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Abstract Many problems such as voice recognition, speech recognition and many
other tasks have been tackled with Hidden Markov Models (HMMs). These prob-
lems can also be dealt with an extension of the Naive Bayesian Classifier (NBC)
known as Dynamic NBC (DNBC). From a dynamic Bayesian network (DBN)
perspective, in a DNBC at each time there is a NBC. NBCs work well in data sets
with independent attributes. However, they perform poorly when the attributes are
dependent or when there are one or more irrelevant attributes which are dependent
of some relevant ones. Therefore, to increase this classifier accuracy, we need a
method to design network structures that can capture the dependencies and get rid
of irrelevant attributes. Furthermore, when we deal with dynamical processes there
are temporal relations that should be considered in the network design. In order
to learn automatically these models from data and increase the classifier accuracy
we propose an evolutionary optimization algorithm to solve this design problem.
We introduce a new encoding scheme and new genetic operators which are natural
extensions of previously proposed encoding and operators for grouping problems.
The design methodology is applied to solve the recognition problem for nine hand
gestures. Experimental results show that the evolved network has higher average
classification accuracy than the basic DNBC and a HMM.

M. A. Palacios-Alonso · C. A. Brizuela (B)
Department of Computer Science, CICESE Research Center,
Km. 107 carretera, Tijuana-Ensenada, Ensenada 22860, Baja California, México
e-mail: cbrizuel@cicese.mx

M. A. Palacios-Alonso
e-mail: mpalacio@cicese.mx

L. E. Sucar
Department of Computer Science, Instituto Nacional de Astrofísica, Óptica y Electrónica,
Luis Enrique Erro N. 1, Santa Maria Tonantzintla, Puebla 72840, México
e-mail: esucar@inaoep.mx



22 M.A. Palacios-Alonso et al.

Keywords Naive Bayes classifier · Dynamic Bayesian networks ·
Genetic algorithms · Gesture recognition

1 Introduction

Many problems such as voice recognition, speech recognition, images processing and
many other tasks have been tackled with Hidden Markov Models (HMMs) [18].
These problems can also be dealt with an extension of the Naive Bayesian Classifier
(NBC) known as Dynamic NBC (DNBC) [1, 2]. The DNBC has shown better
performance than the HMM when the number of training samples is small. The NBC
is a very powerful method to deal with data where the attributes are independent
given the class. However, it is known that when the attributes are dependent, or when
one or more irrelevant attributes have some degree of dependency with relevant
ones, then the performance of this simple classifier decreases considerably [16]. This
fact has motivated the study of methodologies that can help having better network
designs to cope with this performance deterioration problem. Tree Augmented
Networks (TANs) [8] are structures that introduce directed arcs between attributes,
the class variable has no parents and each attribute has as parents the class variable
and at most one other attribute. The disadvantage is that the structure becomes more
complex as the number of attributes grows as it also happens with the inference
algorithms used in the applications of this model. The basic TAN classifier does
not consider temporal relations and attribute selection. To maintain a NBC as the
basic structure in the dynamic model, it is required a method capable of grouping
together attributes that are dependent and getting rid of irrelevant ones. If we apply
this classifier to model dynamical processes, then temporal relations should also be
taken into account. From this perspective, a DNBC is a dynamic Bayesian network
whose base structure is a NBC. It is like a HMM in which the observation node has
been decomposed in a number of attributes. The DNBC as opposed to NBC needs
to find the optimal number of states in the hidden state variable as for HMMs. That
is, the design problem requires us to provide the number of states in the hidden
state variable and, most importantly, the association of variables corresponding to
the children nodes. The exponential nature of the exact computation of this design
problem has motivated the development of alternative non exhaustive procedures.

Two schemes can be identified to solve the general structural learning problem:
model selection by search and score [7, 9], and by dependency tests [16, 21]. A
recently proposed method that falls in the second category was proposed by [13],
the method learns an optimal NBC, at the same time that performs discretization.
This method contributes interesting ideas to our approach since it proposes the
grouping and elimination of attributes. Recently Martinez-Arroyo and Sucar [12]
extend their work to learn DNBC and compare its performance with the one
obtained by HMMs. Our approach, that falls in the first category, proposes to use an
evolutionary algorithm to determine near optimal solutions for the number of states
and association of attributes. The DNBC combine the advantage of a NBC—simple
structure and algorithms, with those of a HMM—the capacity to model complex
dynamic processes. We learn the base structure (NBC) and the transition model
(number of states of the hidden state variable and transition parameters) at the
same time.
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Evolutionary computation has widely been applied to the design of network
structures [11, 14, 20, 22]. These approaches belong to model selection by search
and score method. Most of them concentrate on the structure evolution of static
BNs [20]. It is worth noting that these approaches can be easily extended to deal
with DBNs, however none of them try to evolve nor the groups, neither the number
of states of the hidden state variable. Our main contribution here is the proposal
of a new approach to evolve DNBCs in order to group dependent attributes and
eliminate irrelevant ones.1 To achieve this we propose a special coding scheme,
new corresponding genetic operators, and a novel fitness function evaluation that
considers the classification accuracy on a partial data set. This methodology has been
applied to learn DNBCs for gesture recognition, showing a significant improvement
over the basic models.

The rest of the paper is organized as follows. Section 2 formalizes the problem and
summarizes relevant related work. Section 3 describes the proposed evolutionary
learning approach. In Section 4 the experimental results are presented, and we
conclude with a summary and directions for future work in Section 5.

2 The Problem

The problem we are dealing with has to do with the design of DBNCs. In order to
define this design problem we need to introduce first some preliminary concepts.

2.1 Dynamic Naive Bayesian Classifiers

This model is composed of the set A = {A1
n, A2

n, . . . , AT
n }, where each At

n for t =
1, . . . , T is a set of n instantiated attributes or observation variables generated by
some dynamic process, and C = {C1, C2, . . . , CT} the set of instances of the hidden
state variable (or states) Ct, generated by the same process at each time t.

A DNBC, M = (S, θ), where S is the structure and θ the parameters, has the
following general probability distribution function:

P(A, C|M ) = P(C1|M )

T∏

t=1

n∏

j=1

P(At
j|Ct, M )

T∏

t=2

P(Ct|Ct−1, M ) (1)

where:

– P(C1|M ) is the initial probability distribution for the hidden state variable C1,
– P(At

j|Ct, M ) is the probability distribution of an attribute given the states of the
hidden state variable over time.

– P(Ct|Ct−1, M ) is the transition probability distribution among states over time.

The product
∏n

j=1 P(At
j|Ct, M ) stands for the naive assumptions of conditional

independence among attributes given the hidden variable state. To represent the
model, we rely on two standard assumptions: i) the process is Markovian, which
establishes independence of the future respect to the past given the present, and ii)

1An earlier version of this paper was presented as a conference paper [15].
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the process is stationary, i.e., the transition probabilities among states are not time
dependent.

A DNBC can be seen as a DBN, in particular as an extension of HMMs. It is like a
HMM in which the observation node has been decomposed in a number of attributes
and there is one hidden node (hidden state variable). From the DBN perspective,
it is a particular class of DBN that has as base structure a naive Bayes classifier.
Following the graphical representation of probabilistic independence [17], a DNBC
model unrolled two times can be depicted as shown in Fig. 1. Although it is possible
to describe these models using an analytical form, it is simpler and clearer to describe
them under a graph representation. This representation allows us to consider well-
known techniques for probability propagation in Bayesian networks [17] and the EM
algorithm for training with missing data [18].

In order to avoid the loss of temporal information, we can consider all the
information generated by the dynamic process as attributes in a sequence, without
the need of discretizing activity observations on a constant number of samples. Then,
the state that best explains the observations at each time t can be found. The effects
of previous states on the recognition of the current state is described in terms of the
transition probability distribution P(Ct|Ct−1, M ).

After this brief introduction of DNBC we need to motivate our formulation of
the problem. As we mentioned before, NBCs perform poorly on data sets with
dependent attributes or when there exist irrelevant attributes that have a degree
of dependency with the relevant ones [16]. Therefore, in order to design a more
accurate classifier we need to discover which attributes are dependent and which
are irrelevant.

With this in mind we can define our problem. To do so let us first restrict our
universe of network structures S to the NBC type of structures S′, i.e. graph having
a single parent node, representing the hidden state variable, and its children nodes
that represent the grouping G of variables or attributes. Once a grouping G of the
variables is given, the above mentioned techniques can be used to compute near
optimal parameters for that grouping. Then, the problem is to decide which grouping
G to use and the number of states in the hidden state variable, with the optimum
being the one grouping together dependent attributes and leaving aside the irrelevant
ones. If we use brute force to determine this optimal structure (grouping) and its
corresponding optimal number of states (that process the temporal information), in
a problem with n variables (attributes), then we need to search in a solution space of
size given by the following equation:

|S′
n| =

(
n∑

i=1

(
n

n − i

)
Bi

)
∗ ns, (2)

Fig. 1 A Dynamic Naive
Bayes Classifier unrolled two
times. C represents the hidden
state variable, and A1 ... An
the attributes that are assumed
independent given the state
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where Bi is the Bell number of i elements [3] and ns is the number of states in
the hidden state variable. It is not hard to see that S′

n grows exponentially with
n. Therefore, we cannot exhaustively explore the solution space even for a small
number of variables and we need an alternative to the brute force to find the optimal
or near optimal grouping G and number of hidden states, ns.

2.2 Related Work

Larrañaga and Posa [11] used a solution’s representation based on a particular
variable ordering, this approach evolved the variable ordering that is the input for
the K2 algorithm to learn the network’s structure. The approach proposed by Wong
et al. [22] uses evolutionary programming to learn BNs and the metric to evaluate
the networks is the minimum description length principle. This approach does not
need to have a complete ordering as input and can learn multiple-connected network
structures. Another interesting approach is the one presented by Myers et al. [14],
they evolved the structure and the missing data. The missing values are represented
by a string of data and the structure is represented by an adjacency list, the Bayesian
Dirichlet score is used to evaluate the individuals. Wong and colleagues [22] present
an improvement to their previous algorithm, they present a hybrid approach, use de-
pendency analysis approach for checking the validity of a conditional independence
assertion, which reduces the search space by excluding networks that contain invalid
edges. Ross and Zuviria [20] present another approach to deal with the learning of
DBNC’s, given a sample sequence of multivariate data. They use a genetic algorithm
to synthesize a network structure that models the causal relationships that explain
the sequence, this approach uses a multi-objective evaluation strategy. The multi-
objective criteria is established by the Bayesian information criterion score, they
separate the log-likelihood and the complexity. They compare the performances
of the single-objective genetic algorithm with their multi-objective algorithm to
learn biological networks. General methods for learning DBNs do not consider
attribute selection and defining the number of states in the hidden state variable,
so they are not directly applicable to this problem. Recently Martinez-Arroyo and
Sucar [12] propose a new approach to learn DNBC’s and compared it with HMMs.
The method determines: the number of hidden states, the relevant attributes, the
best discretization, and the structure of the model. The resulting models improve
in recognition rates compared to HMMs, and at the same time they are simpler.
However, the method is based on a simple search strategy that tests the different
design parameters in a predefined order; we explore an alternative approach based
on evolutionary computation that varies all aspects at the same time, so it has a higher
probability of obtaining a better configuration.

3 The Proposed Evolutionary Learning Approach

Our DNBC has a structure like the one depicted in Fig. 2. There is a single
hidden node, i.e. the hidden state variable Ct, with a given number of states. Then
the children of this node, G1, G2, · · · , Gr, represent the groups or associations of
variables with r (0 < r ≤ n), the number of groups or associations, and n the number
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Fig. 2 A Dynamic Naive Bayes Classifier unrolled two times. C represents the hidden state variable,
and G1 ... Gr the grouping variables that are assumed independent given the state

of variables. Each group Gi is composed of a number of variables ranging from
1 ≤ |Gi| ≤ n.

We can see that a solution is given by a specific grouping of the random variables
and by the number of states in the hidden state variable. Therefore, a candidate
representation for this solution will be a group based codification which is explained
next.

3.1 The Representation

We use a variant of the group representation proposed by Falkenauer [6]. The
chromosome consists of two parts: the object part (in our case the random variable
part) and the group part. In the object part each locus is an identifier for each
random variable and its corresponding allele the group it belongs to. The group part
has the identifier for each group. We know that in a grouping problem each object
must belong to a group. However, in our structure optimization problem, a random
variable may not be assigned to any group. Therefore, we assign a special identifier
to an object (a random variable) that does not belong to any group. We also need
to encode the number of states for the hidden state variable, we propose to use a
binary string to encode this part. It is important to consider that this basic unit in the
representation is repeated a number of times equal to the number of models we are
dealing with. Figure 3 shows a part of individual j, representing the encoding for one
of the models (model i), the hidden state variable has seven states (0111), variable
Δx is associated to group C, Δy belongs to group D, variable F belongs to group F,
variables A and R are together in group B. The group part indicates that we have

Fig. 3 Representation of model i that belong to individual j. The representation of an individual is
conformed by: (a) the number of states represented as a binary string, (b) the object part representing
the attributes and the group to which they belong, (c) the group part indicating the number of existing
groups, and (d) the auxiliary group Z indicating the eliminated attributes
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four groups. Variables Δa (locus 3) and T (locus 7) are not assigned to any group.
Once the representation is given the pseudocode for the main algorithm is described
in the Fig. 4. The input to the algorithm are the training data set and the user defined
parameters needed by the algorithm. The output is a DNBC, M, for each of the
models, as the algorithm can obtain several DNBCs simultaneously. In step 1 a set
of groups are randomly formed and their parameters computed. Step 2 computes the
fitness for each of the generated individuals based on the partial test data set. In step
3 a loop is initiated and it finishes when a maximum number of iterations without
changes in the best individual fitness is achieved or a maximum number of iterations
is reached. We dedicate the next sections to the explanations of each component in
the loop.

3.2 The Genetic Operators

We use an adapted version of the standard crossover and mutation operators
proposed for groups [6]. Each of these operators are described in the following
sections.

3.2.1 Crossover

The crossover operator (Step 7) can be explained using the specific example illus-
trated in Fig. 5. Only the group part of each parent is considered. Two randomly
selected positions are defined on each parent. In the figure we can see these positions,

EvoDNBC
Input: Data (D), number of models (n_models), training data (P_train), 
partial test data (P_test), weighting factor (α), maximum number of iterations 
(Max_Iter), mutation rate (Pm), Population size (PopSize), tournament size (J),
 the maximun number of iterations without changes in the fitness of the best 
individual (Max_Iter_No_Change).
Output: A DNBC and its corresponding score.
1  Initialize PopSize individual with random n_models.
2  Evaluate the fitness of the PopSize individuals .
3  While the number of generations without changes in the fitness is less than
    Max_Iter_No_Change and less than Max_Iter, Do:
4      For i=1 to PopSize/2
5         Choose J individuals to participate in the tournament and the winner will
           be Parent1.
6         Choose J individuals to participate in the tournament and the winner will
           be Parent2
7         Perform crossover between Parent1 and Parent2 to obtain two new 
           individuals.
8      Apply mutation to each new individual with probability Pm.
9      Evaluate the fitness of the new population.
10    Replace the actual population with the best PopSize among the parent
        and children populations.
11    Evaluate the classification rateof the last generation
12 End While

Fig. 4 The proposed evolutionary algorithm. The input to the algorithm is the training data set and
the user defined parameters needed by the algorithm. The output is a DNBC, M, for each of the
models to be learned
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Fig. 5 Crossover operator. a Randomly select two crossover sections, b the section defined in the
first parent is inserted in the second parent, c and d Adjustment of the resulting individual

for Parent 1 (P1) between groups A and D (the first point), and between groups F
and B (second point). The same selection is performed for Parent 2 (P2), but this
time the first point is between groups A and C, and the second point between groups
D and E. We can also observe that Parent 1 has two eliminated variables Δa and
T, while Parent 2 has none. In the second step we can see that groups D and F of
P1 are inserted at the beginning of the first crossover point in P2. Then elements in
Z of P1 are added to elements in Z in P2. In the third step we start eliminating all
repeated variables, in this example, they are Δy and F. Also variables in the left side
that appear in the Z group are eliminated, in our example, we see that variable T in
group A also appears in group Z, therefore it has to be eliminated. Finally, at the
fourth step we merge the variables that are not part of any existing group. If a single
variable is left then with a probability of two thirds it is inserted as a new group and
with probability of one third it is inserted as a part of an existing group, where each
group has the same probability of being selected. If more than one variable are left
we can take one of the following three actions with the same probability: all variables
are inserted as members of a new group, all variables are inserted as a part of an
existing group, or each variable is separately inserted as a new group. In our example
a single variable R was left, then the chosen option was to insert it into group B. The
crossover operator for the number of states in the hidden state variable follows the
standard one point crossover operator for binary strings [5].

Notice that the whole procedure is repeated for all models that are selected to
undergo crossover.
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3.2.2 Mutation

In this case (Step 8) we also choose an example to illustrate how the operator works.
We have two options that are equally likely to be performed: Insertion or Deletion.
In Insertion we can select to insert a variable or to insert a group. If we insert a
variable this is taken from Z and it is inserted in any of the existing groups with
the same probability. If we insert a group then this has to come from Z, and its size
and composition are also randomly selected. In case of Deletion we also have two
options, to delete a variable, randomly selected from a group, or to delete a group.
In both cases the deleted elements are inserted into Z. We can see in Fig. 6 the case
where a variable is deleted, variable A from group B is deleted. Group B is deleted
in the proposed example for group deletion. For the Insertion option we also have
two choices, we can see how variable T is inserted as a part of group A, and group C,
made of variable T, is inserted as a new group. Please notice that if Z is empty then
the only valid option is Deletion, i.e. Insertions are not allowed.

The mutation operator, for the number of states, is a single bit mutation which
happens with probability Pm.

3.2.3 Selection and Replacement

The parent selection (steps 5 and 6) is performed by tournament [10], with a
tournament of size J. The replacement strategy (Step 10) is the (μ + λ), commonly
used in evolutionary strategies [19]; where μ and λ are the number of parents and the
number of offspring, respectively. After creating λ offsprings and calculating their
fitness, the best μ of the union of parents and offspring are chosen deterministically
based on rank.

Fig. 6 Mutation Operator. There are two stages with two options. Stage 1: delete one group or one
attribute. Stage 2, insert an attribute or a group
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3.2.4 The Objective Function

The fitness function for individual i establish a compromise between the accuracy
and complexity of the model, and it is given by the following expression:

fitness(i) = αAcc(i) + (1 − α)(1 − comp(i)), (3)

where α is the factor to weight the classification accuracy (Acc) and the resulting
network complexity (comp). The accuracy is the normalized rate obtained by testing
the models on an evaluation data set, different from the training and test sets.

Let G′ be an observation sequence, P(G′|M) is calculated by means of the
Forward algorithm [18]. By means of the maximum likelihood criterion, the instance
that maximizes the probability of the observation sequence corresponds to the class
(Fig. 7). The results obtained (incorrect and correct) on having repeated the previous
process for all the observation sequences, are registered in a confusion matrix. Then
the normalized rate (or accuracy) is given by:

acc(i) = Number of observation sequences correctly classified
Number of total observation sequences

(4)

The normalized complexity (by the maximum number of parameters) measure
comp is given by the sum of the number of parameters of the model. The number of
parameters of one model is obtained as follows:

#parameters =
g∑

i=1

||Pa(Ni)|| ∗ (||Ni|| − 1) (5)

where g is the number of nodes, including the hidden state node, ||Pa(Ni)|| is the
number of parameters of parents of node Ni, which is composed by a group of
variables. ||Ni|| is the number of parameters of node Ni. This value is defined as
follows:

||Ni|| =
∏

R j∈Ni

|R j|

where |R j| is the number of values that variable R j, a member of Ni, can take.
Notice that if node Ni has no parents then ||Pa(Ni)|| = 1. In (3) α defines a
specific compromise between accuracy and complexity. Since these criteria are in

Fig. 7 Classification process.
A observation sequence G′ is
presented to every model,
followed by calculation of
model likelihoods for all
possible models, the instance
that maximizes this likelihood
corresponds to the class
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conflict with each other the problem can be actually modeled as a multi-objective
optimization problem.

4 Experimental Setup and Results

The proposed algorithm was evaluated in the visual recognition of nine hand gestures
(Fig. 8): come, attention, right, left, stop, turn-right, turn-left, pointing and waving-
hand; used for commanding mobile robots [2]. Each gesture is modeled using a
DNBC considering seven attributes: three motion features and four posture features.
These motion and posture features were obtained from a sequence of images. The
motion features are: Δa, or changes in the hand area, Δx and Δy indicate changes
in hand position of the XY − axis of the image. Each of these features takes only
one of three possible values: (+), (−) or (0) that indicate increment, decrement or no
change between two consecutive images, depending on changes in the area and hand
position of two images, respectively. The posture features are: Form, that indicates
the form of the hand ((+) if the hand is vertical, (−) if the hand is horizontal, or
(0) if the hand is leant to the left), right, indicates that the hand is at the right side
of the head, above, if the hand is above the head, and torso, if the hand is over the
user’s torso, these last three features take binary values. For comparison purposes,
we considered for each gesture a basic model with all the attributes (separated) and
two states.

We conducted four experiments to evaluate the classification accuracy of gestures
in the evolutionary learned classifiers. The gesture data set is composed of 50 samples
for each of the nine gestures, taken from a single user, this data set is provided by [2].
We select Dtraining samples per gesture to construct the complete training set, a partial
testing data set D_testpartial is necessary to evaluate (compute the fitness) each one

Fig. 8 Hand gestures considered a come, b attention, c right, d left, e stop, f turn-right, g turn-left, h
waving-hand, i pointing and j initial position
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of the individuals in the evolutionary process. Finally, we evaluate the classification
accuracy of the best individual with the D_testfinal remaining samples.

In all experiments the crossover and mutation rates are set to Pc = 1.0 and
Pm = 0.35, respectively. PopSize = 12, Max_Iter_No_Change = 4, and Max_Iter =
20. These values were obtained after a non exhaustive trial and error procedure. An
exhaustive statistical analysis is required to determine the best set of parameters. The
differences among the experiments are as follows:

– Experiment 1. D_training = 10, D_testpartial = 10, D_test f inal = 30, α = 0.8.
– Experiment 2. D_training = 10, D_testpartial = 15, D_test f inal = 25, α = 0.8.
– Experiment 3. D_training = 10, D_testpartial = 10, D_test f inal = 30, α = 0.7.
– Experiment 4. D_training = 10, D_testpartial = 15, D_test f inal = 25, α = 0.7.

The EM algorithm with the same convergence criterion was used to estimate
every instance of the DNBCs. All the models were set to follow a standard linear
transition topology. Transition and observation probabilities for all the models in
the population were initialized with discrete uniform distributions. The probability
of each gesture sequence A, P(A|.), was computed using the Forward algorithm [18].
All the experiments were carried out on a PC with AMD Athlon 1.8 GHz, 3 Gb of
RAM, we used the Matlab software release 7.0.

Table 1 shows the mean and standard deviation of the accuracy and fitness of
the best individual produced by the evolutionary learning process. The means are
computed over ten samples, i.e. the algorithm is run ten times for each experiment.
Table 2 shows the mean and standard deviation for the computation time.

Figure 9 shows the nine models that belong to the evolved classifier obtained
in Experiment 2. The first model (come gesture) have five children nodes where
variables F, Δx, A and T are independents given the hidden state variable C, variables
Δy and Δa are associated in a single node, the hidden state variable has six states and
R was eliminated. The second model (attention gesture) has four children nodes with
variables Δx and Δa in the first group, Δy, F and A, in the second, R in the third and
T in the last group, respectively, the hidden state variable has three states. In the
basic model all the variables are considered in the model and are supposed to be
independent of each other given the hidden state variable, the hidden state variable
has two states. Then the basic classifier have nine models of this type. We can see
that the proposed algorithm is able to learn a specific setting (variables association,
variables elimination and specific number of states) for each model of the classifier.

The evolutionary process introduces the elimination and combination of variables
at the same time that evaluates different number of states until the simplest classifier
with a high accuracy is obtained. Table 3 compares the recognition rates of the
evolved models against a basic DNBC for each gesture. The recognition rates
presented in Table 3 correspond to the classifier learned by the evolutionary process

Table 1 Mean classification
accuracy and standard
deviation computed
for ten runs

Accuracy Fitness Std. dev. Std. dev.
(mean) (mean) (accuracy) (fitness)

Exp1 0.957 0.993 0.020 0.006
Exp2 0.966 0.989 0.011 0.003
Exp3 0.967 0.994 0.013 0.003
Exp4 0.970 0.986 0.014 0.004



Evolutionary Learning of Dynamic Naive Bayesian Classifiers 33

Table 2 Mean computation
time (T̄) and standard
deviation (STD) for ten runs

T̄ STD(T)
(min) (min)

Exp1 186.0742 43.5421
Exp2 215.7301 40.4538
Exp3 195.61 46.322
Exp4 206.3951 43.6830

presented in Fig. 9. The basic DNBC models consider two hidden states, and include
all the attributes without any grouping, so they can contain redundant or dependent
variables. We can see that the evolved classifier is better than the basic classifier in
the average accuracy criterion, moreover each one of the models better describes
the associated gesture. This is because the relations among variables and the number
of states of the hidden state variable is defined by the gesture in the evolutionary
process.

The proposed algorithm gets a DNBC better than the basic classifier, regarding the
average accuracy. To validate if this difference is statistically significant we carried
out 30 training and test processes. We randomly selected ten samples per gesture
to construct the complete training data set for computing the models parameters,
and the remaining 40 samples for testing. We carried out this process with both
classifiers (basic and evolved). Since the recognition rates do not follow a normal
distribution, we used the Wilcoxon [4] rank significance test. The obtained p-value
in the test was p = 1.6031e−10. This result indicates that, with 99% of confidence, the

Fig. 9 Evolved Dynamic Naive Bayes Classifier for the nine gestures (come, attention, right, left,
stop, turn-right, turn-left, pointing, and waving-hand). For each model the number of states, the
selected attributes and their grouping are shown
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Table 3 Gesture recognition
rates using the dynamic naive
Bayesian classifier: the basic
model vs. the evolved model

Gesture Accuracy of the Accuracy of the
basic classifier (%) evolved classifier (%)

Come 96 100
Attention 100 100
Right 100 100
Left 96 84
Stop 100 96
Turn-right 100 100
Turn-left 100 100
Pointing 88 96
Waving-hand 72 100
Average 94.67 97.33

mean classification rates obtained by the evolved DNBC and the basic classifier are
different.

We adapted the algorithm to HMMs learning. In the representation the group
part of the chromosome has only one group. The crossover operator (Step 7) only
insert variables from one parent to the other. In mutation we have two options
that are equally likely to be performed: Insertion or Deletion of one variable.
Deletion of groups are not allowed. The mutation operator, for the number of
states, parent selection, replacement and objective function are the same as those in
DNBC learning. For comparison purposes, we considered for each gesture a HMM
with all the attributes (grouped) and two states. Table 4 compares the preliminary
recognition rates of the evolved HMMs against a HMM for each gesture and the
same training and test samples used in Table 3. Figure 10 shows the nine HMMs
that belong to the evolved classifier obtained. For example, the fifth model (left
gesture) considered that Δy,Δa, F, A and T are associated in the observation node,
the hidden state variable has three states, R and Δx was eliminated as opposed to the
basic HMM that considered all variables grouped and two states.

We can see that the evolved HMMs is better than the clasic HMM, regarding
the average accuracy. However, DNBC is better than the evolved HMMs. Further
experiments are required to statistically assess the difference.

Given that the evolutionary learning process obtains not just a single model per
gesture, but a population of models, we carried out an experiment in which we

Table 4 Gesture recognition
rates using HMMs: the basic
model vs. the evolved model

Gesture Accuracy of the Accuracy of the
basic HMM (%) evolved HMM (%)

Come 100 97
Attention 100 100
Right 100 100
Left 80 97
Stop 80 100
Turn-right 100 100
Turn-left 100 100
Pointing 93 83
Waving-hand 100 93
Average 94.81 96.67
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Fig. 10 Evolved HMM for the nine gestures (come, attention, right, left, stop, turn-right, turn-left,
pointing, and waving-hand). For each model the number of states, the selected attributes and their
grouping are shown

combine the top models per gesture. For recognition, all the models are combined
via a majority vote to select the gesture. However, the results were no better than
using a single model. We think that this is because all the models in the population
at the end of the evolutionary process are very similar. As future work we plan
to explore alternative evolutionary strategies; in particular it will be interesting to
analyze this approach in a multi-objective setting since in that case the solutions in
the non-dominated front will be diverse.

5 Conclusions and Future Work

An evolutionary approach to solve the structural learning problem to design a DNBC
has been proposed considering as optimization criterion a compromise between
accuracy and complexity. The design of the best network structure is modeled as
an optimization problem that measures the classification accuracy weighted by the
resulting network complexity. To design the algorithm we propose a variant of
the group based representation and its corresponding adapted operators. We test
the resulting network using data generated from nine hand gestures. The experi-
mental evaluation shows that the models obtained using our evolutionary approach
improve in a significant way the recognition rates, and at the same time produce
simpler and more intuitive structures. The proposed method has been adapted to
design HMMs, and could also have been modified to learn dynamic models that have
a TAN as base structure.

Future work is aimed at reducing the computation time by computing the para-
meters of similar models only once. Another line of research has to do with the
proposal of an evolutionary incremental learning approach in such a way that we
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do not need to run the algorithm from scratch when a new gesture is introduced
to the system. Additional experiments are planned to analyze the robustness of the
evolved classifier when noise and different users are considered as well as to analyze
this approach in a multiobjective setting.
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