to the contribution of
losses connected with the presence of the term including a
small factor α in the denominator of equation (25).

4. The quasi-stationary continuous-wave regime with
� �= 0; a background appearing

Now, we take the case of 	 �= 0 and consider this phenomenon
again in the continuous-wave regime for the incident light

4
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and the non-optical wave with previously formulated boundary
conditions in a half-infinite medium. Estimating γ0,1 from
equation (5) approximately as above, one can write now

γ0,1 ≈ ±η + 	0,1U0a−2
0,1 exp(−αx), (26a)

−γ 2
0,1 ± 2ηγ0,1 = η2 + 	2

0,1U 2
0 a−4

0,1 exp(−2αx). (26b)

As a result, equations (3) take the following form:

∂2a0,1

∂x2
+ α

∂a0,1

∂x
+ [

σ 2 exp(−2αx) + η2
]

a0,1

= 	2
0,1U 2

0 a−4
0,1 exp(−2αx). (27)

It is seen that equation (27) is the same for the amplitudes
a0 and a1, so that the indices of waves can be omitted in
further analysis. Let us introduce a new independent variable
ζ = α−1[1 − exp(−αx)] and convert equation (27) into the
Ermakov equation [5, 6]

∂2a

∂ζ 2
+ [

σ 2 + η2 (1 − αζ )−2
]

a = 	2U 2
0 a−3. (28)

The general solution to equation (28) has the form [6]

a2(ζ ) = M−1
1 W 2(ζ )

[
	2U 2

0 +
(

M2

+ M1

∫
W−2(ζ ) dζ

)2
]

, (29)

where M1,2 are the integration constants and W (ζ ) is a non-
trivial solution to the reduced, i.e. linearized in fact, form of
equation (28), namely, to

∂2ar

∂ζ 2
+ [

σ 2 + η2 (1 − αζ )−2
]

ar = 0. (30)

Equation (30) has an exact solution in terms of the Bessel
functions

ar (ζ ) = Z1

√
1 − αζ J−ν

[
(1 − αζ )

σ

α

]

+ Z2

√
1 − αζ Jν

[
(1 − αζ )

σ

α

]
,

ν =
√

α2 − 4η2

2α
, (31)

with the integration constants Z1,2. This solution shows that
one can take, for example, the following non-trivial functions
W (ζ ):

W1(ζ ) = √
1 − αζ J−ν

[
(1 − αζ )

σ

α

]
, (32a)

W2(ζ ) = √
1 − αζ Jν

[
(1 − αζ )

σ

α

]
. (32b)

Unfortunately, in the general case, the integral term in
equation (29) cannot be calculated in the closed form with
W = W1,2(ζ ), while it can be found in a lot of concrete
cases. That is why to illustrate the contributions of the factors
	0,1 �= 0 one can analyze the rather simple particular case of
the absence of mismatches, i.e. when η ≡ 0. In so doing, rather
then operate over equations (32), it would be definitely simpler

to take the Ermakov equation appearing from equation (28)
with η = 0, namely

∂2a

∂ζ 2
+ σ 2a = 	2U 2

0 a−3. (33)

The corresponding non-trivial solutions to the linearized form
of equation (33) can be found from the formula

ar (ζ, η = 0) = Y1 sin(σζ ) + Y2 cos(σζ ), (34)

where Y1,2 are the integration constants. For example, one can
choose

W1(ζ, η = 0) = sin(σζ ), (35a)

W2(ζ, η = 0) = cos(σζ ). (35b)

Now, we introduce a new dependent variable b(ζ ) = a2(ζ ) �
0 and convert equation (33) into another equivalent form:

b

2

∂2b

∂ζ 2
− 1

4

(
∂b

∂ζ

)2

+ σ 2b2 = 	2U 2
0 . (36)

Equation (36) shows that, as far as 	 �= 0, an arbitrary solution
b(ζ ) � 0 will include a background, because equation (36)
with 	 �= 0 cannot be satisfied at the points ζ0 wherein
b(ζ0) = 0 and (db/dζ )(ζ0) = 0 simultaneously. Then,
substituting equations (35) into equation (29) and using the
new variable b(ζ ), one can obtain two rather different solutions
to equation (33) as well as to equation (36):

b1(ζ, η = 0) = G−1
1 sin2(σζ )

×
{
	2U 2

0 + [
H1 − σ−1G1 cot(σζ )

]2}
, (37)

b2(ζ, η = 0) = G−1
2 cos2(σζ )

×
{
	2U 2

0 + [
H2 + σ−1G2 tan(σζ )

]2}
, (38)

where G1,2 and H1,2 are the integration constants. In terms of
the coordinate x , equations (37) and (38) take the following
forms:

b1(x, η = 0) = G−1
1 sin2

{σ

α

[
1 − exp(−αx)

]} [
	2U 2

0

+
(

H1 − G1

σ
cot
{σ

α

[
1 − exp(−αx)

]})2 ]
, (39)

b2(x, η = 0) = G−1
2 cos2

{σ

α

[
1 − exp(−αx)

]} [
	2U 2

0

+
(

H2 + G2

σ
tan
{σ

α

[
1 − exp(−αx)

]})2 ]
. (40)

Using equations (39) and (40), one can find the boundary
values at x = 0 as b1(x = 0, η = 0) = G1σ

−2 and b2(x =
0, η = 0) = G−1

2 (	2U 2
0 +H 2

2 ). Typical illustrative plots for the
solution b2(x, η = 0) with various constants are presented in
figure 3 by solid lines. Together with this, one can estimate the
frequency distribution along a wave using the above-obtained
equation (26a) γ0,1 ≈ ±η + 	0,1U0a−2

0,1 exp(−αx). On the
one hand, such an estimation will be non-trivial only when
	 �= 0, while on the other hand, the regime of an exact phase
synchronism with η = 0 is under consideration at the moment.
Consequently, the expression for the frequency γ has to be
written as γ ≈ 	U0b−1

2 exp(−αx). The corresponding plot
is shown by a dotted line only in figure 3(a) related to the case
of 	 �= 0, whereas the frequency γ is equal to zero for the
cases depicted in figures 3(b) and (c).
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(a) (b)

(c)

Figure 3. Plots for the solution b2(x, η = 0) with σ = 1, α = 0.1 and G2 = 1: (a) H2 = 1, 	2U 2
0 = 1, (solid line is for b2, dotted line is for

the frequency γ ); (b) H2 = 1, 	2U 2
0 = 0; (c) H2 = 0, 	2U 2

0 = 0.

5. Non-stationary regime of the pulsed non-optical
wave and localizing multi-pulse three-wave weakly
coupled states

Now, we focus our attention on the process of localizing multi-
pulse three-wave coupled states when the incident light is
continuous-wave in behavior, but two facets of a medium at
x = 0 and L bound the area of interaction and the pulsed
non-optical wave is excited in a medium. We assume that the
spatial length x0 of the non-optical pulse is much shorter than
the length L (T0 = x0/v � T = L/v) and that the non-
optical pulse has a rectangular shape, i.e. u(x, t) = U0{θ [x(1−
v/c)−vτ ]−θ [(x −x0)(1−v/c)−vτ ]} with the amplitude U0.
Due to v � c, we may put that ∂u/∂x ≈ 0 in equations (3)
and (4) everywhere, excluding the points x ∈ {0, x0}. These
practically reasonable suppositions lead to the appearance of
three stages in the localization process. In the first stage, the
localizing rectangular non-optical pulse is incoming through
the input facet x = 0 of a medium. Then, in the second stage,
this localizing non-optical pulse is passed along a medium and
fills the linear losses. Finally, the loss-perturbed non-optical
pulse issues through the output facet x = L of a medium.
Such a process can be described analytically by the following
equations:

|C0 (x, τ )|2 = η2

σ 2 + η2
+ σ 2

σ 2 + η2
cos2 [� (x, τ )] , (41a)

|C1 (x, τ ) |2 = q0

q1

σ 2

σ 2 + η2
sin2[�(x, τ)], (41b)

where the argument of trigonometric functions in equa-
tions (41) for each of the above-mentioned stages can be

described as

� (x, τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G (x) − G (0) , 0 � τ � T ;
G (x) − G (x − x0) ,

T � τ � x(c − v)/(cv);
G (L) − G (x − x0) ,

x(c−v)/(cv) � τ � T+x(c−v)/(cv);
0, τ < 0 or τ > T + x(c − v )/(cv).

(42)
The first summand in equation (41a) exhibits a background
of the light wave |C0|2, whose level is determined by
the mismatch η; the second one represents the oscillating
portion of the solution, i.e. the localized part of the incident
light imposed on a background. The light wave |C1|2
contains the only oscillating portion of the light field that
gives the localization condition G(xC) − G(0) = π N ,
being perfectly analogous to equation (14); here, xC is the
spatial size of localization area with v � c and N =
0, 1, 2, . . .. Figure 4 illustrates the numerical simulations of
equations (41b) and (42) or the wave |C1|2. The corresponding
numerical plots for the wave |C0|2 can be easily created using
the above-mentioned conservation law q0a2

0 + q1a2
1 = q0 −

const.
From the viewpoint of further experimental verification,

these plots can be interpreted rather simply. Depending on the
practically fixed length L of a two-mode medium sample, one
can consider a cross section of each of these plots with the
selected plane L = const to obtain the corresponding one-
dimensional theoretical curve in time domain related to the
chosen value of a mismatch. Thus, taking alone perfectly
localized states presented here in figure 4(b) for N = 1 and
in figure 4(d) for N = 2, one can see that it is possible to
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(a) (b)

(c) (d)

Figure 4. Intensity of the scattered light component inherent in a three-wave coupled state versus the time τ and the length L with σ = 2,
α = 0.05. Four various regimes of reshaping have been simulated: (a) η = 1.5, the beginning regime of shaping a one-pulse coupled state;
(b) η = 2.4, a one-pulse coupled state; (c) η = 3.5, an intermediate regime; and (d) η = 6.0, a two-pulse coupled state.

observe the localized field associated with the scattered light
component |C1|2 for two times, namely, when the localizing
non-optical pulse is incoming or issuing through one of the
facets of a medium creating or destroying, respectively, the
corresponding multi-pulse three-wave coupled state.

6. Preliminary estimations

Now let us consider a few practically useful estimations related
to experimental observation of the dissipative collinear three-
wave coupled states in a two-mode medium with a square-
law nonlinearity and linear non-optical losses. In so doing,
one can select such a physical phenomenon as the collinear
acousto-optical interaction with linear acoustic losses in a two-
mode crystalline cell made of a calcium molybdate (CaMoO4)
single crystal. In this particular case, one can observe only
the anomalous process of light scattering [7] when the states
of polarization for the incident and scattered light beams
are orthogonal to each other, so that the parameters q0,1 are
described [8] by

q0,1 =
∣∣∣
k0,1

∣∣∣
4n2

0,1

(
̃e0�ε
e1). (43)

Here, n0,1 are the refractive indices for the interacting light
waves, |
k0,1| = 2πn0,1/λ, λ is the light wavelength in a
vacuum and the last term in brackets, describing the efficiency
of interaction, is subject to finding. This term includes the
eigen-orts 
e0,1 of polarizations for the incident and scattered
light beams as well as the tensor �ε of perturbations of the

dielectric permittivity under action of the acoustic wave in
a medium. To estimate the efficiency of collinear acousto-
optical interaction in a calcium molybdate cell, i.e. to find
the contribution of brackets to equation (43), we consider
the geometry of interaction including the shear acoustic wave
with the wave normal ort 
m is passing along the [100] axis,
while its vector 
u of the transversal elastic displacements
is oriented along the [001] axis in that crystalline material,
i.e. 
m = [1, 0, 0] and 
u = [0, 0, 1]. Consequently, one can
write the deformation tensor γ and the unperturbed dielectric
permittivity tensor ε in the main crystallographic axes as

γ = γ0

2
(
u · 
m + 
m · 
u) = γ0

2

( 0 0 1
0 0 0
1 0 0

)
, (44a)

ε =
(

ε0 0 0
0 ε0 0
0 0 εe

)
. (44b)

Here, γ0 is the amplitude of the shear deformation, while
ε0 = n2

0 and εe = n2
e are the eigenvalues of the unperturbed

dielectric permittivity tensor ε. Now, the tensor γ of the second
rank with the components γkl (k, l = 1, 2, 3) can be converted
into a six-dimensional vector γ̄ = γ0(0, 0, 0, 0, 1, 0) with the
components γ̄μ (μ = 1, . . . , 6) using the standard procedure
[9], which includes re-notating γ̄μ = γkk (μ = 1, 2, 3) and
γ̄μ = 2γkl (k �= l, μ = 4, 5, 6). If now one will use the same
procedure [9] and take the photo-elastic tensor p of the fourth
rank for a calcium molybdate single crystal in the form of a 6 x
6 matrix p̂, it will be possible first to construct and to calculate
the product p̂γ̄ = γ0(0, 0, 0, p45, p44, 0), and then to convert

7
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Figure 5. Schematic arrangement of the experimental set-up.

the result back to the form of a standard tensor (pγ ) of the
second rank.

The next step of our analysis is connected with finding
the dielectric permittivity perturbation tensor �ε, whose
components can be written as �εi j = εimεn j pmnklγkl [8]. The
result of similar calculations has the form

�ε = γ0ε0εe

( 0 0 p44

0 0 p45

p44 p45 0

)
. (45)

Now, we take into account the orts 
e0,1 of polarization for the
incident and scattered light waves. When the wave vectors of
these light waves are collinear to the wave normal ort 
m for the
acoustic wave and, of course, to the [100] axis in the calcium
molybdate crystal, the eigen-orts 
e0,1 of light polarizations
should be oriented, as directly follows from equation (44b),
along the [0, 1, 0] and [0, 0, 1] axes, so that one can take,
for example, 
e0 = [0, 1, 0] and 
e1 = [0, 0, 1] with n0 = no

and n1 = ne. As a result, one can obtain the contribution of
brackets to equation (43) as


̃e0�ε
e1 = 
̃e1�ε
e0 = γ0ε0εe p45. (46)

In so doing, one can find that q0,1 = π(2λ)−1ne,oγ0n2
o,e p45.

One can see now that the difference between q0 and q1 is rather
small, because q0/q1 = ne/no. Then, because the amplitude
of deformation can be explained as γ0 = √

2P/(ρV 3), where
P is the acoustic power density, one can finally obtain

q0 = π

λ

√
P

2

(
n2

en4
o p2

45

ρV 3

)
, (47a)

q1 = π

λ

√
P

2

(
n2

on4
e p2

45

ρV 3

)
. (47b)

It should be noted that the factors taken in brackets in
equations (47) represent the acousto-optical figures of merit
M2 peculiar to estimating the efficiency of crystalline materials
in acousto-optics [10].

At this step, we are ready to perform a few numerical
estimations. Let us start from estimating the acousto-optical
figure of merit M2 peculiar to the geometry of collinear
interaction under consideration at a wavelength λ of 0.532 μm
in a calcium molybdate cell. Taking the material density
ρ = 4.34 g cm−3, acoustic velocity V = 2.95 × 105 cm s−1,

p45 = 0.06, ne = 2.0239 and no = 2.0116 at the chosen light
wavelength [11], one can calculate M2 ≈ 2.07×10−18 cm3 g−1

in a quite acceptable approximation of q0 ≈ q1, i.e. with an
accuracy of about 1%.

Then, one can restrict oneself by a maximal level P =
0.5 W mm−2 of the acoustic power density and estimate the
factor σ = U0

√
q0q1. This level of the power density P is

conditioned by the absolute acoustic power magnitude of about
2 W and the acoustic beam cross section of about 4 mm2 in just
a collinear acousto-optical cell. Consequently, one can find that
σ ≈ 2 cm−1.

Together with this, one can estimate the potential
contributions of both the angular-frequency mismatch and the
acoustic losses. Maximal value of the mismatch parameter
η = π� f /V for a frequency detuning � f of 0.6 MHz is equal
to about 6.4 cm−1. The coefficient of linear attenuation for
the chosen shear acoustic wave passing along the [100] axis
is 	 = 60 dB cm−1 GHz−2 in a calcium molybdate single
crystal [11]. The factor α of acoustic losses, measured in cm−1,
can be expressed via the standard relation as α (cm−1) =
0.23	 (dB cm−1 GHz−2) f 2 (GHz). Thus, at a carrier
frequency f0 of about 60 MHz related to the above-mentioned
light wavelength of 0.532 μm, being peculiar to the collinear
acousto-optical interaction in calcium molybdate, one can
estimate the factor of acoustic losses as α = 0.05 cm−1

in the case under consideration. Additionally, it should be
noted that our theoretical numerical data, presented in the
previous section 5, were normalized in such a way that
those dimensionless values are in coincidence with practical
numerical estimations presented in this section. This fact
provides easy comparison of the theoretical and experimental
data with each other.

7. Experiment with dissipative multi-pulse
acousto-optical coupled states in a crystal with
square-law nonlinearity and linear acoustic losses

To realize experimentally shaping the dissipative multi-pulse
three-wave weakly coupled states by the continuous-wave
optical pump in a two-mode medium with linear losses
for a relatively slow non-optical wave the acoustic phonon
mechanism of light scattering had been used. The schematic
arrangement of the experimental set-up exploited is shown in
figure 5 and consists of a continuous-wave laser, a crystalline
acousto-optical cell with a pair of polarizers (whose combined
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Figure 6. Scheme of the co-propagating collinear calcium molybdate acousto-optical cell providing the traveling-wave regime of interaction
of the pumping light beam with the acoustic pulses.

(a) (b)

(c) (d)

Figure 7. The digitized oscilloscope traces for the scattered light component intensity |C1|2 measured in a CaMoO4 crystalline cell with
α = 0.05 cm−1 at a carrier acoustic frequency of 61.3 MHz. Four stages of reshaping are followed at the same optical pump and acoustic
wave intensities and temporal scales: (a) η = 1.5 cm−1, the beginning stage of shaping a one-pulse coupled state; (b) η = 2.4 cm−1,
a one-pulse coupled state; (c) η = 3.5 cm−1, an intermediate stage; and (d) η = 6.0 cm−1, a two-pulse coupled state.

scheme is presented in detail separately in figure 6), a
photodetector and a set of electronic equipment for generating
and registering the corresponding electrical radio-wave (RW)
signals. This scheme has some analogies with schemes for
filtering optical signals [12], but allows operation in the pulsed
regime. Initially, an electronic video pulse, determining a
rectangular shape of the envelope, is provided from the pulse
generator. Due to applying this video pulse to the ultra-
high frequency (UHF) generator in the regime of an external
modulation, an RW electronic UHF pulse can be obtained.
Then, the shaped UHF pulse is applied to the electronic input
of the collinear acousto-optical cell, see figure 6, and to the
oscilloscope as the etalon signal, see figure 5.

A two-mode co-propagating collinear CaMoO4 crystalline
cell was characterized by a crystal length L of 44 mm along the
[100] axis and an acoustic velocity v of 2.95 × 105 cm s−1 for
the shear elastic mode whose displacement vector is oriented
along the [001] axis. The continuous-wave beam at a green
light wavelength of 532 nm was used as an optical pump during
the experiments. The first polarizer was precisely aligned in
correspondence with the optical axes of a crystal in a cell. After
the interaction with an acoustic pulse, already two orthogonally
polarized light beams, the incident and signal ones, passed
through a cell. The second polarizer gave us an opportunity

to be aligned in correspondence with the polarization of the
signal beam and to extract the output optical signal.

The dynamics of shaping and localizing the optical com-
ponents of multi-pulse coupled states has been sequentially fol-
lowed during our experiments. A few examples of the corre-
sponding digitized oscilloscope traces are shown in figure 7.
The maximal efficiency of shaping one-, two- and three-pulse
optical components in the scattered light wave C1 (shifted
by the acoustic frequency from the pumping light wave C0)
was about 50% relative to the pumping light intensity with
the excited acoustic power density of up to 0.5 W mm−2,
which provided magnitudes of the parameter σ up to 2 cm−1.
The maximum frequency mismatch � f = ηv/π was about
0.6 MHz, providing magnitudes of the phase mismatch η up
to 6.32 cm−1. The factor α of the linear elastic losses was
about 0.05 cm−1 inherent in the chosen shear acoustic mode
in a two-mode calcium molybdate crystalline acousto-optical
cell at a carrier frequency of 61.3 MHz, which was determined
by λ = v f −1|n0 − ne| [13]. The total length of a crystal is
L = 44 mm, which provides a temporal aperture T of 15 μs.
The duration of the rectangular acoustic pulse is taken to be
τ0 = 3.75 μs, which corresponds to a pulse spatial length l0 of
about 11 mm.
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8. Discussion and conclusion

Let us discuss a set of obtained oscilloscope traces for the
scattered light component intensity |C1|2 detected during the
experiments with a CaMoO4 crystalline cell. All these traces
can be easily interpreted in terms of the above-mentioned
three-stage picture, see section 5. The first stage is related to
the process of localizing the scattered light when a rectangular
acoustic pulse with a carrier frequency of 61.3 MHz is
incoming through the input facet x = 0 of a cell. At
this stage, the light, detected by a photodetector, reflects the
dynamics of localizing the light wave |C1|2 whose degree
of localization is determined by the value η of mismatch.
In the two most impressive cases, see figures 7(b) and (d),
the degrees of localizing the scattered light are close to total
localization, so that practically one can observe a one-pulse
or a two pulse dissipative coupled state, respectively. The
second stage, connected with passing the localizing acoustic
pulse along the cell, is characterized by a visible contribution
of acoustic losses, which vary the output level of the scattered
light for intermediate cases, see figures 7(a) and (c), or deform
the localization inside coupled states. After passing through
a cell, the loss-perturbed acoustic pulse is issued through
the output facet x = L of that cell. Leaving aside the
effect of linear acoustic losses for a moment, one can say
that the last stage demonstrates an almost mirror reflection
of the first stage. In reality, however, the linear acoustic
losses exist and give the corresponding contribution. In
the particular case of total localization, the issuing acoustic
pulse is destroying a multi-pulse coupled state, so that one
can see this process in the oscilloscope traces as well, see
figures 7(b) and (d). Consequently, the presented traces give
us an opportunity to follow the dynamics of shaping and
destroying the dissipative multi-pulse acousto-optical weakly
coupled states in the collinear CaMoO4 crystalline cell.

Thus, one can conclude that we have revealed and studied
the dissipative multi-pulse three-wave weakly coupled states,
appearing with collinear Bragg light scattering in a periodically
modulated two-mode square-law nonlinear medium with linear
losses for a slow non-optical wave. The localization conditions
and spatio-temporal distributions of their optical components
have been obtained in a new specific regime. Both quasi-
stationary and non-stationary analytic models for describing
the localization processes for multi-pulse three-wave coupled

states have been elaborated. In so doing, the conditions of
shaping background-free coupled acousto-optical states have
been investigated and illustrated via the computer simulations.
Finally, the results of our experiments with the dissipative
multi-pulse three-wave weakly coupled acousto-optical states
in a calcium molybdate crystalline cell have been presented
and briefly discussed.
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