Ronchi test with variable-frequency rulings

1 Introduction

For many years, the Ronchi test has been considered a very powerful optical test for concave optical surfaces and complete optical systems. Some of its advantages are that it is quick to understand and simple to assemble in the laboratory or optical workshop. According to Cornejo-Rodríguez, the pattern produced by the Ronchi test has two equivalent interpretations. One is geometrical, whereby the Ronchi fringes can be studied as shadows of the ruling bands, and the other is from a physical point of view, whereby the fringes are generated by diffraction and interference. Moreover, when a ruling is placed near the center of curvature of a mirror, the image of the grating is superimposed on the grating itself, generating a kind of moiré pattern, and it can be applied to test the quality of an optical surface. If the angle between the two gratings is increased, then the spacing decreases. On the other hand, Creath and Wyant have mentioned that if the gratings are not identical straight lines, then the moiré pattern does not have equal-spaced fringes.

In this work, we superimpose Ronchi rulings with different frequencies on an LCD without a tilt angle between them. Therefore the resulting ruling has variable frequency, since the spacing has thinner lines than the classical Ronchi rulings; thus we can enlarge the spatial frequency of the ruling in order to test an optical surface within a single ruling.

This paper is organized as follows: In Sec. 2, background is given. In Sec. 3 the LCD calibration method is explained. In Sec. 4 the experimental setup is presented. The main experimental results are discussed in Sec. 5. Our conclusions are presented in Sec. 6.

2 Background

According to Mora-González and Alcalá-Ochoa, the typical Ronchi ruling has been replaced by an LCD as a low-cost display to test polished mirrors. Also, Alcalá-Ochoa et al. have used the classical Ronchi test to measure flat surfaces by modifying the classical Ronchi setup, so that the Ronchi rulings are computed and displayed by the LCD. Furthermore, Castro-Ramos et al. have done phase shifting by means of an LCD.

We have found advantages in the use of an LCD in that it is possible to change the structure of the ruling easily without physical contact. It is important to mention that not only several classical rulings with unequal widths of lines, such as positive or negative rulings (Murty and Cornejo-Rodríguez et al.), can be displayed by means of an LCD, but also Katyl-type rulings (Katyl et al.).

On the other hand, the LCD introduces some complex diffraction effects, as when a convergent optical system has...
been tested with a Ronchi test and the LCD is used as an amplitude sinusoidal grating (Mora-González and Acalá-Ochoa). In other work, a qualitative study of the relation between LCD pixel shape and far-field diffraction patterns has been obtained by Fernandez et al. and also a novel proposal for optical testing using a single-slit system with a spatial light modulator (SLM) to avoid several diffraction effects is presented by Liang and Sasian.

An interesting consequence of using a variable-frequency ruling in optical testing can be observed by comparing it with the null Ronchi-Hartmann test used by Luna et al. In that paper, the authors proposed a criterion to estimate the optimal width of a Ronchi fringe by using optical and statistical conditions of the deformations on the surface under test and the detector size. With this method, it is possible to investigate different magnitudes of peak-valley errors on the figure of the surface. When a variable-frequency ruling is used, it is possible to observe simultaneously different defects, so that to search for errors on the order of $\lambda/2$, a Ronchi ruling of 50 lines per inch is suitable. If now we are looking for errors on the order of $\lambda/6$, a Ronchi ruling of 86 lines per inch can be used, and for errors of $\lambda/10$, a Ronchi ruling of 133 lines per inch. Therefore, if a variable-frequency ruling with three different frequencies is simultaneously contained in a single ruling instead of using a classical Ronchi ruling, it is possible simultaneously to observe errors on the surface over a larger dynamic range of detection from $\lambda/2$ to $\lambda/10$.

In this work we analyze the use of multiple frequencies within a Ronchi ruling by using an LCD. In the classical use of this technique, a ruling with only one frequency for its lines yields information about irregularities on the sur-
face being tested, but the size scales, being related to the spatial frequency, lie within a limited range. Thus, to enlarge the range of spatial frequencies, several rulings must be employed separately. We generated our variable-frequency ruling using an LCD, which allows an easy change of the ruling spacing. Here, we combine several frequencies within a single ruling; consequently one can observe a wider range of spatial frequencies.

3 LCD Calibration Method

The proposed LCD calibration method displays a Ronchi ruling image of 1024×768 pixels on an LCD. Our method is based on two scaling factors. The first one relates the physical dimensions of the LCD (25.4 mm=1 in.) and the size of the image produced by the ruling (1024 pixels). Thus, the first scaling factor is obtained as follows:

\[
1 \text{ pixel} = \frac{(1 \text{ pixel})}{1024 \text{ pixels}} \times \frac{25.4 \text{ mm}}{0.024 \text{ mm}} = 0.0009 \text{ in.}
\]

The second factor is related to the line width (\(\Delta L\)) in a Ronchi ruling of 50 clear lines and 50 opaque lines per inch,

\[
\Delta L = (1 \text{ line}) \times \frac{25.4 \text{ mm}}{p} = 0.254 \text{ mm},
\]

where \(p=100\) lines. The line width in pixels (\(\Delta L_{\text{pix}}\)) viewed from the Ronchi ruling image can be obtained when the size of a pixel and a line are both expressed in millimeters; thus the following relation is obtained:

\[
\Delta L_{\text{pix}} = \frac{0.254 \text{ mm}}{0.024 \text{ mm}} = 10 \text{ pixels}.
\]

Accordingly, a computer program displayed on the LCD 50 clear lines and 50 opaque lines, with a spacing of approximately 10 pixels between them; thus a Ronchi ruling image of 1024×768 pixels is input to the LCD. See Fig. 1(a).

Three types of Ronchi rulings of 50, 86, and 133 lines per inch were generated digitally, following the two scaling factors described. Then, the three images were added to obtain a variable-frequency ruling image on the LCD, such
as that shown in Fig. 1. Finally, we notice that the quality of the Ronchi ruling image can be improved obtaining the negative of the image by means of digital image-processing software.

4 Experimental Setup

In Fig. 2a, the LCD is shown on a mount, which allowed sufficient lateral displacement of the ruling to scan the whole surface. Furthermore, to obtain homogeneous light an axial displacement is introduced, producing classical defocusing in order to generate different numbers of fringes. The axial displacement was obtained with nanometric screws.

The performance of Ronchi tests using the LCD and the classical ruling is the same. In Fig. 2b, the wavefront produced by the point source sends the ruling information to the mirror under test, and when the light returns, it impinges on the LCD, where the image of the ruling is being displayed. Thus, the Ronchigram is acquired by a CCD placed in the observation plane in the Ronchi test.

The LCD used for this experiment with the Ronchi test is a spatial light modulator (XGA2 SLM), which displayed binary patterns with a spatial resolution of 1024 × 768 pixels. In order to observe an image on the LCD, two additional polarizers rotated 90 deg for maximum contrast are required. The first polarizer is placed on the side that goes to the mirror under test, and the second polarizer on the side of the observation plane of the Ronchi test; see Fig. 2c.

5 Experimental Results

The surface under test was a quasiparabolic mirror (QPM) (rc = 2400 mm and d = 150 mm) in a final polishing process, and subjected to three particular deformations. The deformations were produced with a polishing tool statically working with a polisher of 1-μm grit for periods of 1 min, 30 s, and 20 s for hole 1, hole 2, and hole 3 respectively. See Fig. 3a and 3b.

The Zaygo interferometer (essentially a noncontact Fizeau interferometer with a spherical reference lens) was

Fig. 5 Ronchigrams obtained with a classical Ronchi ruling of 86 lines per inch to scan the deformations on the mirror.

Fig. 6 Ronchigrams obtained with a classical Ronchi ruling of 100 lines pr inch to scan the deformations on the mirror.

Fig. 7 Ronchigrams obtained with a classical Ronchi ruling of (a) 133 and (b) 170 lines per inch, maintaining the initial defocusing of Fig. 6.
used for measuring the defects on the QPM by utilizing the local distance of the lens and the curvature radii of the surface under test in an interference plane. The wavelength of a He–Ne laser ($\lambda = 632.8 \text{ nm}$) was used as a reference. The deformations on the mirror were measured using the software IRAF (developed for astronomical purposes) by applying a Fourier algorithm to the interferogram. The first order of the obtained Fourier transform is filtered using an elliptical function, and the inverse Fourier transformation is applied, generating a wrapped phase. In Fig. 3, the height information, or shape of the optical surface, is derived when the phase is unwrapped, and the grayscale is in nanometers. Therefore it is easy to sketch a line on the surface deformations to obtain their maximum and minimum (x,y) coordinates. Thus, the depth of hole 1 was measured as $h_1 = 214.64 \text{ nm} = \lambda / 3$, with a rms of $\Delta h_1 = 10.5 \text{ nm}$. For hole 2, $h_2 = 56.85 \text{ nm} = \lambda / 11$, with a rms of $\Delta h_2 = 4.71 \text{ nm}$. And finally, for hole 3, $h_3 = 34.74 \text{ nm} = \lambda / 18$, with a rms of $\Delta h_3 = 2.85 \text{ nm}$. In Fig. 3(e), a zooming of the Foucaultgram image of the surface under test is shown. Here the three deformations on the mirror can be observed.

Some Ronchigrams were obtained for the same surface deformations, displaying on the LCD a ruling of 50 lines per inch. It was noticed that by the lateral displacement of the ruling contained on the LCD, hole 1 is presented as a small spot in Fig. 4(a), 4(c), 4(d), and 4(f). Hole 2 is barely observed in Fig. 4(c) and 4(f), and hole 3 is not evident. Video 1 shows the lateral shifting of a classical Ronchi ruling in the Ronchi test.

In Fig. 5, the resolution in the Ronchi test has been increased by displaying on the LCD a ruling of 86 lines per inch.

Fig. 8 Ronchigrams obtained with a variable-frequency ruling formed by three classical Ronchi rulings of frequency 50, 86, and 133 lines per inch.

Fig. 9 Ronchigrams obtained with a variable-frequency ruling formed by three classical Ronchi rulings of frequency 100, 133, and 170 lines per inch.

Video 1 Lateral shifting of a classical Ronchi ruling in the Ronchi test.

URL: http://dx.doi.org/10.1117/1.3072956.1
we observe blurred Ronchigrams, and therefore the deformations on the mirror can be confused. Only is hole 1 evident in all Ronchigrams; hole 2 and hole 3 are not evident even when the LCD is laterally shifted.

In Fig. 6 the resolution in the Ronchi test is again increased by displaying on the LCD a ruling of 100 lines per inch (one line = 0.127 mm). As can be seen, hole 1 alone is evident when the LCD is laterally shifted. Thus we have similar results to those obtained in Fig. 5.

Also, one Ronchi ruling with 133 lines per inch (one line = 0.095 mm) and another with 170 lines per inch (one line = 0.074 mm) were observed when the variable-frequency ruling was laterally shifted. As can be seen in Fig. 9, hole 1 alone is evident when the ruling is laterally shifted. This occurs when a fine line of a substructured ruling is seen when the LCD is laterally shifted. This indicates that if we work with a density \(\geq 170 \) lines per inch, then overlap of the different orders of the ruling occurs when the LCD is used as a ruling.

6 Conclusions

In this work, we have introduced an alternative method that uses a variable-frequency ruling for optical testing. In order to show the dynamic range of detection of the Ronchi test, an optical surface was tested and the defects in the surface were observed when the variable-frequency ruling was laterally shifted. With the variable-frequency ruling it was possible to observe deformations \(\lambda / 11 \). Finally, the effects of pixelation produced by the LCD were reduced by moving the LCD far beyond the curvature radii.

The effects of diffraction produced by the LCD in the experimental setup were not considered in our analysis. However, a larger dynamic range of detection could be established by means of the implemented variable-frequency ruling.

Acknowledgments

We would like to express our gratitude to CONACYT-México for support within project No. 39678, and also to the technician Salvador Quechol from the INAOE, Puebla, México.

References

Javier Salinas-Luna is currently a researcher at the Centro Universitario de Los Valles de la Universidad de Guadalajara, Ameca, Jalisco, México. Dr. Salinas-Luna received his PhD degree (2002) in science (optics) from the Instituto Nacional de Astrofísica Óptica y Electrónica, INAOE, Puebla, Pue., México. He had a postdoctoral appointment at IAU-NAM, Ensenada, B. Cfa., México (2004), where he performed research on cophasing of segmented optical surfaces. From 2004 to 2006, he worked in CCMC-UNAM at Ensenada on the project on bidimensional acquisition of optical spectra for plasma analysis, where optical spectroscopy is used to control the growth of a thin film.

Fermín Granados-Agustín is a researcher in the Optics Department of the National Institute of Astrophysics, Optics, and Electronics (INAOE), México. He received his BS degree in physics from the National University of Mexico (UNAM) in 1993. He received his MS degree and PhD degree in optics, respectively, in 1995 and 1998, both from the INAOE. He is a national researcher for the National System of Researches, Mexico. He held a postdoctoral position at the Mirror Lab of the Steward Observatory at the University of Arizona in 1999. He has been the head of the optical shop at the INAOE since 2005. His research interests include optical information, interferometric optical testing, and instrumentation.

Alejandro Cornejo-Rodríguez received his physics degree in 1964 from the Mexican National Autonomous University, his MS degree in optics in 1968 from Rochester University, and his PhD in optics in 1982 from Tokyo Institute of Technology, Japan. He is now a senior researcher in the Optics Department at the National Institute of Astrophysics, Optics, and Electronics. His research interests include optical metrology, optical surface testing, and optical image processing.

Esteban Luna received his engineering degree from the Universidad Autónoma Metropolitana (UAM), México, in 1988, and his MS and PhD in optics from Instituto Nacional de Astrofísica Óptica y Electrónica in 1991 and 1996, respectively. A staff optician in the Observatorio Astronómico Nacional since 1990, he is involved in the study of active optics and design of astronomical instruments and hydrodynamic polishing techniques.

Juan Jaime Sánchez-Escobar received a Bachelor of Engineering in electronics from the Tuxtla Gutiérrez Technological Institute, Chiapas, México, in 1996, and a PhD in 2002 from the National Institute of Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He has been with the Centro Universitario de los Valles (UDG) since 2008. His research interests include techniques for 2-D phase unwrapping and phase retrieval as applied as to 3-D machine vision and industrial inspection. His background is in digital image processing and machine learning applications to solve inverse problems in optical metrology.

Juan Manuel Hernández-Cid received the BS degree from CETI in 1982, and the PhD degree from INP, Toulouse, France, in 1987. He worked as a postdoctoral fellow at the University of Bradford, UK, during the 1991–92 academic year. Currently, he is a professor in the Department of Computer Science and Engineering, University of Guadalajara at C. U. de los Valles. He is a member of the IEEE (USA) and the IET (UK). His research interests, within power electronics, include hybrid and alternative energy systems and power processing.