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Abstract

We present an approach to the characterization of low-power bright picosecond optical pulses with an internal
frequency modulation simultaneously in both time and frequency domains in practically much used case of the
Gaussian shape. This approach exploits the Wigner time–frequency distribution, which can be found for these bright
pulses by using a novel interferometric technique under our proposal. Then, the simplest two-beam scanning
Michelson interferometer is selected for shaping the field-strength auto-correlation function of low-power picosecond
pulse trains. We are proposing and considering in principle the key features of a new experimental technique for
accurate and reliable measurements of the train-average width as well as the value and sign of the frequency chirp of
pulses in high-repetition-rate trains. This technique is founded on an ingenious algorithm for the advanced metrology,
assumes using a specially designed supplementary semiconductor cell, and suggests carrying out a pair of additional
measures with exploiting this semiconductor cell. Such a procedure makes possible constructing the Wigner
distribution and describing the above-listed time–frequency parameters of low-power bright picosecond optical pulses.
In the appendix, we follow one of possible avenues for deriving the joint Wigner time–frequency distribution via
choosing the Weil’s correspondence between classical functions and operators.
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.mx (A.L. Muñoz Zurita), alexey.kosarsky@jt-int.com

), joaquin.campos@ita.cetef.csic.es

sta).

5343334.

5618806; fax: +34914117651.
1. Introduction

The problem of characterizing solitary bright picosecond
pulses meets, broadly speaking, the fundamental difficulty
determined eventually by the necessity of converting the
needed data from faster all-optical format (peculiar to a
frequency range of about 1THz) to much slower electronic
format due to operating all the modern opto-electronic
equipment over just electronic signals whose frequencies
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usually do not exceed of about 10GHz. This difficulty
cannot be resolved directly, because our equipment cannot
now and will not be able in the nearest future operate in a
terahertz frequency range. In other words, one can say that
the problem of characterizing is related to the problem of
adequate photon-to-electron conversion in real, i.e. deter-
mined by light, time scale. That is why, in fact, all the
attempts of developing the measurement techniques in this
area were directed on resolving this fundamental difficulty
[1–4]. The most progressive approach, which is able to
simplify potential solution of the above-mentioned diffi-
culty, is based up to now on so-called train-average
characterization of picosecond pulse sequences rather than
solitary pulses. However, the train-average approach, on the
one hand, needs the regular trains of identical picosecond
pulses and, on the other hand, requires exploiting some
mechanism of sampling. While generating the regular trains
of more or less identical picosecond pulses is not a
considerable problem for the modern optics, choosing the
sampling mechanism does not look like too obvious and/or
quite trivial step first of all because such mechanisms can be
rather different from each other. The most developed
techniques, providing similar sampling all-optically, are
based on shaping various correlations between different
parts of different picosecond pulses in the same train [5–8].
Together with this, the most popular among these
correlations are auto-correlations of the second order,
which are simple enough to be generated by the simplest
two-beam scanning Michelson interferometer. Nevertheless,
besides their simplicity, auto-correlations of the second
order allow us to identify even the train-average pulse shape
not always due to ambiguity in identification of the internal
frequency modulation (or the frequency chirp) of pulses in a
train. For instance, in the particular case of low-power
picosecond pulses, the difficulties grow dramatically,
because the majority of potentially available non-linear-
optic approaches became to be practically unsuitable. In
principle, all-optical conversions make it possible to
perform many transformations of pulses to keep the mainly
important details inherent in the optical pulses of picose-
cond range, so that one could mention first of all
interferometric techniques [7–10].

The presented work develops the above-described
avenue in practically much used case of low-power
picosecond pulses with the Gaussian shape. For this
purpose, at first the problem is formulated in terms
of the joint Wigner time–frequency distributions for
Gaussian pulses [11]. Initially, we consider such
distributions for the slowly varying amplitudes and
then, generalize them on the Gaussian pulses with a
high-frequency filling. In both these cases, the products
of the half-width for the spectral contour at a level of 1/e
and the pulse half-width at the same level with the
contribution from frequency modulation of a pulse
are of main interest. The developed analysis makes it
possible to interpret potential experimental data in
terms of the Wigner distributions and/or restore these
distributions using the experimental results. Together
with this, the corresponding approach to the field-
strength auto-correlation function of the second order is
formulated in the same terms as well. Finally, we
propose a novel interferometric technique of measuring
the train-average pulse width as well as the value and
sign of the frequency chirp inherent in low-power
picosecond optical pulses belonging to high-repetition-
rate trains. Basic peculiarities of the technique under
proposal are connected with rather specific algorithm of
measurements having a two-beam interferometry into its
background, with exploiting a specially designed sup-
plementary semiconductor cell, and with carrying out
two additional measures involving this semiconductor
cell into the scheme of a two-beam scanning Michelson
interferometer. In the appendix, one of possible modern
versions of deriving the joint Wigner time–frequency
distribution is considered.
2. The Wigner distribution for a Gaussian pulse

The complex amplitude of a solitary optical pulse
with Gaussian shape of envelope can be written as

AGðtÞ ¼ exp �
ð1þ ibÞt2

2T2

� �
, (1)

where T is the Gaussian pulse half-width measured at a
level of 1/e for the intensity contour and b is the parameter
of the frequency modulation. In this case, the joint Wigner
time–frequency distribution, see Eq. (A.13), is given by

WGðt;oÞ ¼
Tffiffiffi
p
p exp �

t2

T2
� oT þ

bt

T

� �2
" #

. (2)

The Wigner distribution for the Gaussian pulse is
positive-valued. When T ¼ 1 and b ¼ 0, Eq. (2) gives the
distribution, which is symmetrical relative to repositioning
the variables t and o. With decreasing the parameter b, the
energy distribution concentrates in a bandwidth corre-
sponding the chirp-free spectrum whose center
lies along the line o ¼ bt/T2. A few examples of
the time–frequency distribution WGðt;oÞ ¼ p�1=2 exp
�t2 � ðoþ btÞ2
� �

, defined by Eq. (2) with T ¼ 1 are
presented in Fig. 1.

Integrations in Eqs. (A.15) give the partial one-
dimensional Wigner distributions for the Gaussian pulse
over the time or frequency separately

jAGðtÞj
2 ¼

Z 1
�1

WGðt;oÞdo ¼ exp �
t2

T2

� �
, (3)

jSGðoÞj2 ¼
Z 1
�1

WGðt;oÞdt ¼
T2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p exp �
T2o2

1þ b2

� �
.

(4)
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Fig. 1. The Wigner time–frequency distribution for the

Gaussian pulse with T ¼ 1 and the varying parameter b: (a)

b ¼ 0, (b) b ¼ 2, (c) b ¼ 4, and (d) b ¼ 6.

Fig. 2. The Gaussian pulse with T ¼ 1: the power density

profile (a) and the spectral density profiles (b) with the varying

parameter of the frequency chirp: solid line for b ¼ 0, dashed

line for b ¼ 2, dash-dotted line for b ¼ 4, and dotted line for

b ¼ 6.
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It is seen from Eq. (4) that to reach a level of 1/e one

need vary the variable o from �T�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
to

T�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
, so that the variation Do ¼ T�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
means actually the half-width of the spectral contour at
a level of e�1. Thus, one can determine the product

DoT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
. (5)

In the particular case of b ¼ 0 (i.e. in the absence
of the frequency chirp or the phase modulation), one
yields DoT ¼ 1 for the Gaussian pulse. Nevertheless, in
general case, bb1, so the product DoT can far exceed
unity. A few examples of the time and frequency
distributions, determined by Eqs. (3) and (4) with
T ¼ 1 are shown in Fig. 2.
Fig. 3. The plots of I(t) and J(t) with: (a) b ¼ 0, T ¼ 1, O ¼ 10;

(b) b ¼ 4, T ¼ 1, O ¼ 10.
3. The Gaussian pulse with a high-frequency

filling

Now, one can take the case of Gaussian pulse with the
slowly varying amplitude and with a high-frequency
filling by the optical carrier frequency Ob1

UðtÞ ¼ exp �
t2

2T2

� �
cos Otþ

bt2

2T2

� �
. (6)

The corresponding intensity distribution, instead of a
smooth contour described by Eq. (3) for I(t) ¼ jAG(t)j

2,
includes now some oscillations and is given by

JðtÞ ¼ jUðtÞj2 ¼ exp �
t2

T2

� �
cos2 Otþ

bt2

2T2

� �
. (7)
The smooth contours I(t) and the oscillating distribu-
tions J(t) are shown in Fig. 3. One can see from Fig. 3. that
the half-width has the same value T for these two plots.
Then, one can consider the complex spectrum contour.
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Fig. 4. Spectral intensity of Gaussian pulses: b ¼ 0, T ¼ 1,

O ¼ 10 – dashed line; b ¼ 4, T ¼ 1, O ¼ 10 – solid line.
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Performing the Fourier transform of Eq. (6), one can find

BðoÞ ¼ T

ffiffiffi
p
2

r
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� ib
p exp �

T2ðoþ OÞ2

2ð1� ibÞ

� �	

þ
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ ib
p exp �

T2ðo� OÞ2

2ð1þ ibÞ

� �

. (8)

The spectral intensity contour is now given by the
following expression:

JðoÞ ¼ jBðoÞj2

¼ T2 p
2

1ffiffiffiffiffiffiffiffiffiffiffiffi
1� ib
p exp �

T2ðoþ OÞ2

2ð1� ibÞ

� �	

þ
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� ib
p exp �

T2ðo� OÞ2

2ð1� ibÞ

� �


�
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ ib
p exp �

T2ðoþ OÞ2

2ð1þ ibÞ

� �

:

	
(9)

This expression has obviously real form

JðoÞ ¼ jBðoÞj2 ¼
pT2

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p exp �
T2ðo� OÞ2

1þ b2

� �(

þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p exp �

T2ðoþ OÞ2

1þ b2

� �

þ
2

1þ b2
exp �

T2ðo2 þ O2Þ

1þ b2

� ��

� cos
bT2ðo2 þ O2Þ

1þ b2

� �
� b sin

bT2ðo2 þ O2Þ

1þ b2

� �	 
�

.

(10)

Now, one can consider the case of oEO with Ob1.
In this case, (o+O)2b(o�O)2 and (o2+O2)b(o�O)2,
so that Eq. (8) give

BðoÞ � T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2ð1þ ibÞ

r
exp �

T2ðo� OÞ2

2ð1þ ibÞ

� �

and

BnðoÞ � T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2ð1� ibÞ

r
exp �

T2ðo� OÞ2

2ð1� ibÞ

� �
,

while Eq. (10) saves only the first term in the external
brackets. Consequently, the spectral intensity contour
can be approximately estimated by

JðoÞ ¼ jBðoÞj2 �
pT2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p exp �
T2ðo� OÞ2

1þ b2

� �
, (11)

which is presented in Fig. 4. The width of this contour is
determined by DO ¼ o�O, so one can write

DOT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
. (12)

Eq. (12) is quite similar to Eq. (5) and has the same
meaning.
Finally, the field-strength auto-correlation function
can be estimated. For this purpose, one can consider a
two-beam scanning Michelson interferometer, which
is the simplest optical auto-correlator. Such a device
makes it possible to register the field-strength auto-
correlation function, which can be exploited via the
inverse Fourier transform for finding the spectral power
density jS(o)j2 and measuring the width of the spectral
contour. In so doing, one has to use a square-law
photodiode detecting an interference of two incident
field strengths U(t) and U(t�t), where the delay time t of
the second field can be varied by the corresponding
movable mirror of the scanning interferometer. The
issuing electronic signal is proportional to the energy
E under registration, if the integration time of that
photodiode is sufficiently long. Generally, this energy is
proportional to the value

E�

Z 1
�1

½UðtÞ þUðt� tÞ�2 dt�G0ð0Þ þ 2GAðtÞ, (13)

where G0(0) is a background and

GAðtÞ ¼
Z 1
�1

½UðtÞ �Uðt� tÞ�dt

¼
1

2p

Z 1
�1

jBðoÞj2 expð�iotÞdo, (14)

Eq. (14) is true only when the field strength U(t) is real-
valued; for example, for the Gaussian pulse described by
Eq. (6). So, using Eq. (14), the function GA(t) can be
calculated due to the Fourier transform of the spectral
intensity contour

GAðtÞ ¼
1

2p

Z 1
�1

jBðoÞj2 expð�iotÞdo

¼
T

ffiffiffi
p
p

2
exp

�t2

4T2

� �
exp

�b2t2

4T2

� �
cosðOyÞ

"

þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b24
p exp

�T2O2

1þ b2

� �
cos

bt2

4T2
�

bT2O2

1þ b2
þ

b

2

� �#
.

(15)

The analysis shows that the second term in the square
brackets of Eq. (15) is negligible in comparison with
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Fig. 5. Field-strength auto-correlation functions for the

Gaussian pulses with: (a) b ¼ 0, T ¼ 1, O ¼ 40; (b) b ¼ 4,

T ¼ 1, O ¼ 40.
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the first one, so the approximate expression for the
field-strength auto-correlation function can be written as

GAðtÞ �
T

ffiffiffi
p
p

2
exp �

ð1þ b2Þt2

4T2

� �
cosðOyÞ. (16)

Two traces for this reduced auto-correlation function
are shown in Fig. 5. That is why the width of the field-
strength auto-correlation function can be rather accu-
rate estimated through estimating the exponential term
in Eq. (16). A level of 1/e will be reached with

t ¼ t0 ¼ 2T=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
. (17)

Consequently, t0 is the half-width of the field-strength
auto-correlation function at a level of 1/e.
4. A new technique of measuring the train-

average pulse width as well as the value and sign

of the frequency chirp of picosecond optical

pulses in high-repetition-rate trains

In many cases, for example, with the investigations of
evolving the optical solitons in active and passive
waveguide structures, a simple method is frequently
required for measuring current time–frequency para-
meters of low-power pico and sub-picosecond optical
pulses traveling in high-repetition-rate trains. Most
widely used is a method based on the formation of
a train-average auto-correlation function of the field
strength, which is coupled through the Fourier trans-
form with the spectral power density. From the recorded
power spectral density, one can determine an average
width of the radiation spectrum. However, in this case,
information on the average field phase is lost and it is
impossible to determine the time variation of the field
amplitude A(t). Exact determination of the train-
average pulse duration from the width of the radiation
spectrum is only possible when the shape of pulse
envelope is known a priori and, in addition, the pulse
spectrum is limited [8]. An approximate estimation of
the pulse duration is also correct, if the frequency chirp
is sufficiently small [9]. In the general case, it is necessary
either to pass to determination of the intensity auto-
correlation or cross-correlation [10] functions, or to
make special measurements to obtain information on
the field phase, which often require the application of
rather complicated experimental facilities or special
computer algorithms [12–14]. Here, we demonstrate an
opportunity of providing experimental conditions,
under which the train-average auto-correlation function
of the field strength can serve as a source of exact and
reliable information on the average values of both
duration and frequency chirp of a low-power optical
pulses traveling in high-repetition-rate trains.

We proceed from the assumption that all pulses in a
train are identical pulses having a Gaussian envelope
described by Eq. (1) with the amplitude A0 ¼

ffiffiffiffi
P
p

, where
P is the incoming pulse peak power. These assumptions
are not specific for the proposed method and are typical
of most of the other measurement methods [8,12]. For a
Gaussian envelope, the relationships between the train-
average pulse parameters T and b and the width t0 of the
corresponding auto-correlation function measured on a
level of 1/e are given by Eq. (17).

Usually, the real-time auto-correlation function of the
field strength averaged over a train of optical pulses is
obtained with a scanning Michelson interferometer
[9,10], which allows measuring the value of t0. However,
it follows from formula (17) that information on the
width t0 of the field-strength auto-correlation function is
insufficient to determine the time–frequency parameters
of the pulse train. That is why one can propose
performing two additional measurements of the auto-
correlation function width with the help of a scanning
Michelson interferometer. During the second and third
measurements, supplementary optical components,
changing the parameters T and b in a predetermined
way but not influencing the envelope of the investigated
pulses, should be placed in front of the beam-splitting
mirror of the interferometer. The auto-correlation
function widths tm (m ¼ 1,2) obtained from the repeated
measurements are coupled with the new values
of the pulse duration Tm and the frequency chirp bm

through formula (17). We assume that Tm ¼ amT0 and
bm ¼ b0+bm, where T0 and b0 are unknown values of
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the parameters T and b, while the quantities am and bm

are determined by supplementary optical components.
Using the above-noted relations, one can write two
different algebraic quadratic equations for a quantity of
b0. The corresponding solutions are given by the
formulas

b0 ¼ ðqma
2
m � 1Þ�1 bm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qma2mðb

2
m þ 2Þ � ðq2

ma4m þ 1Þ

q� �
,

(18)

where qm ¼ t20=t
2
m and tm is the width of the field

strength auto-correlation function obtained without
supplementary optical components. For (m ¼ 1,2),
Eq. (18) gives four values of b0, of which two coincide
with each other and correspond to just the true value
of the train-average frequency chirp of the pulses. The
proposed measurement method allows one to determine
not only the value, but the sign of the frequency chirp as
well, which is often impossible even with the help
of substantially more complicated methods, such as, for
example, the method described in Ref. [13]. Once the
pulse frequency chirp b0 is determined, one can use
formula (18) to calculate the pulse duration T by using
t0 and b ¼ b0.

For the supplementary electronically controlled op-
tical component, one can propose exploiting a specific
device based on an InGaAsP single-mode traveling-
wave semiconductor laser heterostructure, which is quite
similar to a saturable-absorber laser [15] with clarified
facets. This device comprises two domains, see Fig. 6.
Domain I of the linear amplification controlled by
pumping current Jm has the length L1 and is character-
ized by the low-signal gain factor k1(Jm). Domain II of a
fast-absorption saturation, created by a deep implanta-
tion of oxygen ions into the output facet of the
heterostructure, has the length L2 and is characterized
by the low-signal absorption factor k2 and the
Fig. 6. Design of the supplementary semiconductor cell: I is

the domain of linear amplification controlled by the pump

current J; II is the domain with a fast-saturable absorption.
saturation power PS. Domain I is able to modify the
peak power Pm of pulses entering domain II, so that
Pm ¼ P exp½k1ðJmÞL1�. The peak power Pm determines,
in its turn, the values of the parameters am and bm,
reflecting the action of domain II on the pulses. In the
low-signal case, one can use the relations [15].

ðaÞ am ¼ ðrPm

ffiffiffi
2
p
þ 1Þ�1=2,

ðbÞ bm ¼ �zrPm

ffiffiffi
2
p

, (19)

where z is the line-width enhancement factor [16], which
is usually in the range z ¼ 3�8, and

r ¼ ð2PSÞ
�1
½k1ðJmÞL1� (20)

is the absorption parameter which may be of the
order of rp1W�1 . Such a device makes possible
performing the repeated measurements without re-
adjusting the optical circuit and ensures additions
bmp5 to the frequency chirp [15].

Fig. 7 demonstrates variation in the auto-correlation
function after inserting the supplementary electronically
controlled semiconductor optical cell into the measure-
ment circuit. It shows a pair of simulated oscillograms
for the auto-correlation functions of Gaussian pulses
formed by a scanning Michelson interferometer without
(a) and with (b) inserted semiconductor cell for the case
of bm ¼ �2. Arrows mark a level of exp(�0.5)E0.606
used to determine the value of T. The numerical
simulation has been performed for a signal-to-noise
ratio of 10, which corresponds to rather typical
experimental conditions [17–19]. The data obtained
from triply repeated measurements of T allows us to
determine the pulse duration in a range of 1–50 ps and
the pulse frequency chirp in a range of 0–710 with an
account for the chirp sign. The measurement accuracy is
Fig. 7. Results of numerical simulation of forming the auto-

correlation functions by the scanning Michelson interferom-

eter: (a) without and (b) with an supplementary semiconductor

cell introduced into the measurement circuit.
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determined by the instability of radiation source and
uncertainty of the scanning circuit characteristics as well
as by the errors arising during the recording. The total
measurement errors for both the pulse duration and the
frequency chirp do not exceed 5%.
5. Conclusion

We consider the above-presented material as a stimu-
lating contribution to the development of the advanced
metrology. Such a viewpoint is based on the two well-
determined propositions. The first of them is represented
by our theoretic approach to the characterization of low-
power bright picosecond optical pulses with an internal
frequency modulation simultaneously in time and fre-
quency domains. This proposition exploits the joint
Wigner time–frequency distribution, which can describe
the width and the frequency chirp of optical pulse in a
unified format. The case, being practically much used, of
Gaussian shape when the Wigner distribution is positive
has been taken, and the peculiarities for just the Gaussian
pulses with a high-frequency filling have been followed in
details in both time and frequency domains as well as
in terms of the field-strength auto-correlation function.
The second proposition is related to the principles of
creating the joint Wigner time–frequency distribution by
the methods of modern experimental technique. We have
proposed and considered conceptually the key features of
a new interferometric method elaborated explicitly for
accurate and reliable measurements of the train-average
width as well as the value and sign of the frequency chirp
in bright picosecond optical pulses in high-repetition-rate
trains. For this purpose, a two-beam scanning Michelson
interferometer has been chosen for obtaining the field-
strength auto-correlation function of low-power picose-
cond pulse trains. The proposed technique is founded on
an ingenious algorithm of metrology, assumes using a
specially designed two-domain supplementary semicon-
ductor cell, and suggests carrying out a pair of additional
measures with exploiting this semiconductor cell, whose
properties have been physically described as well. The
procedure makes possible constructing the current Wigner
distribution in real-time scale, which is rather desirable
practically, and thus describing low-power bright picose-
cond optical pulses simultaneously in both time and
frequency domains.
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Appendix A. Originating the joint Wigner

time–frequency distribution

When the spectrum of signal varying in time is the
subject of interest, it is rather worthwhile to refer to
applying some joint function of the time and frequency,
which would be able to describe the intensity distribu-
tion of this signal simultaneously in time domain as
well as in frequency one. Such a distribution gives us
opportunities for determining a relative part of energy at
a given frequency in the required temporal interval or
for finding the frequency distribution at a given instant
of time.

The method of deriving the time–frequency distribu-
tion can be based on usage of the corresponding
characteristic function. Let us assume that some time–
frequency distribution W(t,o) exists and presents a
function of two variables t and o.

The characteristic function M(y,t) inherent in this
distribution can be written as mathematical expectation
of the value exp(iyt+ito), i.e. as

Mðy; tÞ ¼ hexpðiytþ itoÞi

¼

Z 1
�1

Z 1
�1

W ðt;oÞ expðiytþ itoÞdtdo. (A.1)

In its turn, the time–frequency distribution W(t,o)
can be found from the characteristic function M(y,t) as

W ðt;oÞ ¼
1

4p2

Z 1
�1

Z 1
�1

Mðy; tÞ expð�iyt� itoÞdydt.

(A.2)

Due to the characteristic function is some averaged
value, one can use quantum mechanics method of the
associated operators with ordinary variables. If we have
the function g1(t) depending only on the time t, the
average value for this function can be calculated by two
ways, namely, exploiting the complex amplitude A(t) of
a signal or its complex spectrum S(o) as

hg1ðtÞi ¼

Z 1
�1

g1ðtÞjAðtÞj
2 dt

¼

Z 1
�1

SnðoÞg1 i
d

do

� �
SðoÞdo (A.3)

because the time can be represented by the operator id/
do in the frequency domain. Then, for the function
g2(o) depending only on the frequency o, the average
value can be estimated by

hg2ðoÞi ¼
Z 1
�1

g2ðtÞjSðoÞj
2 do

¼

Z 1
�1

AnðtÞg2 �i
d

dt

� �
AðtÞdt (A.4)

because the frequency is represented by the operator
�id/dt in the time domain as well. Consequently,
one can combine the time and frequency with the
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non-commutative operators I and R, so that

I! t; < ! �i
d

dt
in the time domain;

I! i
d

do
; < ! o in the frequency domain;

where I,R�RI ¼ i. Introducing the operator G(I,R),
associated with the function g(t,o), one can write

hgðt;oÞi ¼
Z 1
�1

AnðtÞGðt;<ÞAðtÞdt

¼

Z 1
�1

SnðoÞGðI;oÞSðoÞdo: (A.5)

Due to the characteristic function is a mathe-
matical expectation, one can apply Eq. (A.5) to estimate
M(y,t) via

Mðy; tÞ ¼ hexpðiytþ itoÞi

!

Z 1
�1

AnðtÞ expðiyIþ it<ÞAðtÞdt: (A.6)

In fact, Eq. (A.6) includes the Weil correspondence
expðiytþ itoÞ ! expðiyIþ it<Þ, but such a correspon-
dence is not a uniquely applicable. In principle, it can
be generalized by substituting the normal ordered
correspondences that leads to another possible time–
frequency distributions [20]. Nevertheless, now we have
an opportunity to calculate the characteristic function
M(y,t) using Eq. (A.6). In so doing, one has to take the
particular case of well-known Backer–Hausdorff opera-
tor formula [21]

expðiyIþ it<Þ ¼ expð�iyt=2Þ expðit<ÞexpðiyIÞ, (A.7)

where exp(itR) is the operator, because

expðit<ÞAðtÞ ¼ expðtd=dtÞAðtÞ ¼ Aðtþ tÞ. (A.8)

Substituting Eq. (A.8) into Eq. (A.6), one can yield

Mðy; tÞ ¼
Z 1
�1

AnðtÞexpð�iyt=2ÞexpðiytÞAðtþ tÞdt.

(A.9)

At this stage, a new independent variable u ¼ t�t/2
with du/dt can be introduced, so

Mðy; tÞ ¼
Z 1
�1

An u�
t
2

� �
expðiyuÞA uþ

t
2

� �
du. (A.10)

Now we use Eq. (A.2) to obtain the time–frequency
distribution W(t,o)

W ðt;oÞ ¼
1

4p2

Z 1
�1

Z 1
�1

Z 1
�1

An u�
t
2

� �
expðiyuÞA uþ

t
2

� �
� expð�iyt� itoÞdydtdu. (A.11)
The integration with respect to y gives the Dirac delta-
function d(u�t) in Eq. (A.11), i.e.

W ðt;oÞ ¼
1

2p

Z 1
�1

Z 1
�1

dðu� tÞAn u�
t
2

� �
A uþ

t
2

� �
� expð�itoÞdt du. (A.12)

Then, integrating with respect to u, we arrive at the
Wigner time–frequency distribution

W ðt;oÞ ¼
1

2p

Z 1
�1

An t�
t
2

� �
expð�itoÞA tþ

t
2

� �
dt.

(A.13)

This distribution can be explained in terms of
frequency as well by the following integral expression

W ðt;oÞ ¼
1

2p

Z 1
�1

Sn o�
y
2

� �
expðityÞS oþ

y
2

� �
dy.

(A.14)

The kernel of this distribution is equal to unity, while
the kernel of the Wigner transformation depends on the
product of the arguments. The power density jA(t)j2 and
the spectrum density jS(o)j2 are determined by

ðaÞ jAðtÞj2 ¼

Z 1
�1

W ðt;oÞdo,

ðbÞ jSðoÞj2 ¼
Z 1
�1

W ðt;oÞdt. (A.15)
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