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Direct multi-level density matrix calculation of nonlinear optical rotation spectra

in rubidium vapour
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We propose a rapid solution algorithm for the calculation of the full density matrix evolution for a multi-level
atom. The calculation principle is similar to the split-step algorithm widely used for modelling the nonlinear
propagation in media with Kerr-type nonlinearity, optical fibres in particular. The spectrum of nonlinear
Faraday rotation in the D2 natural rubidium line is calculated and compared with the experiment. Good
agreement is obtained.
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1. Introduction

Laser light interaction with rubidium vapour is impor-

tant for applications as well as from the fundamental

viewpoint. If the CW laser is tuned directly into a

resonance, strong nonlinear effects arise; absorption

and refraction can depend on laser intensity, polarisa-

tion state and external magnetic field. In particular,

nonlinear Faraday rotation is observed [1], which can

be used for magnetometry and for efficient hologram

writing [2].
For open transitions in rubidium the weak-probe

linear limit holds only for intensities as low as I0�

10�3 Isat, with saturation intensity Isat� 1–3mWcm�2

[3]. The absorption and refraction strongly depend on

the beam diameter (time of transit). The theory for the

nonlinear regime is complicated because of the big

number of sublevels involved (Figure 1). The estab-

lished method of theoretical description in this case

is the master equation for the atomic density matrix

[5–7], but for a large number of sublevels the

calculations become very time-consuming. Since the

steady state is not attained for open transitions during

the time of transit, for realistic calculations it is highly

desirable to take into account the whole temporal

evolution of atomic parameters.
Instead of solving for full evolution it is possible to

introduce an effective repopulation for lower levels

and to take an effective steady state. This simplifies the

solution, but the repopulation parameters are not

obtained directly, and have to be fixed according to
experiment [8]. Even with the fitting parameters, the
agreement with experiment in [8] is not very good.
The Monte Carlo methods were proposed, which can
in principle make the solution for multi-level atoms
faster [7,9], but practical application of them to
rubidium is complicated, because a large number of
runs is necessary to reduce the statistical error. We
propose here the direct numerical method, which
produces a rapid enough solution of complete
dynamics for the master equation of a multi-level
rubidium atom with good exactitude. Such a solution
does not contain free parameters. The calculation
principle is similar to the split-step algorithm widely
used for modelling the nonlinear propagation in media
with Kerr-type nonlinearity, optical fibres in particular
[10]. The results agree quite well with experimentally
observed spectra.

2. Solution principle

The evolution master equation is written as [6,7]

@�

@t
¼ ði=�hÞ½�,H� þ

X

q¼�1,0,1

Cq�C
þ
q �

1

2
ðCþq Cq�þ�C

þ
q CqÞ,

ð1Þ

where � is density matrix, H is the Hamiltonian of
a free atom, and Cq, Cþq are lowering and raising
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atomic operators:

Cþq Fg,mFg

�� �
¼ G1=2ð1,Fg, q,mFg

;Fe,mFe

¼ mFg
þ qÞ Fe,mFe

¼ mFg
þ q

�� �
,

Cþq Fe,mFe

�� �
¼ 0,

Cq ¼ ðC
þ
q Þ
�

ð2Þ

with decay rate G, and Clebsch–Gordan coefficients

for coupling ground and excited states’ sublevels. We
consider only the spontaneous emission, and do not
take into account collisions because for room temper-
ature the rubidium concentration is low (1010 cm�3),
and the collision probability for the time of a beam
crossing is small.

The combination

P ¼
X

q¼�1,0,1

Cþq Cq ð3Þ

is a projector operator, its matrix has only diagonal
elements Pkk¼Pk.

The number of independent unknown real para-
meters in � is N2

� 1 (N is the number of sublevels).

For 87Rb D2 transition (870.24 nm), N¼ 24, and it is
necessary to solve a system of 575 coupled differential
equations. For 85Rb, there are 36 sublevels, with 1295
equations. One characteristic time of this system is
the lifetime G�1. There is also a characteristic time of
inverse Doppler broadening (comparable to the inverse
detuning and to the inverse frequency difference

between upper levels), which is 10–100 times smaller,
and the time of flight of an atom through the beam,
which is 10–100 times bigger. Thus, the equations,
apart from a big number of variables, have quite
different time scales, and conventional algorithms for
ODE solution, such as Runge-Kutta, are slow and

can become unstable. Additionally, averaging over

Doppler-shifted groups of atoms is needed, and the
system has to be solved hundreds of times for
comparison with the experiment.

For solution, we note that formally Equation (1) is
equivalent to

@�

@t
¼ ðAþ BÞ�, ð4Þ

where A, B are superoperators corresponding to the
Hamiltonian and relaxation parts, respectively. They
are expressed by N2

�N2 matrices which act on the
elements of � treated as an N2 vector. The formal
solution of Equation (4) is given by the operator
exponent:

�ðtþ�tÞ ¼ expððAþ BÞ�tÞ�ðtÞ: ð5Þ

If each of two superoperators is treated separately, fast
algorithms of calculation exist for both of them. We
can more easily calculate exp(A�t) and exp(B�t), than
exp((AþB)�t).

For the rotating wave approximation, when the
Hamiltonian is time independent, and there is no
spontaneous emission, the Hamiltonian part of evolu-
tion is given by

�ðtþ�tÞ ¼ Uð�tÞ�ðtÞU�1ð�tÞ ð6Þ

with the unitary matrix U(�t)¼ exp[�i(H/�h)�t].
The relaxation part of the evolution with zero

Hamiltonian is calculated with:

�ðtþ�tÞ ¼ expð�P�t=2Þ�ðtÞ expð�P�t=2Þ

þ
X

q¼�1,0:1

CqQðtþ�tÞCþq ð7Þ

and elements of the Q matrix are:

Qikðtþ�tÞ ¼ 2�ikðtÞð1� expð�ðPi þ PkÞ�t=2ÞÞ

� ðPi þ PkÞ
�1, ð8Þ

if PiþPk 6¼ 0, and Qik¼ 0 if PiþPk¼ 0. The derivation
of Equation (7) in this form is outlined in Appendix 1.

Of course, the two operator exponents do not
commute, and though the two solutions given by
Equations (6) and (7) are exact, their combination is
not. Nevertheless, if the time �t is small enough, we
can obtain close approximation to the exact solution
by applying one matrix exponent after another.

As for the nonlinear propagation split-step, better
exactitude is obtained if relaxation evolution is
calculated at the middle of the time interval between
the two calculations of the Hamiltonian part. It follows
from the equation for linear operators:

exp½ðAþ BÞ2�t� ¼ expðA�tÞ expð2B2�tÞ expðA�tÞ

þO ð�tÞ3
� �

, ð9Þ

Figure 1. Energy levels for 87Rb transition D2 (not to scale).
Dashed lines are transitions induced by the light of circular
polarisation in resonance with Fg¼ 2, Fe¼ 3. For 85Rb, all F
numbers are bigger by 1, the m numbers change accordingly.
The detailed data on transitions can be found in the online
reference [4].
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which is related to the Baker–Campbell–Hausdorff

formula. If we approximate the exponent of a sum by

a simpler expression

exp½ðAþ BÞ2�t� ¼ expðA2�tÞ expðB2�tÞ þO ð�tÞ2
� �

,

ð10Þ

the accuracy is worse.
Since the Hamiltonian is time independent in the

rotating wave approximation, the matrix exponents U,

U�1 are calculated only once with a Taylor series, and
applied consequently. The overall computation time is

proportional to N3.
From physical arguments, if we are interested in

evolution over periods of time much bigger than the

relaxation time, the step �t can be safely taken to

resolve only the relaxation time G�1. This conjecture

was checked for the problem of interest by comparing

the solution with the exact one and by comparing

solutions with different �t. Practically, we were

keeping �t at approximately 0.1 G�1.
We have implemented the split-step algorithm in

C programming language. The calculation of a super-

operator exponent with high exactitude for a limited

number of sublevels was made in our earlier paper [2],

and we used it for testing the program mathematics.
We are interested in the spectra for nonlinear

Faraday rotation in natural rubidium in relation with

our study of dynamic holography in this material.

Thus, we performed the calculation and experiment

for light intensity and magnetic fields typical for this

application. The Hamiltonian and general data on

transition were taken from the online reference [4].

Our previous calculations [2] were made in the low-
field approximation for the Zeeman effect, for which

the F-level splitting is linear with the magnetic field.

We have found that this approximation is not

sufficient for fields bigger than approximately 1G,

and the correction is more pronounced for 85Rb. Thus,

we used a more exact Hamiltonian, which includes the

interaction with the magnetic field in the form [4]

HB ¼
�B

�h
ðgJJz þ gIIzÞB ð11Þ

with �B being the Bohr magneton, Jz and Iz being the

z-projections of the total electron and nuclear angular

moments, with the corresponding Landé factors gJ, gI,

respectively. The z-axis is taken along the direction of

the magnetic field.
For the calculations we supposed that the transi-

tions from Fg¼ 1 and Fg¼ 2 for 87Rb and from Fg¼ 2

and Fg¼ 3 for 85Rb can be treated separately in the

Hamiltonian because of the relatively big frequency

differences between the ground levels. Of course, it is

necessary to take into account both levels for the

relaxation part of Equation (1). To check the validity
of the approximation, for 85Rb we performed partial
calculations taking into account the ground level
separation as well. The algorithm managed the fre-
quency separation of O¼ 3.0GHz without any major
difficulty, but the time step had to be reduced at least
to 1/20 of the relaxation time to eliminate small
spurious subharmonic resonances around O/3, 4, 5 etc.
The difference in the results with independent ground
level approximations was comparable to the rounding
errors because of finite integration intervals, and we
estimate them as 50.03 of the maximal signal value.
The calculation errors can be reduced by making the
calculation longer (reducing time step, taking bigger
intervals for time of flight and taking closer spaced
points for spectra).

First we obtained the dynamics of the density matrix
as a function of the detuning across the upper levels.
The dipole moment evolution for left and right
circularly polarised components is obtained, and
averaged according to the arrival time to the centre of
the beam with the Maxwell velocity distribution (see
[2]). To determine the Faraday rotation, it is necessary
to calculate the refractive index difference for right and
left circular polarisations with the real part of the
complex susceptibility. The last step is a convolution
of a spectrum as a function of the detuning with a
Gaussian curve, which gives the theoretical spectral
shape.

3. Experiment

The experimental setup is depicted in Figure 2. For the
experiment we used a 25mm long rubidium cell placed
inside a solenoid. The measurements were made at
room temperature (21�C). The magnetic shield made
of high permeability metal was used to avoid

Figure 2. Experimental setup for obtaining Faraday rotation
spectra. (The colour version of this figure is included in the
online version of the journal.)
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geomagnetic influence. The rectangular wave voltage
from the generator was applied to the solenoid; the
magnetic field was switched between B and �B with
a frequency 10–20Hz. This relatively low frequency
was taken to diminish the influence of the transition
process on the results of the measurement. The beam
of a tuneable semiconductor laser with plane output
polarisation was expanded to approximately 5� 8mm
size by a telescopic lens system. The 1mm diameter
aperture in front of the cell produced a circular beam
with close to uniform intensity distribution. The
photodetector with a small aperture in the centre of
the beam was placed after the 45� tilted polariser.
The lock-in amplifier was connected to the photo-
detector output. The laser frequency was scanned by
steps across the line, and the lock-in output was
monitored by a computer. The lock-in output signal is
directly proportional to the Faraday rotation magni-
tude. Absorption is also affected by the magnetic field,
but from symmetry arguments it follows that the
absorption in our geometry does not change, when the
magnetic field changes the sign, thus no signals due to
absorption are detected by the lock-in. We checked
this experimentally by measuring the lock-in signal
without the polariser in front of the photodetector.
The magnetic field induced circular dichroism is also
present, but for small changes in polarisation state
it does not manifest itself for our setup. It can be
measured by placing a quarter-wave plate in front of
the polariser, and has a magnitude comparable to that
for optical rotation. The spectral dependences of this
effect are reproduced by the theory as well, but we
do not report them here.

The results of experiment are presented in Figure 3.
It is seen that the calculation gives quite a satisfactory
description for the complicated spectrum behaviour for
all lines. For the open transitions the rotation signs
are different for small and big magnetic fields. For big
enough magnetic field, the lineshape can be strongly
distorted from a nearly Gaussian form. In the 87Rb
Fg¼ 1 transition, the change of sign inside the line is
possible. This occurs because the rotation directions
from Fe¼ 0, 1 and Fe¼ 2 are opposite, and close to
zero overall rotation corresponds to a situation when
the sum is close to zero.

Thus, the rotation can be positive in one part of the
line, and negative in another. For the 85Rb Fg¼ 2 line,
the distortion for the small overall rotation has another
type, with two zero crossings. For stronger magnetic
fields, there is a noticeable rotation between the two
resolved lines of 85Rb and line widening. The strong
field effects result from a non-diagonal character of the
magnetic field operator in a basis of eigenfunctions
corresponding to a full atomic momentum F. These
features are not reproduced correctly by the theory

when the small field approximation is used for Zeeman
splitting of the F-levels, though this approximation
gives good estimations for peak values.

We did not perform measurements with high
precision, in particular the cell did not have an
antireflection coating, and there was around 20%
variation in intensity across the input aperture. We
estimate the systematic experimental error at 5–10% of
maximal rotation amplitude. Nevertheless, the agree-
ment between the theory and experiment is rather
good, and all characteristic features, such as line
widening, shape distortion and zero crossings are
qualitatively reproduced by the theory.
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Appendix 1

We start with the equation

@t� ¼ �
1

2
ðP�þ �PÞ þ

X

q¼�1,0,1

Cq�C
þ
q :

Using this, and relations for raising and lowering operators

CqCs ¼ Cþq Cþs ¼ 0 and PCq ¼ Cþq P ¼ 0 the second deriva-

tive of � is:

@2t � ¼
1

4
ðP2�þ 2P�Pþ �P2Þ �

1

2

X

q¼�1,0,1

CqðP�þ �PÞC
þ
q :

Consequent calculation of derivatives and application of

Taylor series

�ðtþ�tÞ ¼ �ðtÞ þ @t�ðtÞð�tÞ þ @2t �ðtÞ
ð�tÞ2

2!
. . .

gives, after collecting the terms, Equation (7).
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