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When working with real-world applications we often find imbalanced datasets, those for which there 

exists a majority class with normal data and a minority class with abnormal or important data. In this 

work, we make an overview of the class imbalance problem; we review consequences, possible 

causes and existing strategies to cope with the inconveniences associated to this problem. As an 

effort to contribute to the solution of this problem, we propose a new rule induction algorithm named 

Rule Extraction for MEdical Diagnosis (REMED), as a symbolic one-class learning approach. For 

the evaluation of the proposed method, we use different medical diagnosis datasets taking into 

account quantitative metrics, comprehensibility, and reliability. We performed a comparison of 

REMED versus C4.5 and RIPPER combined with over-sampling and cost-sensitive strategies. This 

empirical analysis of the REMED algorithm showed it to be quantitatively competitive with C4.5 

and RIPPER in terms of the area under the Receiver Operating Characteristic curve (AUC) and the 

geometric mean, but overcame them in terms of comprehensibility and reliability. Results of our 

experiments show that REMED generated rules systems with a larger degree of abstraction and 

patterns closer to well-known abnormal values associated to each considered medical dataset. 

 

Keywords: Machine learning; imbalanced datasets; one-class learning; classification algorithm; rule 

extraction. 

1.   Introduction 

Machine learning algorithms provide the technical basis implemented in some practical 

data mining tasks. It is used to extract information from databases, which is expressed as 

novel, useful, and comprehensible patterns. The goal is to find strong patterns (those that 

make accurate predictions over new data) which would help to take effective decisions in  
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the business or scientific environment. Therefore, the use of machine learning tools and 

techniques has increased, especially in real-world applications. It is clear that real data is 

imperfect; it might contain inconsistencies and missing values. Therefore, machine 

learning algorithms need to be robust to cope with the imperfections of data, and to be 

able to extract really strong patterns. However, some machine learning algorithms that 

were previously considered as robust (generally producing accurate results) have not 

shown good performance in certain real-world applications.
1-3 

One of the causes of this 

problem is that many real-world datasets present an additional problem: class imbalance. 

Applications such as fraud detection, network intrusion, and medical diagnosis exhibit 

the class imbalance problem, where there exists a majority or negative class with normal 

data and a minority or positive class with abnormal or important data, which generally 

has the highest cost of erroneous classification. 

The main problem that current machine learning classifiers present when working 

with imbalanced datasets, is the low performance achieved to correctly classify examples 

of the minority class. Then, it is necessary to develop novel machine learning strategies 

that combined with standard classifiers improve their performance when working with 

imbalanced datasets. Most of the previous class imbalance works have focused on how to 

evaluate the performance of machine learning classifiers exclusively in terms of their 

capacity to minimize classification errors, they take into account the class imbalance 

problem, but they do not consider how to evaluate the comprehensibility and reliability of 

the found patterns. 

In this work, we propose a new symbolic one-class learning approach to cope with 

the class imbalance problem in real-world domains. We focus in a specific type of 

imbalanced domain: medical diagnosis. For this kind of domain we need to express a 

pattern as a transparent box whose construction describes the structure of the pattern. 

Therefore, we need to evaluate the obtained patterns in terms of comprehensibility 

besides the standard evaluation metrics to verify accuracy. However, the main reason to 

select medical diagnosis tasks is that we additionally want to evaluate the reliability of 

the patterns, this with the goal of establishing up to what degree is it really appropriate to 

apply a specific machine learning strategy (such as over-sampling) to imbalanced 

datasets. To achieve this, we compare the found patterns with well-known abnormal 

values that could represent symptoms (diagnosis) or risk factors (prognosis) of certain 

disease, therefore, the reliability of the obtained patterns could be evaluated according to 

their medical validity.   

In Section 2, we present an overview of the class imbalance problem. We discuss 

possible causes, consequences and existing strategies to solve the problem. Section 3 

shows a review of machine learning works in medical diagnosis, involved 

inconveniences, and desired features to satisfactorily solve medical diagnosis tasks. In 

Section 4, we present the details of our machine learning approach for imbalanced 

datasets. Section 5 shows the experimental results of comparing our approach with other 

machine learning strategies for imbalanced datasets. Finally, Section 6 analyzes and 
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discusses our results and in Section 7 we give our conclusions and indicate directions for 

our future work. 

2.   The Class Imbalance Problem 

The growing interest of the machine learning community to solve the class imbalance 

problem gave rise to two workshops on learning from imbalanced datasets. The first 

workshop was held by the American Association for Artificial Intelligence,
4 

and the 

second by the International Conference on Machine Learning.
5 

In this section, we present 

an overview of the types of problems that were considered by researchers in both 

workshops, as well as in more recent works related to the class imbalance problem. We 

finally present an overview of the possible causes of these problems and the previously 

proposed possible solutions to solve them. 

2.1.   Performance evaluation 

Generally speaking, the goal of machine learning algorithms for classification tasks is to 

build classifiers that maximize accuracy. However, this assumption is not enough to 

produce satisfactory classifiers in problems with imbalanced datasets because accuracy 

by itself may yield misleading conclusions, given that it only considers the classifier’s 

general performance and not the individual performance for each class. Therefore, it is 

necessary to determine the appropriate way to evaluate machine learning algorithms for 

the case of class imbalance problems. 

Typically the performance of machine learning algorithms is evaluated with a 

confusion matrix, from which we can calculate several evaluation metrics. Figure 1 

shows an example of a confusion matrix for a binary classification problem (only 2 

classes) and some evaluation metrics such as accuracy, sensitivity, specificity and 

precision (positive predictive value). In the confusion matrix, TP (True Positives) and TN 

(True Negatives) represent the number of positive and negative examples correctly 

classified respectively, while FP (False Positives) and FN (False Negatives) represent the 

number of positive and negative examples incorrectly classified respectively.  

 

                                           True Class 
                                                               P         N                 

                                                                      P    
                                     Assigned Class 
                                                                         N 

 
 

Accuracy = TP + TN / (TP + FN + FP + TN)  
 

Sensitivity = TP / (TP + FN) 
 

Specificity = TN / (TN + FP) 
 

Precision = TP / (TP + FP)  

Fig. 1. A confusion matrix and some evaluation metrics. 

TP       FP 
 

FN       TN 
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Fig. 2. A ROC graph showing the empirical and smooth ROC curves of a discrete classifier. 

 

As we previously mentioned, one of the most important problems that standard 

machine learning classifiers show with imbalanced datasets is their low performance to 

correctly classify examples of the minority or positive class, since standard classifiers 

tend to be overwhelmed by the examples of the majority class and ignore the minority 

class examples. Thus, machine learning algorithms working with imbalanced datasets 

almost always produce classifiers with high accuracy and specificity (majority class 

examples classified correctly), but with a low or moderate sensitivity (minority class 

examples classified correctly). Therefore, it has been necessary the use of other 

evaluation measures. 

Without any doubt, ROC (Receiver Operating Characteristic) analysis has been one 

of the most used techniques to evaluate the performance of binary classifiers. ROC 

graphs are two-dimensional graphs in which the TP rate (sensitivity) is plotted on the Y 

axis and the FP rate (1 – specificity) is plotted on the X axis. This pair of values produces 

a point in ROC space, which is delimited by the coordinates (0,0), (0,1), (1,1) and (1,0). 

There are classifiers that produce a continuous output that can be considered as an 

estimation of the probability of an instance to be member of a class (negative or positive). 

Therefore, if we vary the threshold for which an instance belongs to a class, we can 

produce different ROC points, then we connect all these points including (0,0) and (1,0) 

to obtain the empirical ROC curve for the classifier. In the case of discrete classifiers that 

only output a class label, we can calculate the TP and FP rates in progressive cut off 

levels of the data. Another method commonly used is the estimation of the smooth ROC 

curve in Figure 2, based on a binormal distribution using a statistical method called 
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maximum likelihood estimation.
6 

Some research works indicate that this method behaves 

empirically well in a wide variety of situations.
7
 Informally, a classifier is considered 

better than other, if it has a higher area under the ROC curve (AUC). In Figure 2 we show 

the empirical and smooth ROC curves for a discrete classifier. 

Another approach used to evaluate the performance of binary classifiers in class im-

balance problems is the geometric mean,
8
 which is defined as: yspecificitysensitivit × . 

According to the authors, this measure has the distinctive property of being independent 

of the distribution of the examples between classes. The advantage of the AUC and the 

geometric mean measures is that both combine the sensitivity and specificity metrics, 

providing a better way to represent the overall performance of a classifier for imbalanced 

datasets than when we only use the accuracy measure. 

2.2.   Causes of the problem  

Although it is clear that standard classifiers tend to decrease their performance with 

imbalanced datasets, there are no studies that demonstrate that this degradation is directly 

caused by the class imbalance problem. Therefore, in this section we make an overview 

of the causes that could explain these deficiencies. 

2.2.1.   Rare cases 

Rare cases correspond to a small number of training examples in particular areas of the 

feature space.
9
 Although class imbalance and rare cases are not directly related, we 

could expect that the minority class (due to its nature), contains a greater proportion of 

rare cases than the majority class, and this is supported by some empirical studies.
10

 

Thus, when standard classifiers are tested with rare cases, they produce higher error rates 

than when tested with common cases. This happens because it is less likely to find rare 

cases in the test set, and second because the general bias associated to standard classifiers 

generally does not allow distinguishing between rare cases and noise, classifying rare 

cases as common cases. Therefore, rare cases can be considered a special form of data 

imbalance normally called within-class imbalance,
11

 and the problems associated with 

class imbalance and rare cases could be solved using similar approaches.
12

 

2.2.2.   Small disjuncts 

Usually machine learning algorithms create concept definitions from data, these 

definitions are composed by disjuncts, where each disjunct is a conjunctive definition 

describing a subconcept of the original concept. A small disjunct is defined as a disjunct 

that only covers a few training examples.
13

 This can be considered a cause for a 

significant loss of performance in standard classifiers because as we previously pointed, 

in imbalanced datasets there exists a minority class with considerably fewer examples 

than the majority class, and the disjuncts induced from them tend to cover even fewer 

examples. Therefore, the poor representation of the minority class (few examples) could 

be an obstacle for the induction of good classifiers. In this sense Jo and Japkowicz in  
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Ref. 9 suggest that the problem is not directly caused by class imbalance, but rather, that 

class imbalance and rare cases may yield small disjuncts which, in turn, will cause this 

degradation.  

Besides, small disjuncts might also be caused by the learning algorithm bias,
14

 

because these algorithms try to generalize from the data to avoid overfitting (cases where 

the learner may adjust to very specific random features of the training data). Therefore, 

this general bias can adversely impact the ability to learn from imbalanced datasets. This 

occurs because when the algorithm generalizes, it tends to induce disjuncts to cover 

examples of the majority class (large disjuncts), overwhelming the examples of the 

minority class. On the other hand, induction bias could also appear as another factor that 

causes small disjuncts, because some machine learning algorithms prefer the most 

common class in the presence of uncertainty. This is the case of most decision-tree 

learners, which will predict the most frequent occurring class biasing their results against 

rarer classes.
12

 

2.2.3.   Overlap among classes 

Finally, other works suggest that the problem is not directly caused by class imbalance, 

but it is related to the degree of overlapping among the classes.
15,16

 Thus, these works 

argue that it does not matter neither what the size of the training set is nor how large the 

degree of imbalance among classes is, if the classes are linearly separable or show well-

defined clusters (with a low degree of class overlapping), there is not a significant 

degradation in the performance of standard classifiers. 

2.3.   Proposed strategies 

Once we know some of the possible causes (rare cases, small disjuncts and class 

overlapping) that might degrade the performance of standard classifiers in domains with 

imbalanced datasets, in this section we focus on discussing the most recent machine 

learning strategies proposed to tackle the class imbalance problem. These strategies have 

been implemented to improve the performance of standard classifiers or to develop new 

machine learning classifiers. 

2.3.1.   Sampling 

Standard classifiers have shown good performance with well-balanced datasets. This is 

why some of the previous approaches to solve the class imbalance problem tried to 

balance the classes’ distributions. These solutions use different forms of re-sampling but 

the two main sampling approaches are under-sampling and over-sampling. The first 

consists of the elimination of examples from the majority class, while the second adds 

examples to the minority class. However, there are many variants of both approaches; the 

simplest variant consists of random sampling. Random under-sampling eliminates 

majority class examples at random, while random over-sampling duplicates minority 

class examples at random. Other form of sampling strategy is directed sampling, where 
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the selection of under-sampling and over-sampling examples is informed rather than 

done at random. However, directed over-sampling continues replicating minority class 

examples, that is; new examples are not created. On the other hand, directed under-

sampling generally consists of the elimination of redundant examples or examples 

located farther away from the borders of regions containing minority class examples. 

Finally, a smarter re-sampling strategy is advanced sampling. This is a type of                         

1) advanced over-sampling,
17

 which generates new examples (it does not just replicate 

minority class examples), usually a new example is generated from similar examples of 

the minority class (close in its feature space), or 2) the combination of the under-

sampling and over-sampling strategies, for example applying under-sampling to the over-

sampled training set as a data cleaning method.
18

 

At this point of our overview of sampling strategies it is necessary to formulate two 

important questions: 1) Which sampling approach is the best? and 2) What sampling 

rate should be used?. The first issue is unclear yet, since recent works show that, in 

general, over-sampling strategies provide more accurate results than under-sampling 

strategies,
15,18

 but previous results seem to contradict this.
19,20

 However, we particularly 

support over-sampling and specifically advanced over-sampling, because potentially 

random under-sampling could eliminate some useful majority class examples; even 

directed under-sampling does not guarantee that this would not happen. On the other 

hand, random over-sampling and directed over-sampling could lead to overfitting, 

because in both cases copies of minority class examples are introduced. Nonetheless, as a 

deep thought, we should remember that part of the possible causes of the class imbalance 

problem (such as rare cases and small disjuncts), are closer related with the small size of 

the training set corresponding to the minority class, therefore, increasing the size of this 

training set could improve the representation of the minority class, and thus help to 

diminish the deficiencies of standard classifiers. On the other hand, the second issue 

about what under/over sampling rates should be used (proportion of removed or added 

examples), is even less clear.
21

 Therefore, both issues could represent inconveniences to 

efficiently apply sampling strategies. 

2.3.2.   Cost-sensitive  

Other important strategy to cope with the class imbalance problem has to do with the fact 

that standard classifiers assume that the costs of making incorrect predictions are the 

same. However, in real-world applications this assumption is generally incorrect, and 

although the class imbalance and the asymmetric misclassification costs are not exactly 

the same problem, we can establish a clear relationship between them, because generally 

speaking the misclassification cost for the minority class is greater than the 

misclassification cost for the majority class. Therefore, cost-sensitive strategies have been 

developed to tackle the class imbalance problem. 

The goal of cost-sensitive strategies for classification tasks is to reduce the cost                    

of misclassified examples instead of classification errors. Two main cost-sensitive 

approaches have been implemented. The simpler approach consists of changing the class 
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distributions of the training set regarding to misclassification costs.
22

 For example, in                         

the case of binary classification tasks, if the misclassification cost for the minority class     

is x times higher than the misclassification cost for the majority class, then we should 

make over-sampling of the minority class at x %, that is, the number of minority class 

examples is increased by adding x % instances. Therefore, the final application of this 

approach becomes a sampling strategy, where knowing the misclassification costs helps 

to determine the re-sampling rate. The other cost-sensitive strategy consists of passing                 

the cost information to the machine learning algorithm during the learning process.
12

           

The application of this strategy requires the construction of a cost matrix, which provides 

the costs associated with each prediction. In the case of binary classification tasks          

(Figure 3) with imbalanced datasets, the cost matrix contains 4 costs: TP cost (CTP), TN 

cost (CTN), FP cost (CFP) and FN cost (CFN), where CTP and CTN are typically set                 

to 0, and CFN is greater than CFP because a FN means that a positive (minority class) 

example was misclassified, and this represents a major misclassification cost. Thus, the 

classifier performs better on the minority class due to the bias introduced with the 

information of the cost matrix. 
 

 

CTP CFP 

CFN CTN 

Fig. 3. A cost matrix for a binary classification problem. 

 

This second approach tries to solve one of the problems associated with small 

disjuncts, specifically the general and inductive bias of standard classifiers, which are not 

appropriate for the class imbalance problem. To achieve this, the cost information from 

cost matrices introduces a desirable bias, and this makes the classifier prefer a class with 

a higher misclassification cost even when another class could be more probable. For 

example, if a classifier initially has the positive class probability threshold set to 0.5, after 

receiving the cost information the positive class probability threshold could be decreased 

to 0.33, and then it could classify more examples as positives.
23 

However, in real-world 

applications, misclassification costs are generally unknown, and in many cases their 

estimate is particularly hard, since these costs depend on multiple factors that can not be 

easily established.
24

  

Therefore, if costs are known, the application of the first cost-sensitive strategy could 

answer a previous question: What sampling rate should be used?, however, Elkan in 

Ref. 25, argues that changing the balance of negative and positive training examples with 

this cost-sensitive strategy has little effect on standard classifiers (Bayesian and decision 

tree learning methods). With regard to the second approach, a new question emerges: 

What is the appropriate value for CFN and CFP?. Although this question does not 

have a clear answer, there are certain strategies to assign both costs. In the case of CFP a 

cost of 1 is usually assigned,
23

 which is considered as a minimum cost. A real-world 

example to verify if this is an appropriate strategy is medical diagnosis, where a FP 
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corresponds to a patient diagnosed as sick when he was actually healthy. This incorrect 

prediction can be associated to a minimum cost, because more specific medical diagnosis 

tests could discover the error. In the case of CFN there is a strategy that consists of 

assigning the cost according to the imbalance ratio between classes. For example, if                 

the dataset presents a 1:10 class imbalance in favoring the majority class, the 

misclassification cost for the minority class would be set to 9 times the misclassification 

cost for the majority class.
16

 However, returning to the medical diagnosis tasks, the cost 

estimated with this strategy could be insufficient, because a FN is a patient diagnosed as 

healthy when he was actually sick. This situation could cause a life-threatening condition 

that depending on the kind of disease could lead to death, therefore, it is necessary to 

make a deeper analysis about how to assign the CFN, and this potentially represents an 

inconvenience at the moment of applying the cost-sensitive strategies. 

2.3.3.   One-class learning 

Finally, we focus on a third strategy called one-class learning, which is a recognition-

based approach that consists of learning classification knowledge to predict examples of 

one class, and for the case of the class imbalance problem it is generally used to predict 

positive examples. This strategy consists of learning from a single class rather than from 

two classes, trying to recognize examples of the class of interest rather than discriminate 

between examples of both classes.
15

 An important aspect of this strategy is that, under 

certain conditions such as multi-modality of the domain space, one-class approaches may 

provide a better solution to classification tasks than discrimination-based approaches.
26,27

 

The goal of applying this strategy to the class imbalance problem consists of internally 

biasing the discrimination-based process, so that we can compensate the class 

imbalance.
28

 Therefore, this is another way of trying to solve the problems associated 

with the inappropriate bias of standard classifiers when learning from imbalanced 

datasets. 

There are two main one-class learning strategies, the simpler approach consists of 

training examples from a single class (positive or negative) to make a description of a 

target set of objects, and detect if a new object resembles this training set. The objects 

from this class can be called target objects, while all other objects can be called outliers.
29

 

In some cases this approach is necessary because the only available information belongs 

to examples of a single class. However, there are other cases where all the negative 

examples are ignored,
27

 therefore, we can relate this to a total under-sampling of the 

majority class. Multi-Layer Perceptron (MLP) and Support Vector Machines (SVMs) 

have been used to apply this one-class approach (to learn only from a single class). In the 

case of MLP the approach consists of training an autoassociator or autoencoder,
30

 which 

is a MLP designed to reconstruct its input at the output layer. Once trained, if the MLP 

(also called recognition-based MLP,
31

) generalizes to a new object, then this must be a 

target object, otherwise, it should be an outlier object. This approach has successfully 

been used obtaining competitive results, using a training set exclusively composed                         

of cases from the minority class as in Refs. 26, 32 and 33 and the majority class as in            
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Refs. 4 and 31. With respect to the one- class SVMs approach, the goal is to find a good 

discriminating function f that scores the target class objects higher than the outlier class 

objects, and this solution will be given in the form of a kernel machine. To achieve this, 

there exists a methodology that after transforming the feature via a kernel treats the origin 

as the only member of the outlier class,
34

 and an extended version of this approach in 

which it is assumed that the origin is not the only point that belongs to the outlier class, 

but also all the data points “close enough” to the origin could be considered as noise                

or outliers objects.
33

 The one-class SVMs approach just as the MLP, has been used to 

train only with the majority class examples,
35

 achieving the highest sensitivity, but 

significantly decreasing specificity. However, most of the previous works use the one-

class SVMs approach to construct a classifier only from the minority class training 

examples, and in some works this approach significantly outperformed the two-class 

SVMs models.
27,36

 

Other form of one-class learning trains using examples of both classes. To achieve 

this, it is necessary to implement internal bias strategies during the learning process, with 

the goal of making more accurate predictions of the minority class.
8,28

 Most works use 

this one-class approach with symbolic classifiers, attempting to learn high confidence 

rules to predict the minority class examples. One example of this approach is the BRUTE 

algorithm,
37

 where the main goal is not classification, but rather the detection of rules that 

predict the positive class, therefore; their primary interest consists of finding a few 

accurate rules that can be interpreted to identify positive examples correctly. Other 

similar approach is the SHRINK algorithm,
38

 which finds the rule that best covers the 

positive examples, using the geometric mean to take into account the rule accuracy over 

negative examples. Finally, the RIPPER algorithm
39

 is another important approach which 

usually generates rules for each class from the minority class to the majority class; 

therefore, it could provide an efficient method to learn rules only for the minority class. 

3.   Machine Learning for Medical Diagnosis 

As we previously mentioned, the class imbalance problem is generally found in medical 

diagnosis datasets, however, this is not the only problem to solve when applying machine 

learning to this type of domains (medical). In this section we describe other 

inconveniences associated with the application of machine learning to this type of 

domains and we finally mention some specific requirements that a machine learning 

algorithm should fulfill to satisfactorily solve medical diagnosis tasks. 

3.1.   Attribute selection 

One of the most important aspects to efficiently solve a classification task is the selection 

of relevant attributes that aid to discriminate among different classes. In the clinical 

environment these important attributes are generally known as abnormal values 

(diagnosis) or risk factors (prognosis) and are classified as changeable (e.g. blood 

pressure, cholesterol, etc.) and non-changeable (e.g. age, sex, etc.). According to this, if 
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we select a non-changeable attribute such as age, which is considered a good attribute for 

classification, it might not be very useful for medical interventions, because there does 

not exist a medical treatment to modify the age of a patient. Therefore, we should focus 

over changeable attributes, and this could make the classification task even harder. 

3.2.   Data collection 

Modern hospitals are well equipped to gather, store, and share large amounts of data; 

while machine learning technology is considered a suitable way for analyzing this 

medical data. However, in the case of medical research, data is generally collected from a 

longitudinal, prospective, and observational study. These studies consist of observing the 

incidence of a specific disease in a group of individuals during a certain period of time; 

this is done with the goal of establishing the association between the disease and possible 

risk factors. At the end of the study, a binary classification is done and every individual is 

classified as either sick or healthy, depending on whether the individual developed the 

studied disease or not, respectively. However, the fact that these studies were designed to 

culminate at a certain time might make the classifiers’ task harder, because an individual 

that presented clear risk factors (with abnormal values in certain attributes) during the 

period of study, but whose death was not caused by the studied disease (e.g. died in an 

accident), or at the end of the study he did not present the disease (being probable that he 

developed it just after the end of the study), is classified as healthy (a noisy class label), 

and both situations tend to confuse the classifiers.  

3.3.   Comprehensibility 

Perhaps one the most important differences between medical diagnosis and other 

machine learning applications, is that the medical diagnosis problem does not end once 

we get a model to classify new instances. That is, if the instance is classified as sick (the 

important class) the generated knowledge should be able to provide the medical staff with 

a novel point of view about the given problem, which could help to apply a medical 

treatment on time to avoid, delay, or diminish the incidence of the disease. Therefore, the 

classifier should behave as a transparent box whose construction reveals the structure of 

the patterns, instead of a black box that hides these. Generally, this is solved using 

symbolic learning methods (e.g. decision trees and rules), because it is possible to explain 

the decisions in an easy way to understand by humans. However, the use of a symbolic 

learning method generally sacrifices accuracy in prediction but obtains a more 

comprehensible model. 

3.4.   Desired features 

Finally, we mention some features that a machine learning algorithm should account to 

satisfactorily solve medical diagnosis problems. In this sense, besides creating an 

algorithm that obtains good performance, it is necessary to provide the medical staff               

with the comprehensibility of the diagnostic knowledge, the ability to support decisions, 
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and the ability of the algorithm to reduce the number of tests necessary to obtain a 

reliable diagnosis.
40

 What we mean with obtaining good performance and the 

comprehensibility of the diagnostic knowledge was previously described (Sections 2.1 

and 3.3, respectively). The ability to support decisions refers to the fact that it is 

preferable to provide the predictions with a reliability measure, for example if we state 

that an example belongs to a class with probability p, this could provide the medical staff 

with enough trust to put the new diagnostic knowledge in practice. Finally, it is desirable 

to have a classifier that is able to reliably diagnose using a small amount of data about the 

patients, because the collection of this data is often expensive, time consuming, and 

harmful for them.
40

 

4.   REMED: Rule Extraction for MEdical Diagnosis  

In this section we present a new symbolic one-class classification approach for 

imbalanced datasets. This algorithm was designed to include the desired features 

mentioned in Section 3.4 and to deal with the imbalanced class problem. The Rule 

Extraction for MEdical Diagnosis (REMED) algorithm
41

 is a symbolic one-class 

approach to solve binary classification tasks. It is trained with examples of both classes 

and implements internal strategies during the learning process to maximize the correct 

prediction of the minority class examples. REMED is a symbolic algorithm that includes 

three main procedures: 1) attribute selection, 2) initial partitions selection, and finally                

3) classification rules construction. In the following sections we thoroughly describe each 

of these procedures. 

4.1.   Attribute selection 

As we previously mentioned, REMED is considered a symbolic one-class approach, 

therefore, in this first procedure (Figure 4) to select the best combination of attributes, we 

focus on the selection of attributes strongly related to the minority class. For this reason 

we used the simple logistic regression model,
42

 which allows us to quantify the risk of 

  

 

Attributes Selection ( examples, attributes ) 

final_attributes  ←  ∅ 

confidence_level  ←  1-α    // 99% or 99.99% 

ε  ← 1/10
k
    // Convergence Level 

for  x  ∈  attributes  do 

 e.x […]  ←  { values of the examples of the attribute x } 

 p,OR  ← Logistic_Regression (e.x […],ε ) 
 if  p  <  ( 1 – confidence_level )  then 

   final_attributes   

∪

←   x, OR 

 end-if  

end-for 

Fig. 4. Procedure for the selection of attributes. 
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suffering certain disease (or the probability of belonging to the minority class), with 

respect to the increase or decrease in the value of a specific attribute. Therefore, we can 

model in Eq. (1) the probability of belonging to the minority class (p) as the logistic 

function of the linear combination of the coefficients of the model and the considered 

attribute  (β0 +β1X): 

 
( )

0 1

1

1
X

p
e

β β− +
=

+

  (1) 

The coefficients of the model are estimated through the maximum likelihood 

function,
43

 however, the most important of assembling this model in our algorithm, is that 

the simple logistic regression model uses a probabilistic metric called odds ratio (OR),
44

 

which allows us to determine if there exists or not any type of association between the 

considered attribute and the minority class membership. Thus, an OR equal to 1 indicates 

a non-association, an OR greater than 1 indicates a positive association (if the value of 

the attribute increases then the probability of belonging to the minority class also 

increases) and an OR smaller than 1 indicates a negative association (if the value of the 

attribute decreases then the probability of belonging to the minority class increases). 

Therefore, depending on the type of established association (positive or negative) through 

the OR metric, we determine the syntax with which each attribute’s partition will appear 

in our rules system. However, the fact of establishing a positive or negative association 

between the minority class and an attribute is not enough, it is necessary to determine if 

this association is statistically significant for a certain confidence level. To achieve this, 

we always use high confidence levels (> 99%) to select attributes that are strongly 

associated with the minority class, and thus, we can guarantee the construction of more 

precise rules. At this time we only consider continuous attributes, this is because in the 

clinical environment discrete attributes are usually binary (e.g. smoker and non-smoker) 

and its association with certain disease is almost always well-known; then, continuous 

attributes have a higher degree of uncertainty than discrete attributes. 

4.2.   Initial partitions selection 

Partitions are a set of excluding and exhaustive conditions used to build a rule. These 

conditions classify all the examples (exhaustive) and each example is assigned to only 

one class (excluding). The procedure that REMED uses to select the initial partitions 

(Figure 5), comes from the fact that if an attribute x has been associated in a statistically 

significant way with the minority class membership, then its mean x  (mean of the n 

values of the attribute) is a good candidate for an initial partition of the attribute, because 

a large number of n independent values of attribute x will tend to be normally distributed 

(by the central limit theorem), therefore, once statistically significant association 

(positive or negative) between x and the minority class membership has been established, 

a single threshold above (positive association) or under (negative association) x  will be a 

partition that indicates an increase of  the probability of belonging to the minority class. 
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Initial Partitions Selection( examples, final_attributes ) 

m  ←  Number ( final_attributes ) 
for  i  ← 1 … m  do 

 e […]  ←  { sorted examples by the e.x attribute } 

 partitions [ i ]  ←  Average ( e […] ) 

 pointer  ←  Position ( e […], partitions [ i ] ) 

 k  ←  pointer  

 while  ek .clase  ≠  1 
   if  OR [ i ] > 1 then 

     k  ←  k + 1    // Positive Association  
   else 

     k  ←  k – 1    // Negative Association 
   end-if 
 end-while 

 if  pointer  ≠  k  then 
   if  OR [ i ] > 1 then 

     partitions [ i ]  ←  ( ek + e k-1) / 2    // Positive Association 
   else 

     partitions [ i ]  ←  ( ek + e k+1) / 2    // Negative Association 
   end-if 
 end-if 
end-for 

Fig. 5. Procedure for the selection of initial partitions. 

 

Then, we sort the examples by the attribute’s value and from the initial partition of 

each attribute ( ix ), we search the next positive example in the direction of the 

established association according to the OR metric. Later, we generate a new partition 

calculating the average between the value of the selected example and the value of its 

predecessor or successor. This displacement is carried out only once for each attribute, 

because other displacement to calculate a new partition would include at least one 

positive example at the opposite side of the threshold, and this could decrease the 

probability of belonging to the minority class in the new partition.  

Figure 6 shows an example that illustrates the procedure shown in Figure 5. We 

assume that a positive association between the minority class and a continuous attribute 

such as the systolic blood pressure (SBP) was previously established using the simple 

logistic regression model, then, we select SBP ≥ 142.53 as our initial partition (the mean 

of the n SBP examples). After this we move the partition to the next example with     

class = 1 (example 157 in Figure 6). It is important to mention that since the amount of 

examples belonging to the negative class is a lot larger than that of the positive class 

(because of the class imbalance); there is a high probability to find negative examples 

between the initial partition and the next positive example to make a displacement 

(jumping negative examples). Finally, we establish the new partition calculating the 

average for attribute SBP using the values of examples 156 and 157 (SBP ≥ 143.35). The 

goal of this strategy consists of increasing the probability of belonging to the positive 

class above this partition. For this reason we do not make a new displacement to search 

for the next positive example, because this possible new partition calculated with the  
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              Sorted examples (SBP)            Class 
 

1 
………… ………… 

• ………… ………… 

• ………… ………… 

• ………… ………… 

151 142.27 0 

152 142.81 0 
153 142.94 0 
154 143.19 0 
155 143.25 0 
156 143.29 0 

157 143.41 1 
158 143.49 0 
159 143.54 1 
160 143.61 0 
161 143.63 0 

• ………… 
………… 

• ………… ………… 

• ………… ………… 

196 ………… ………… 

Fig. 6. Example of the selection of initial partitions. 

 

values of examples 158 and 159 (SBP ≥ 143.52) decreases the probability of belonging to 

the minority class above the threshold (p = 0.316), and increases again this probability 

under the threshold (p = 0.184). 

4.3.   Rules construction 

Once we obtain the initial partitions for each of the m selected attributes, we build a 

simple system of rules which contains m conditions (one for each selected attribute j), in 

the following way: 

if  1<relation> p1  and  j<relation>pj  and …. and  m<relation>pm then  class = 1 

else  class = 0 

where <relation> is either ≥  or  ≤ depending on whether j is positively or negatively 

associated with the positive class through pj (partition for attribute j). 

We make a first classification with this system of rules. Then, we try to improve the 

performance of the current system of rules by adjusting the attribute thresholds using the 

bisection method,
45 

to calculate possible new partitions starting with the current partition 

of each attribute and the maximum or minimum value for this attribute in the examples.  

 

p (positive | SBP < 142.53) =   0.185 
 
p (positive | SBP ≥ 142.53) =   0.289 
 
 
initial partition = mean (n examples)  

 

new partition = average(143.29,143.41) 
 
p (positive | SBP < 143.35) =   0.179 
 

p (positive | SBP ≥ 143.35) =   0.325 
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    Rules Construction( examples, final_attributes, partitions […………] ) 

    class […]  ←  Rule ( examples, partitions […],OR […] ) 

    true_positives […]  ←  Calculate_True_Positives ( examples.class, class […] ) 

    k1  ←  Add ( true_positives […] ) 

    k2  ←  Add ( class […] )   

    ε  ← 1/10
k
    // Convergence Level 

    for  i  ← 1 … m  do 

      e […]  ←  { examples of the attribute i } 

      min  ←  partitions [ i ] 

      if  OR [ i ] > 1 then                    

        max  ←  Maximun ( e […] )    // Positive Association 

      else 

        max  ←  Minimun ( e […] )    // Negative Association  

      end-if 

      new_partition  ←  (min + max) / 2 

      copy_partitions […]  ←  partitions […] 

      while  Abs (max – min )  > ε   do 

        copy_partitions [ i ]  ←  new_partition   

        class […]  ←  Rule ( examples, copy_partitions […],OR […] ) 

        true_positives […]  ←  Calculate_True_Positives ( examples.class ,class […] ) 

        k3  ←  Add ( true_positives […] ) 

        k4  ←  Add ( class […] ) 

        if  k3  <  k1  then 

          max  ←  new_partition 

        else 

          if  k4  <  k2  then 

            k5   ←  k4   

            min  ←  new_partition  

          else 

            exit-while 

          end-if 

        end-if 

        new_partition  ←  (min + max) / 2 

      end-while 

      if  min  ≠  partitions [ i ] then 

        k2  ←  k5 

        partitions [ i ]  ←  min 

      end-if 

    end-for 

Fig. 7. Procedure for the construction of rules. 

 

We build a temporal system of rules changing the current partition value for the new 

partition value and classify the examples again. We only keep a new partition if                        

it decreases the number of FP (negative examples classified incorrectly) but does                   

not decrease the number of true positives TP (positive examples classified correctly).                    

This step is repeated for each attribute until we overcome the established convergence 

level for the bisection method or the current system of rules is not able to decrease                   

the number of FP. This is done with the procedure shown in Figure 7. In this figure                   

A 

E 

D 

C 

B 
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we grouped sets of instructions in sections identified with letters from A to E, which are 

described below. 

 

(A) We build an initial system of rules from the set of initial partitions. Then we make a 

first classification and save the results. We also store the number of positive 

examples classified correctly in k1 and the total number of positive examples 

predicted (TP + FP) by the initial system of rules in k2. 

(B) Then, we begin an iterative process (1…m) to try to improve the predictive value of 

each of the partitions. We estimate a new partition for attribute i by averaging its 

initial partition with the maximum or minimum value of the examples for this 

attribute (depending on the type of the established association). With the goal of 

evaluating the performance of the new partition, we make a copy of the initial 

partitions in the copy_partitions […] array. 

(C) We build a new system of rules by changing the current partition of attribute i by 

the new partition and then, we classify the examples again. We store the number of 

positive examples classified correctly in k3 and the total of positive examples 

predicted by this rules system in k4. 

(D) We then evaluate the results obtained with the new classification. First, we verify if 

the number of positive examples classified correctly decreased (k3 <  k1), if this 

happens we set the current partition as the maximum bench mark to calculate a new 

partition. Otherwise we verify if the new classification decreased the number of 

negative examples classified incorrectly (k4 <  k2), if this happens we store the total 

number of positive examples predicted by the current system of rules in k5 and 

establish it as the minimum bench mark for the current partition. We continue 

estimating new partitions for attribute i with the bisection method while the 

difference in absolute value between the maximum and minimum bench mark does 

not overcome the established convergence level for the bisection method, or the 

current system of rules is not able to decrease the number of negative examples 

classified incorrectly. 

(E) If the new partition for attribute i improves the predictive values, it is included                

in the set of final partitions. Then, the total number of positive examples predicted 

by the current rule is upgraded (k2 ← k5), this process is repeated for the m 

attributes. 

 

As we can appreciate, the goal of REMED is to maximize the classification 

performance of the minority class at each step of the procedures. It starts with the 

selection of attributes that are strongly associated with the positive class. Then, it stops 

the search for partitions that predict the minority class when it finds the first positive 

example (we do this because we do not want to decrease the probability of belonging to 

the positive class as shown in Figure 6), and finally it tries to improve the performance of 

the rules system but without decreasing the number of TP (positive examples classified 

correctly). 
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5.   Experiments 

We compared our one-class approach versus sampling and cost-sensitive approaches.  

The datasets used are real-world medical datasets with only two classes. With the 

exception of the Cardiovascular Diseases dataset, all were obtained from the UCI 

repository.
46

 In all the cases we only considered changeable (as discussed before in 

Section 4.1) and continuous attributes (with higher degree of uncertainty than discrete 

attributes). Besides REMED we used the C4.5 and Repeated Incremental Pruning to 

Produce Error Reduction (RIPPER) symbolic classifiers, both used in previous works 

concerning the class imbalance problem.
17,47

 In all the cases we applied the 10-fold cross 

validation technique to avoid overfitting. Next, we briefly describe the medical datasets 

and the symbolic classifiers used in our experiments. We also present the sampling                   

and cost-sensitive strategies applied to the C4.5 and RIPPER experiments, and describe 

the evaluation measures used to evaluate the performance of the different approaches. 

Finally, the results are compared in terms of evaluation metrics, comprehensibility                

and reliability. 

5.1.   Datasets 

As we previously mentioned, the data collection of real medical datasets is often 

expensive, time consuming, and harmful for the patients, this is why medical datasets are 

usually conformed by few examples (between 100 and 300) and even less attributes 

(because of the high cost of medical tests). For our experiments we used datasets with 

different characteristics including two typical medical datasets: Cardiovascular Diseases 

and Hepatitis (which meet with the previously mentioned features: few examples and 

even fewer attributes), a dataset with few examples but with a considerable number of 

attributes: Breast Cancer, and a larger dataset with many examples but few attributes: 

Hyperthyroid. The class imbalance rate for the datasets or ratio of positive and negative 

examples varied from 1:3 to 1:49. 

5.1.1.   Cardiovascular diseases 

Cardiovascular Diseases are one of the world’s most important causes of mortality which 

affect the circulatory system comprising the heart and blood vessels. This dataset was 

obtained from an Ambulatory Blood Pressure Monitoring (ABPM)
48

 study named “The 

Maracaibo Aging Study”
49

 conducted by the Institute for Cardiovascular Diseases of the 

University of Zulia, in Maracaibo, Venezuela. The final dataset was conformed by 312 

observations and at the end of the study 55 individuals registered a kind of 

Cardiovascular Disease, the class imbalance ratio is approximately of 1:5. 

The attributes considered were the mean of the SBP and diastolic blood pressure 

(DBP) readings, systolic global variability (SGV), diastolic global variability (DGV) 

measured with the average real variability,
50

 and the systolic circadian variability (SCV)
51 

represented with the gradient of the linear approximation of the readings of SBP.                    
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All the attributes were calculated from the ABPM valid readings during the period of               

24 hours and the dataset did not present missing values. 

5.1.2.   Hepatitis 

Hepatitis is a viral disease that affects the liver and is generally transmitted by ingestion 

of infected food or water. The original dataset was conformed by 19 attributes including 

binary discrete and non-changeable continuous attributes (such as age). For our 

experiments we only considered 4 changeable continuous attributes: the levels of albumin 

(AL), bilirrubin (BL), alkaline phosphatase (AP) and serum glutamic oxaloacetic 

transaminase (SGOT) in the blood. The final dataset was conformed by 152 samples, with 

30 positive examples, a class imbalance ratio of approximately 1:4 and a rate of missing 

values of 23.03%. 

5.1.3.   Breast cancer 

The Wisconsin prognostic Breast Cancer dataset consisted of 10 continuous-valued 

features computed from a digitized image of a fine needle aspirate of a breast mass. The 

characteristics of the cell nucleus present in the image were: radius (R), texture (T), 

perimeter (P), area (A), smoothness (SM), compactness (CM), concavity (C), symmetry 

(S), concave points (CP) and fractal dimension (FD). The mean (me), standard error (se), 

and "worst" (w) or largest (mean of the three largest values) of these features were 

computed for each image, resulting in 30 features. They also considered the tumour size 

(TS) and the number of positive axillary lymph nodes observed (LN). This was the least 

imbalanced dataset, with a class imbalance ratio approximately of 1:3. The dataset was 

conformed by 151 negative examples and 47 positive examples and only 2.02% of the 

data presented missing values. 

5.1.4.   Hyperthyroid 

Finally, Hyperthyroid is a condition characterized by accelerated metabolism caused by 

an excessive amount of thyroid hormones. This is an extremely imbalanced dataset with a 

class imbalance ratio of 1:49 approximately, conformed by 3693 negative examples and 

only 79 positive examples. The attributes considered to evaluate this disease of the 

thyroid glands were: thyroid-stimulating hormone (TSH), triiodothyronin (T3), total 

thyroxine (TT4), thyroxine uptake and free thyroxine index (FTI). The dataset presented 

27.07% of missing values.  

Once we known each of the medical datasets, we briefly describe in the following 

section the classifiers (besides REMED) used in our experiments. 

5.2.   Classifiers 

We only used symbolic classifiers (decision tree and rules), because as we previously 

mentioned, black box classification methods (for example neural networks) are not 
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generally appropriate for some medical diagnosis tasks, because the medical staff needs 

to evaluate and validate the knowledge induced by the machine learning algorithm to 

gain enough trust to use the diagnosis knowledge in practice. Therefore, symbolic 

classifiers are a better way to reach both objectives, because the generated knowledge is 

shown in a form that can be understood by the medical staff. The symbolic classifiers      

that we used (C4.5 and RIPPER), besides REMED, were obtained from the Weka 

framework.
52

 

5.2.1.   C4.5 

C4.5 is a popular machine learning classifier for learning decision trees.
53

 C4.5 is a 

discrimination-based approach that can solve multi-class problems and, therefore, it 

generates a decision tree with class membership predictions for all the examples. The 

tree-building process uses a partitions selection criterion called information gain, which 

is an entropy-based metric that measures the purity degree between a partition and its 

sub-partitions. C4.5 uses a recursive procedure to choose attributes that yield to purer 

children nodes (a totally pure node would be one for which all the examples that it covers 

belong to a single class) at each time. After building the decision tree, C45 applies a 

pruning strategy to avoid overfitting. 

5.2.2.   RIPPER 

RIPPER is a machine learning classifier that induces sets of classification rules.
39

 

Although RIPPER can solve multi-class problems, the learning process used to solve 

binary classification tasks is particularly interesting. RIPPER uses a divide-and-conquer 

approach to iteratively build rules to cover previously uncovered training examples 

(generally positive examples) into a growing set and a pruning set. Rules are grown by 

adding conditions one at a time until the rule covers only a single example in the growing 

set (generally negative examples). Thus, RIPPER usually generates rules for each class 

from the minority class to the majority class; therefore, it could provide an efficient 

method to learn rules only for the minority class. 

5.3.   Sampling strategy 

We used an advanced over-sampling strategy, specifically the Synthetic Minority Over-

Sampling TEchnique (SMOTE).
17

 This over-sampling approach consists of adding 

synthetic minority class examples along the line segments that join any or all the k 

minority class nearest neighbours of each minority class example (by default SMOTE 

uses k = 5). In general each synthetic sample of the minority class is generated from the 

difference between the feature vector of the original sample under consideration and its 

nearest neighbours. For our experiments, we only over-sampled the minority class of 

each medical dataset at 100% and 200% of its original size. We only combined these 

sampling strategies with C4.5 and RIPPER. 
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5.4.   Cost-sensitive strategy 

We used one of the meta-classifier approaches that the Weka framework provides, 

specifically the weka.classifiers.meta.CostSensitiveClassifier. The cost-sensitive strate-

gies used to fill the cost matrix were the following: CTP and CTN were assigned a cost    

of 0, CFP was assigned a cost of 1, while CFN was assigned several costs depending on 

the class imbalance rate of the datasets. CFN was evaluated with the values of 3, 4, and 5 

for almost all the medical datasets (the class imbalance rate of the Breast Cancer, 

Hepatitis and Cardiovascular Diseases datasets respectively), except for the extremely 

imbalanced (1:49) Hyperthyroid dataset, where we only assigned a cost of 49 to CFN. As 

we did with the sampling strategies, we only combined the cost-sensitive strategies with 

C4.5 and RIPPER. 

5.5.   One-class strategy 

We used the REMED algorithm as our one-class approach. The unique parameter that 

REMED needs is the confidence level to select the significant attributes. We always used 

high confidence levels such as 99% or 99.99%. We only applied the REMED algorithm 

to the original datasets. We also used the RIPPER algorithm without any of the sampling 

and cost-sensitive strategies, because it is considered a good algorithm to learn rules only 

for the minority class.
12

 

5.6.   Performance evaluation 

We evaluated the overall performance of each approach, in terms of evaluation               

metrics, comprehensibility and reliability. Regarding the first issue, we used all the 

evaluation metrics shown in Figure 1 (accuracy, sensitivity, specificity, and precision). 

We also used the geometric mean and AUC calculated with the conventional binormal 

method through PLOTROC.xls, available at http://xray.bsd.uchicago.edu/krl/KRL_ROC/ 

software_index.htm. Besides, we used an additional measure called ranker calculating the 

average between the geometric mean and AUC. With respect to the comprehensibility of 

the rules, we evaluated the degree of abstraction of the rules systems according to their 

size (number of rules and number of conditions in each rule). Finally, to evaluate the 

reliability (defined in Section 1) of each rules system, we analyzed the medical validity of 

the generated rules comparing their conditions’ thresholds with well-known abnormal 

values to diagnose or predict the considered diseases. 

5.7.   Experimental results 

In this section we show our experimental results, we show them in terms of the 

evaluation metrics accuracy, sensitivity specificity, precision, AUC, and geometric mean. 

These results are summarized in Tables 1 through 4. In each table we report the results of 

the experiments corresponding to each medical dataset. We indicate between parenthesis 

the over-sampling rate used with SMOTE, the cost ratio of the used cost-sensitive 
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strategy, and the confidence level established for REMED. The results for each algorithm 

are presented in decreasing order according to the ranker measure (average between the 

AUC and the geometric mean). 

 

 
Table 1. Evaluation metrics for the cardiovascular diseases dataset. 

Approach Accuracy Sensitivity Specificity Precision AUC 

Geometric 

Mean Ranker

RIPPER + COST (1:5) 63.91 56.36 65.59 26.72 70.3 60.8 65.55

RIPPER + COST (1:3) 74.04 40 81.32 31.43 65.29 57.03 61.16

RIPPER + SMOTE 200% 71.79 40 78.6 28.57 65.22 56.07 60.65

RIPPER + COST (1:4) 65.23 41.82 70.45 23.96 65.58 54.28 59.93

C4.5 + COST (1:4) 77.56 34.55 86.77 35.85 63.4 54.75 59.08

REMED (99%) 81.09 32.73 91.44 45 62.78 54.71 58.75

C4.5 + SMOTE 200% 73.08 34.55 81.32 28.36 63.29 53.01 58.15

C4.5 + COST (1:5) 72.76 32.73 81.32 27.27 62.62 51.59 57.11

C4.5 + SMOTE 100% 77.24 30.91 87.16 34 62.04 51.9 56.97

RIPPER + SMOTE 100% 75.64 29.09 85.6 30.19 61.33 49.9 55.62

C4.5 + COST (1:3) 77.24 27.27 87.94 32.61 60.67 48.97 54.82

RIPPER 81.41 1.82 98.44 20 50.73 13.39 32.06

 

Table 2. Evaluation metrics for the hepatitis dataset. 

Approach Accuracy Sensitivity Specificity Precision AUC 

Geometric 

Mean Ranker

REMED (99.99%) 78.95 66.67 81.97 47.62 74.41 73.93 74.17

RIPPER + SMOTE 200% 75.66 66.67 77.87 42.55 74.25 72.05 73.15

RIPPER + COST (1:5) 65.13 76.67 62.3 33.33 76.37 69.11 72.74

RIPPER + COST (1:4) 70.39 66.67 71.31 36.36 73.92 68.95 71.44

RIPPER + COST (1:3) 73.68 63.33 76.23 39.58 73.11 69.48 71.3

C4.5 + COST (1:5) 66.45 70 65.57 33.33 74.6 67.75 71.18

C4.5 + COST (1:4) 71.71 63.33 73.77 37.25 72.99 68.35 70.67

RIPPER + SMOTE 100% 80.26 53.33 86.89 50 70.15 68.07 69.11

C4.5 + SMOTE 200% 72.37 53.33 77.05 36.36 69.84 64.1 66.97

C4.5 + SMOTE 100% 80.92 46.67 89.34 51.85 67.87 64.57 66.22

C4.5 + COST (1:3) 73.68 50 79.51 37.5 68.79 63.05 65.92

RIPPER 82.24 33.33 94.26 58.82 63.03 56.05 59.54
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Table 3. Evaluation metrics for the breast cancer dataset. 

Approach Accuracy Sensitivity Specificity Precision AUC 

Geometric 

Mean Ranker

REMED (99%) 63.64 53.19 66.89 33.33 69.32 59.65 64.49

RIPPER + COST (1:5) 47.98 68.09 41.72 26.67 72.18 53.3 62.74

RIPPER + COST (1:4) 52.53 59.57 50.33 27.18 70.32 54.76 62.54

RIPPER + COST (1:3) 60.61 46.81 64.9 29.33 67.06 55.12 61.09

RIPPER + SMOTE 200% 60.1 42.55 65.56 27.78 65.63 52.82 59.23

C4.5 + SMOTE 200% 61.11 40.43 67.55 27.94 64.97 52.26 58.62

C4.5 + SMOTE 100% 65.15 36.17 74.17 30.36 63.69 51.8 57.75

C4.5 + COST (1:5) 52.53 44.68 54.97 23.6 65.81 49.56 57.69

C4.5 + COST (1:4) 60.61 38.3 67.55 26.87 64.22 50.86 57.54

RIPPER + SMOTE 100% 65.66 31.91 76.16 29.41 62.19 49.3 55.75

C4.5 + COST (1:3) 58.08 27.66 67.55 20.97 60.38 43.23 51.81

RIPPER 73.23 6.38 94.04 25 52.54 24.49 38.52

Table 4. Evaluation metrics for the hyperthyroid dataset. 

Approach Accuracy Sensitivity Specificity Precision AUC 

Geometric 

Mean Ranker

C4.5 + COST (1:49) 92.42 97.47 92.31 21.33 83.44 94.85 89.15

RIPPER + COST (1:49) 91.25 97.47 91.12 19.01 83.42 94.24 88.83

REMED (99.99%) 98.25 87.34 98.48 55.2 80.88 92.74 86.81

C4.5 + SMOTE 200% 98.22 79.75 98.62 55.26 78.74 88.68 83.71

RIPPER + SMOTE 200% 98.06 77.22 98.51 52.59 78 87.22 82.61

RIPPER + SMOTE 100% 97.93 72.15 98.48 50.44 76.47 84.29 80.38

C4.5 + SMOTE 100% 98.14 69.62 98.75 54.46 75.68 82.92 79.3

RIPPER 98.3 63.29 99.05 58.82 73.66 79.18 76.42

 

As we mentioned before, we are also interested on evaluating the performance of                       

the strategies in terms of comprehensibility. For this, we chose the over-sampling,               

cost-sensitive and one-class approaches that obtained the best results according                          

to the evaluation presented in the previous tables. In Tables 5 through 8 we show the 

rules systems produced by each of the chosen approaches. Finally, in order to make the 

rules systems generated with C4.5 more comprehensible in the tables, we only show             

the minority class predictions, and the predictions of the majority class are covered                

with the rule by default:  else  Non Sick. We did this because C4.5 always (for our 

datasets) generates more than one rule to predict the majority class examples, making less 

comprehensible the generated rules systems. 
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Table 5. Rules systems for the cardiovascular diseases dataset. 

C4.5 + SMOTE (200%) 

if DGV ≤ 7.641 and SBP ≤ 149.435 and SCV > -0.432 and SGV > 6.532 then Sick 

if DGV > 7.641 and SBP > 147.015 and SBP ≤ 149.435 and SCV > -0.432 then Sick 

if DGV > 6.536 and SBP > 149.435 and SBP ≤ 153.145 then Sick 

if DGV > 6.536 and SBP > 153.145 and SCV ≤ -0.324 and SGV ≤ 9.439 then Sick 

if DBP ≤ 95.074 and DGV > 6.536 and DGV ≤ 7.323 and SBP > 153.145 and   

   SCV ≤ -0.324 and SGV > 9.439 then Sick 

if DBP ≤ 82.566 and DGV > 6.536 and SBP > 155.89 and SCV > -0.324 then Sick 

if DBP > 82.566 and DGV > 6.536 and SBP > 153.145 and SCV > -0.324 then Sick 

else Non Sick 

RIPPER + SMOTE (200%) 

if DBP ≥ 73.274 and SBP ≥ 145.696 and SCV ≥ -0.481 then Sick 

if DGV ≤ 7.357 and SCV ≥ -0.348 and SGV ≥ 7.711 and SGV ≤ 9.617 then Sick 

if SBP ≥ 123.671 and SBP ≤ 125.306 and SGV ≥ 8.128 then Sick 

else Non Sick 

C.45 + COST (1:4) 

if SBP > 149.435 then Sick   

else Non Sick 

RIPPER + COST (1:5) 

if SBP < 124.732 and SCV > -0.517 then Sick 

if SBP > 123.054 then Sick 

if SBP > 144.328 and SGV < 9.143 then Sick 

if SBP < 128.543 and SGV < 9.143 then Sick 

else Non Sick  

REMED (99%) 

if SBP ≥ 142.1784 and SCV ≥ -0.4025 and SGV ≥ 9.2575 then Sick 

else Non Sick 

 

 

In the last step of our evaluation procedure, we compared the patterns described by 

the best systems of rules with well-known abnormal values to diagnose certain 

considered diseases. In Table 9 we show well-known abnormal values to diagnose 

Cardiovascular, Hepatitis and Hyperthyroid diseases. The Cardiovascular Diseases 

abnormal values are associated with hypertension problems (SBP and DBP). In the case 

of the Hepatitis disease, these abnormal values are related with levels of proteins (AL), 

enzymes (AP and SGOT), and products of degradation of the proteins (BL) in the blood. 

Finally, the abnormal values related to the Hyperthyroid disease are associated with some 

diagnostic tests of the thyroid hormones (T3, TT4, TSH and FTI). 
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Table 6. Rules systems for the hepatitis dataset. 

C4.5 + SMOTE (200%) 

if AL ≤ 2.6 then Sick 

if AL > 2.6 and AL ≤ 3.8 and BL ≤ 3.5 and SGOT ≤ 23 then Sick 

if AL > 2.6 and AL ≤ 3.8 and BL > 3.5 then Sick 

if AL > 3.8 and AL ≤ 4.4 and BL > 1.3 then Sick 

else Non Sick 

RIPPER + SMOTE (200%) 

if AL ≤ 3.3 and BL ≥ 1.83 then Sick 

if AL ≤ 3.6 and AP ≤ 145 and  BL ≥ 1.35 then Sick 

if AL ≤ 2.6  then Sick 

if AL ≤ 4.1 and AP ≥ 86 and AP ≤ 127 and BL ≥ 1.03 then Sick 

if AL ≤ 3.8 and AP ≥ 236 then Sick 

else Non Sick 

C4.5 + COST (1:5) 

if AL ≤ 2.8 then Sick 

if AL > 2.9 and AL ≤ 3.8 then Sick 

if AL > 3.8 and BL > 1.8 then Sick 

else Non Sick 

RIPPER + COST (1:5) 

if AL < 3.7 and BL > 1.6 then Sick 

if AL < 3.7 and BL < 0.7 then Sick 

else Non Sick 

REMED (99.99%) 

if AL ≤ 3.4 and BL ≥ 1.4 then Sick 

else Non Sick 

 

 

The extracted patterns from the best systems of rules are shown in Tables 10 through 

12 corresponding to the Cardiovascular Diseases, Hepatitis and Hyperthyroid datasets 

respectively. We did not show the results corresponding to the Breast Cancer dataset 

because we could not find specific well-known abnormal values to diagnose this disease. 

For the case in which a rules system makes reference to the same attribute in several 

rules, we calculated the average of this attribute according to the type of established 

association (positive: > or negative: <). 
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Table 7. Rules systems for the breast cancer dataset. 

C4.5 + SMOTE (200%) 

if CPw > 0.117 and LN ≤ 1 and SMme≤ 0.09011 and TS ≤ 2 then Sick 

if CPw > 0.117 and LN ≤ 1 and Pme ≤ 102.9 and Rse > 0.6226 and Sw ≤ 0.3706 and 

   SMme > 0.09011 and TS ≤ 2 then Sick 

if CPw > 0.117 and LN ≤ 1 and Rse > 0.6226 and Sw > 0.3706 and SMme > 0.09011 and  

   TS ≤ 2 then Sick 

if CPw > 0.117 and LN > 1 and SMme ≤ 0.11526 and Tse > 0.9857 and TS ≤ 2 then Sick 

if CPse ≤ 0.02149 and CPw > 0.117 and FDw ≤ 0.1224 and Rme ≤ 16.34 and 

   Tse ≤ 0.6863 and TS > 2 then Sick 

if CPse ≤ 0.02149 and CPw > 0.117 and FDw ≤ 0.1224 and Tse > 0.6863 and 

   Tse ≤ 1.6065 and TS > 2 then Sick 

if Cw ≤ 0.2544 and CPse ≤ 0.02149 and CPw > 0.117 and FDw ≤ 0.1224 and  

   Tse > 1.6065 and TS > 2 then Sick 

else Non Sick 

RIPPER + SMOTE (200%) 

if Pme ≥ 130.51 and Pw ≥ 177.03 and Tse ≤ 1.5142 and TS ≥ 2.1 then Sick 

if CPw ≤ 0.18526 and SMw ≥ 0.15051 and TS ≥ 2.1 then Sick 

if FDme ≤ 0.0612 and LN ≥ 2 and SMme ≥ 0.09547 then Sick 

if Ase ≤ 94.44 and Pse ≥ 4.945 then Sick 

else Non Sick 

C4.5 + COST (1:5) 

if LN ≤ 3 and Rw > 17.06 and Sme ≤ 0.2091 and SMw > 0.1482 and TS ≤ 2.1 then Sick 

if LN > 3 and Sme ≤ 0.2091 and TS ≤ 2.1 then Sick 

if CMw ≤ 0.4233 and Rse ≤ 0.5904 and SMme ≤ 0.105 and SMse ≤ 0.004821 and  

   Tse > 0.6123 and Tse ≤ 1.416 and TS > 2.1 then Sick   

if CMw ≤ 0.4233 and Rse ≤ 0.5904 and SMme > 0.105 and Tse > 0.6123 and  

   Tse ≤ 1.416 and TS > 2.1 then Sick   

if CMw > 0.4233 and Rse ≤ 0.5904 and Sme > 0.2301 and Tse ≤ 1.416 and  

   TS > 2.1 then Sick 

if Rse > 0.6422 and Tse ≤ 1.667 and TS > 2.1 then Sick 

if FDse > 0.01008 and Tse > 1.667 and TS > 2.1 then Sick 

else Non Sick 

RIPPER + COST (1:5) 

if Rw > 22.66 and TS > 2.5 then Sick 

else Non Sick 

REMED (99%) 

if Ame ≥ 981.05 and Aw ≥ 1419 and Rw ≥ 21.0218 and Pw ≥ 143.4 then Sick 

else Non Sick 

 

 



Symbolic One-Class Learning from Imbalanced Datasets     299 

 

 

Table 8. Rules systems for the hyperthyroid dataset. 

C4.5 + SMOTE (200%) 

if FTI > 155 and FTI ≤ 167 and TT4 > 149 and T3 ≤ 2.62 then Sick 

if FTI > 167 and TT4 > 142 and TSH ≤ 0.26 then Sick 

else Non Sick 

RIPPER + (200%) 

if FTI ≥ 167.2 and T3 ≥ 3.5 and TSH ≤ 0.023 then Sick 

if FTI ≥156 and T3 ≥ 2.57 then Sick 

if FTI ≥ 167.7 and TSH ≤ 0.199 and TT4 ≤ 200.6 then Sick 

if FTI ≥ 156 and TT4 ≥ 154.8 and TT4 ≤ 166.7 then Sick 

if FTI ≥ 163.6 and T3 ≤ 1.81 and TSH ≤ 0.24 then Sick 

if FTI ≥ 171 and TSH ≤ 0.2 then Sick 

else Non Sick 

C4.5 + COST (1:49) 

if FTI ≤ 155 and TT4 ≤ 22 and T3 > 4.1 then Sick 

if FTI > 155 and TT4 ≤ 25 then Sick 

if FTI > 155 and TSH ≤ 0.26 and TT4 > 142 then Sick 

else Non Sick 

RIPPER + COST (1:49) 

if FTI > 155 then Sick 

if TSH < 0.27 then Sick 

if T3 > 1.4 then Sick 

else Non Sick 

REMED (99.99%) 

if FTI ≥ 156 and TSH ≤ 0.25 and TT4 ≥ 143 and T3 ≥ 1.9 then Sick 

else Non Sick 

Table 9. Well-known abnormal values to diagnose 

cardiovascular, hepatitis and hyperthyroid diseases. 

      Disease Abnormal  Values 

Cardiovascular 
SBP > 140 mmhg 

DBP > 90 mmhg 

Hepatitis 

AL < 3.4 g/dl 

BL > 1.2 mg/dl 

AP > 147 UI/L 

SGOT > 34 UI/L 

Hyperthyroid 

FTI > 155 nmol/L 

T3 > 1.8 nmol/L 

TT4 > 140 nmol/L 

TSH < 0.4 mlU/l 
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Table 10. Patterns found for the cardiovascular diseases dataset. 

           Approach Patterns 

C4.5 + SMOTE (200%) 
SBP ≤ 150.672 ; SBP > 151.963 

DBP > 82.566 ; DBP ≤ 88.82  

RIPPER + SMOTE (200%) 
SBP ≤ 125.306 ; SBP > 134.684  

 DBP ≥ 73.274  

C4.5 + COST (1:4) SBP > 149.435  

RIPPER + COST (1:5) SBP < 126.638 ; SBP > 133.691 

REMED (99%) SBP ≥ 142.1784  

Table 11. Patterns found for the hepatitis dataset. 

             Approach Patterns 

C4.5 + SMOTE (200%) 

AL > 3 ; AL ≤ 3.7 

 BL > 2.4 ; BL ≤ 3.5 

SGOT ≤ 23 

RIPPER + SMOTE (200%) 

AL ≤ 3.5   

BL ≥ 1.4   

AP ≤ 136 ; AP ≥ 161 

C4.5 + COST (1:5) 
AL ≤ 3.3 ; AL > 3.35 

BL > 1.8 

RIPPER + COST (1:5) 
AL < 3.7   

 BL < 0.7 ; BL > 1.6 

REMED (99.99%) 
AL ≤ 3.4   

 BL ≥ 1.4   

Table 12. Patterns found for the hyperthyroid dataset. 

Approach Patterns 

C4.5 + SMOTE (200%) 

FTI > 161 ; FTI ≤ 167 

T3 ≤ 2.62 

TT4 > 145.5 

TSH ≤ 0.26 

RIPPER + SMOTE (200%) 

FTI > 163.58 

T3 ≤ 1.81 ; T3 ≥ 3.04 

TT4 ≥ 154.8 ; TT4 ≤ 183.35 

TSH ≤ 0.17 

C4.5 + COST (1:49) 

FTI > 155 ; FTI ≤ 155 

T3 > 4.1 

TT4 ≤ 23.5 ; TT4 > 142 

TSH ≤ 0.26 

RIPPER + COST (1:49) 

FTI > 155 

T3 < 1.4 

TSH > 0.27 

REMED (99.99%) 

FTI ≥ 156 

T3 ≥ 1.9 

TT4 ≥ 143 

TSH ≤ 0.25 
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6.   Discussion 

In this section we discuss the experimental results presented in Section 5. Besides,                 

we try to determine an issue previously outlined: up to what degree is it really appropriate 

to apply a sampling or cost-sensitive machine learning strategy to imbalanced datasets. 

We do this with the goal of trying to establish the best strategy to solve the considered 

class imbalance problem using the evaluation metrics, comprehensibility, and the 

reliability of the results, and compare the advantages and disadvantages of applying each 

strategy. 

6.1.   Evaluation Metrics 

First, we should consider how complex it is to apply a machine learning strategy to 

medical diagnosis. A clear example of this is the moderate performance achieved by the 

used classifiers in terms of evaluation metrics, because in almost all the cases the best 

performance did not reach a value of 80% (except for the Hyperthyroid dataset) in terms 

of AUC, geometric mean, and ranker.  Therefore, as we previously explained (in Section 

3) there are some inconveniences that make even harder the classification task in medical 

datasets, even more, we should also mention  that in order to apply any class imbalance 

strategy (such as over-sampling), it is necessary to determine additional parameters. This 

is the case of the appropriate over-sampling and cost ratio rates. This is why our one-

class approach offers an advantage, because the only parameter that it needs to set is the 

confidence level that it will use to select the significant attributes (99% or 99.99%), and 

this allows a more automated learning process.  

With respect to the REMED algorithm’s performance, it obtained competitive results 

achieving the 6th, 1st, 1st and 3rd place (according to the ranker measure) in the 

considered datasets. A difference with other symbolic one-class approaches such as 

BRUTE and SHRINK, where the goal is to reach high sensitivity through accurate positive 

rules without caring about the specificity loss, is that REMED achieved good sensitivity 

without a concomitant decrease of specificity. On the other hand, REMED significantly 

outperformed simple RIPPER (without sampling nor cost-sensitive strategies) in all the 

cases. 

With the goal of making a more complete analysis, we chose the best over-sampling 

and cost-sensitive approaches (with RIPPER or C4.5) for each dataset, and we followed 

the methodology presented by Mitchell in Ref. 54 to determine the level of significance 

of the comparison of REMED versus these approaches. We used the two-tailed paired t-

test method with a confidence level of 95%. The results of this comparison are shown in 

Tables 13 (performance averages) and 14 (two-tailed t-test comparison).  

We can appreciate in Figure 13 that the best performance average was for the cost-

sensitive approaches (72.55) followed by REMED (71.06) and then the over-sampling 

approaches (69.19), but without a statistical significant difference among them for the 

selected confidence level (95%).  

 
 



302    L. Mena & J. A. Gonzalez 
 

Table 13. Performance averages of REMED and the best over-sampling and cost-sensitive approaches. 

 

            Dataset 

Over-Sampling 

 Approaches 

Cost-Sensitive 

Approaches REMED

Cardiovascular Diseases 60.65 (RIPPER 200%) 65.55 (RIPPER 1:5) 58.75

Hepatitis 73.15 (RIPPER 200%) 72.74 (RIPPER 1:5) 74.17

Breast Cancer 59.23 (RIPPER 200%) 62.74 (RIPPER 1:5) 64.49

Hyperthyroid 83.71 (C4.5 200%) 89.15 (C4.5 1:49) 86.81

Average 69.19 72.55 71.06

Standard Deviation 11.53 11.84 12.28

Table 14. Results of two-tailed t-test for the performance comparison.  

 

Comparison 

Difference  

(Mean X – Y) 

Two-Tailed  

P value 

Statistical  

Significance 

REMED – Over-Sampling Approaches   1.87 0.543   Not Significant 

REMED – Cost-Sensitive Approaches –1.49 0.5188 Not Significant 

Cost-Sensitive – Over-Sampling Approaches   3.36 0.084   Not Significant 

Table 15. Precision averages of REMED and the best over-sampling and cost-sensitive approaches. 

 

Dataset 

Over-Sampling 

 Approaches 

Cost-Sensitive 

Approaches REMED 

Cardiovascular Diseases 28.57 (RIPPER 200%) 26.72 (RIPPER 1:5) 45 

Hepatitis 42.55 (RIPPER 200%) 33.33 (RIPPER 1:5) 47.62 

Breast Cancer 27.78 (RIPPER 200%) 26.67 (RIPPER 1:5) 33.33 

Hyperthyroid 55.26 (C4.5 200%) 21.33 (C4.5 1:49) 55.2 

Average 38.54 27.01 45.29 

Standard Deviation 13.05 4.91 9.07 

Table 16. Results of two-tailed t-test for the precision comparison.  

 

Comparison 

Difference  

(Mean X – Y) 

Two-Tailed  

P value 

Statistical 

Significance 

REMED – Over-Sampling Approaches     6.75 0.1469 Not Significant 

REMED – Cost-Sensitive Approaches   18.28 0.0497 Significant 

Cost-Sensitive – Over-Sampling Approaches –11.53 0.2308 Not Significant 

 

On the other hand, REMED always achieved the highest precision combined with the 

best performance in terms of the ranker measure; that is, it correctly classified more 

positive examples (TP) with a less number of FP. We show in tables 15 and 16 the 

results of the precision comparison between REMED and the best over-sampling and 

cost-sensitive approaches (according to the ranker measure). 

We can see in Table 16 that REMED significantly outperformed (P = 0.0497) the best 

cost-sensitive approach in terms of precision, this is important because despite that the 
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cost-sensitive approaches achieved the best performance average in terms of the ranker 

measure, these made it with the lowest precision average (27.01), while REMED 

achieved a competitive performance average with the highest precision average (45.29), 

generating rules systems with more precise positive rules. 

With respect to the selection of the best over-sampling strategy, over-sampling at 

200% (the highest sampling rate) it always gave better results than over-sampling at 

100%. In the case of the best cost-sensitive strategy, usually selected the highest possible 

cost producing the best results (except for C4.5 in the Cardiovascular Diseases dataset). 

On the other hand, the over-sampling and cost-sensitive approaches with RIPPER almost 

always outperformed the C4.5 results (except in the case of the Hyperthyroid dataset), 

this was expected because simple RIPPER is a good algorithm to generate positive rules, 

and when it is biased with over-sampling or cost-sensitive strategies it significantly 

improved its performance in terms of evaluation metrics. 

However, to be able to evaluate the overall performance of each approach, it is 

necessary to compare the performance of these strategies in terms of comprehensibility 

and reliability, and thus determine how dangerous (generating incomprehensible and 

invalid results because of the unmeasured use of these techniques) can be the use of 

sampling and cost-sensitive strategies combined with standard classifiers. In Sections 6.2 

and 6.3 we discuss these issues. 

6.2.   Comprehensibility 

As we can clearly appreciate in Tables 5 through 8, REMED almost always produced 

more comprehensible systems of rules than the rest of the class imbalance approaches. 

We conclude this because the degree of abstraction of the  rules systems was almost 

always larger, with the exception of C4.5 + COST (1:4) in the Cardiovascular Diseases 

dataset and RIPPER + COST (1:4) in the Breast Cancer dataset, where it was the same 

(Tables 5 and 7 respectively). Thus, REMED always generated rules systems with only 

one rule to predict the minority class examples. Therefore, this represents an important 

advantage in domains that require models with a high degree of comprehensibility, as it is 

the case of medical diagnosis tasks. 

Another advantage of REMED, specifically for medical domains, is that it does not 

produce rules with enclosed intervals (e.g. a ≤ x ≤ b). This is important because it could 

represent an inconvenience for medical diagnosis, where the risk of developing a disease 

is directly proportional to the increase or decrease of the values of certain medical 

attributes. Besides, the increment or decrement of a medical attribute could be related to 

two different diseases (e.g. Hypothyroid and Hyperthyroid), and therefore a rule with 

enclosed intervals could lead the medical staff to an erroneous medical diagnosis. 

Thus, we can appreciate how in almost all the cases the rest of the class imbalance 

approaches generated rules systems with enclosed intervals, or with rules that made 

reference to the same attribute but establishing different types of association between the 

attribute and the disease (positive and negative), and both situations could confuse the 

medical staff at the moment of validating the diagnosis knowledge. 
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6.3.   Reliability 

Finally, in relation with the reliability of the obtained patterns, we can observe in                

Tables 10 through 12 that in all the cases the rules generated by REMED presented 

patterns close to the well-known abnormal values considered for each disease as shown 

in Table 9, and with the same type of association between the attribute and the disease. 

This is how we prove that REMED’s results are reliable and even when other approaches 

might produce results with higher performance in terms of the evaluation metrics these 

are losing medical validity. We think that we can use these results to determine the level 

of sampling and cost-sensitive ratio that should be used before falling in an overfitting 

problem. It is also important to point out that the patterns obtained by REMED to 

diagnose each disease, were obtained directly from the unique REMED’s rule to predict 

the minority class examples in each medical dataset, while for the rest of the class 

imbalance approaches, the corresponding pattern was almost always obtained from the 

average of the partitions of several rules (except for C4.5 + COST (1:4) in the 

Cardiovascular Diseases dataset and RIPPER + COST (1:49) in the Hyperthyroid 

dataset). 

In the case of the Cardiovascular Diseases dataset (Table 10), REMED generated the 

closest pattern (> 142.1784) to the SBP abnormal value (> 140 mmhg), while the rest of 

the class imbalance approaches generated average patterns that were not so close and 

almost always with both types of association (positive and negative), except for C4.5 + 

COST (1:4). With respect to the DBP abnormal value (> 90 mmhg), REMED excluded 

this attribute of its rules system, while RIPPER + SMOTE (200%) presented an average 

pattern with the same type of association but it was not so close (≥ 73.274), and C4.5 + 

SMOTE (200%) was closer (≤ 88.82) but with the opposite type of association. 

In the Hepatitis dataset (Table 11), REMED generated patterns (AL ≤ 3.4 and                 

BL ≥ 1.4) close to the AL and BL abnormal values (AL < 3.4 g/dl and BL > 1.2 mg/dl). 

This time RIPPER + SMOTE (200%) also obtained average patterns (AL ≤ 3.5 and                   

BL ≥ 1.4) close to these abnormal values just as REMED did, but also included rules                   

with patterns (AP ≤ 136 ; AP ≥ 161) not so close and with both types of association for 

the AP abnormal value (AP > 147 UI/L). Another approach that obtained patterns close           

to the AL abnormal value was C4.5 + COST (1:5), but it included the two types of 

association (AL ≤ 3.3 ; AL > 3.35) and it did not obtain a close pattern (BL > 1.8) to the 

BL abnormal value. The C4.5 + SMOTE (200%) and RIPPER + COST (1:5) approaches 

obtained AL and BL  patterns that were not close to the well-known abnormal values and 

included both types of associations, even C4.5 + SMOTE (200%) generated a not so close 

pattern and with the opposed association: SGOT ≤ 23, while the SGOT abnormal value is 

SGOT > 34 UI/L. 

Finally, for the Hyperthyroid dataset (Table 12), REMED generated patterns                      

(FTI ≥ 156 ; T3 ≥ 1.9 ; TT4 ≥ 143 ; TSH ≤ 0.25) really close to almost all the well-                  

known abnormal values. It obtained the closest pattern to the T3 abnormal value                    

(T3 > 1.8 nmol/L as shown in Table 9). The only abnormal value for which REMED did 

not obtain a close pattern was the TSH abnormal value (TSH < 0.4 mlU/l), but the rest of 



Symbolic One-Class Learning from Imbalanced Datasets     305 

 

 

the class imbalance approaches could not either obtain patterns close to this abnormal 

value. In the case of the C4.5 and RIPPER + COST (1:49) approaches, they obtained 

exact patterns for the FTI abnormal value (FTI > 155 nmol/L), but patterns far away from 

the T3 abnormal value with an opposite type of association (T3 < 1.4) in the case of 

RIPPER, while C4.5 + COST (1:49) generated patterns with both types of association for 

both, the FTI abnormal value (FTI > 155 ; FTI ≤ 155) and for the TT4 abnormal value 

(TT4 ≤ 23.5 ; TT4 > 142). The C4.5 and RIPPER + SMOTE (200%) approaches always 

obtained patterns with values not so close to the well-known abnormal values and with 

both types of association, even in the case of C4.5 + SMOTE (200%) with an opposed 

type of association (T3 ≤ 2.62) for the T3 abnormal value. 

It is important to point out that we compared the generated patterns with abnormal 

values to diagnose certain diseases, only to measure the reliability of the patterns in terms 

of their medical validity for well-known medical attributes, however, it is clear that the 

main goal of machine learning in the medical diagnosis task is to find new patterns to 

provide the medical staff with a novel point of view about a given problem, and this 

could be the case of the patterns generated for the Breast Cancer dataset or the blood 

pressure variability (global and circadian) in the Cardiovascular Diseases dataset. 

7.   Conclusions and Future Work 

We can conclude from the obtained results, that REMED could be a very competitive 

approach to work with class imbalance datasets, in particular for medical diagnosis 

datasets because, as we could see, it possesses the desired features to solve medical 

diagnosis tasks: 1) good overall performance, because REMED reached a good overall 

performance in terms of evaluation metrics, comprehensibility and reliability, 2) the 

comprehensibility of diagnostic knowledge, because REMED always generated rules 

systems with the same or a larger degree of abstraction than the rest of the class 

imbalance approaches (generating one rule to predict minority class examples 

independently of the number of examples n and initial attributes m), 3) the ability to 

support decisions, because the fact that the rules systems generated from REMED are 

always supported by a selection of attributes with high confidence levels (99% or 

99.99%), could provide the medical staff with enough trust to use these rules in practice, 

and 4) the ability of the algorithm to reduce the number of medical tests necessary to 

obtain a reliable diagnosis, because REMED uses the simple logistic regression model to 

only select attributes strongly associated with the studied disease. 

With respect to the implementation of the REMED algorithm as a general strategy to 

work with class imbalance problems, we can appreciate how its overall performance was 

better than that of the rest of the class imbalance approaches, because REMED showed to 

be competitive with the best over-sampling and cost-sensitive approaches in terms of the 

evaluation metrics used, ranked as 6th, 1st, 1st and 3rd and without statistical significant 

difference with respect to these approaches, but significantly outperformed the best cost-

sensitive approaches in terms of precision. Besides, REMED always generated more 

general systems of rules and therefore, with a lower degree of overfitting. However, the 
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most important aspect to consider is the reliability of REMED’s patterns with respect to 

their medical validity, because these patterns always presented values with the same type 

of association and close to the well-known abnormal values considered for each disease, 

while the other class imbalance approaches that ranked in the first positions in terms of 

evaluation metrics (usually using a large over-sampling and cost ratio rate) presented a 

lower performance in terms of reliability. Therefore, the bias introduced through the 

over-sampling and cost-sensitive strategies, although could improve the performance in 

terms of evaluation metrics, also generated biased knowledge with a high degree of 

overfitting that might not be applicable to the general population. On the other hand, the 

REMED’s knowledge extraction process is more automated, because it is not necessary to 

establish an appropriate over-sampling rate or cost ratio (before running the algorithm), 

and the patterns can be obtained directly from the unique generated rule to predict the 

minority class examples. 

Finally, REMED does not pretend to be the panacea of machine learning in medical 

diagnosis, but a good approach with the previously mentioned features to solve medical 

diagnosis tasks. On the other hand, the results obtained with REMED could be used to 

establish the adequate over-sampling rate or cost ratio parameters required by other 

approaches. We will continue with our research to find an automatic way to adjust these 

parameters to produce patterns similar to those found with REMED (which are more 

reliable as they adjusted to well-known risk factors) and then reduce the overfitting level 

of algorithms using these techniques. For the application of REMED to other types of 

class imbalance domains, we first should increase its versatility, including modifications 

that allow it to consider discrete attributes, to work with multi-class problems, and in 

some cases, to generate rules systems with enclosed intervals. 
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