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A new decision feedback extension (DFE) and an alternative application to schedule industrial processes
are presented. The DFE is defined as a recursive decision feedback extension (RDFE), where the recursive
part is developed to assign the probability of occurrence in the operation of a set of machines working
together using an objective function of production. The fundaments of fuzzy factors and the principle
of maximum membership function are used to develop the new extension. At last, RDFE is proposed to
generate a fuzzy scheduler, which is used to apply an intelligent control scheme to a hydropower station.
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1. Introduction

The industrial process of the 21st century is immersing into a
global environment, where new technologies and competitors are
continuously emerging and harvesting the market [1].

Therefore, new processing strategies should be designed to sup-
port global competitiveness, continuous innovation on new prod-
ucts and a fast response to the market. The next generation of
the industrial processes must be strongly time-oriented, and
mainly focused on cost and quality. The requirements of these sys-
tems should include enterprise integration, distributed organiza-
tion, open and dynamic structure, integration of humans with
software and hardware, agility and fault tolerance, among others.

Several recent contributions have considered the PLC as the typ-
ical solution to fulfill these close correlated requirements, and have
already used them for several non-common techniques. One of
them is Artificial Intelligence (AI), which has been used to improve
the requirements in intelligent process control [2].

In the last ten years, developments in multi-agent systems in the
domain of Distributed Artificial Intelligence (DAI) have brought new
and interesting possibilities [3], which are mainly focused to im-
prove the scheduling and control of production and resources [4,5].
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A new proposition based in fuzzy decision-making environ-
ments to overcome the problem of scheduling using AI architec-
tures has appeared over the last decades [6]. In terms of
Scheduling and control for industrial processes, Dadone has pro-
posed some schemes based on fuzzy strategies to increase the abil-
ity of scheduling [7]. As a result, new alternatives for industrial
scheduling have been developed from the integration AI strategies
in particular with fuzzy decision-making schemes [8,9]. Taking as a
base the work of Garibaldi and Ozen [10], several contributions
have evolutioned in the applications of human-aided decision for
several types of control processes including power generation sys-
tems [11]. He et al. have developed a hybrid genetic algorithm ap-
proach for solving the economic dispatch problem with valve-
point effect. The proposed method combines the GA algorithm
with the differential evolution (DE) and sequential quadratic pro-
gramming (SQP) technique to improve the performance of the
algorithm. In this method GA is the main optimizer, while the DE
and SQP are used to fine tune in the solution of the GA run [12].

This paper introduces an artificial intelligent agent (AIA) using
fuzzy logic for decision-making, where the strategy of recursive
decision-making feedback extension (RDFE) is introduced. The
fundaments of this new strategy of decision are established in Sec-
tion 3. To determine the benefits of the extension obtained, a
scheduling problem for a hydroplant process is proposed. A novel
scheme based on fuzzy agent scheduling (FAS) and its interconnec-
tion to classical digital control architecture is defined in Section 4.
In Section 5, a comparison between the typical PLC solution and
the proposed Agent-based scheme is made to demonstrate the
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improvements acquired for open and dynamic structure and fault
tolerance requirements. Conclusions and future work are discussed
in the last section.
2. Fundamental concepts

2.1. Agent definition

An agent can be defined as a resident program, which is capable
of an autonomous action in order to meet the overall system objec-
tives. An autonomous agent should have control over its own ac-
tions and internal state without the direct intervention of
humans or other agents. Moreover, an ‘‘agent based system” is
the one in which the key abstraction used is that of an agent [13].

In the particular case of intelligent control for industrial pro-
cess, agents can be used to

(a) Encapsulate existing software systems and to solve legacy
problems and integrate industrial process activities.

(b) Represent industrial process resources such as workers,
cells, machines, tools, fixtures, and Auto-Guided Vehicles
(AGVs). It can also be used to define products, parts, opera-
tions to facilitate industrial process resource planning, and
scheduling and execution control.

(c) Incorporate a whole scheduler or planner into process plan-
ning and scheduling systems.

The artificial intelligent agent (AIA) can be used as an indepen-
dent structure described by a fuzzy scheduling strategy, which is
implemented in a field-gate programmable gate array (FPGA) [14].

Therefore, the AI agents are applied as a fuzzy coprocessor to
improve the decision scheme of the programmable logic controller
(PLC), developing a non-deterministic decision in the sequencing of
activities of the industrial process environment.

2.2. Fuzzy decision-making for scheduling

2.2.1. Scheduling problem
Scheduling is an important aspect of automation in industrial

process systems, because it helps in scheduling jobs and machines
in the making and assembling process, picking, packaging, ship-
ping, and purchase of components and subcomponents.

Furthermore, scheduling in material handling can occur at more
than one level with varying degrees of detail and sophistication,
e.g. a month-to-month schedule for orders and component pur-
chase, a week-to-week schedule for components on the assembly
line, and a day-to-day schedule for each machine in the shop.

Considering the work of Dadone [7], the industrial process
scheduling is divided into three levels: long, mid and short term.
In particular, for intelligent manufacturing process, scheduling is
used to ensure smooth operation of mid and short term levels of
the process.

2.2.2. Fuzzy decision-making theory
Bellman and Zadeh defined fuzzy decision-making as the pro-

cess where the fundamental variables and relations for decision
are described by fuzzy variables [15]. However, Li and Yen estab-
lished fuzzy decision-making strategies, by applying factor and
extension for alternative fuzzy structures [8].

Fuzzy decision-making is the study of both how decisions are
actually made and how they can be better or more successful
[16]. Applications of fuzzy sets within the field of decision making
mostly consist of extensions or ‘‘fuzzifications” of the classical the-
ories of decision making.
When classical decision theories are ‘‘fuzzified”, they can be di-
vided as [17]

� Individual decision making.
� Multiperson decision making.
� Multicriteria decision making.
� Multistage decision making.

Each one of these particular strategies can apply typical analysis
techniques as

� Fuzzy classic probability (considering fuzzy entropy).
� Fuzzy-Bayes method.
� Feedback extension (DFE).
� Multi-factorial decisions.
� Linear programming methods.

Some fuzzy solutions have been implemented for scheduling in
industrial process systems. One of the most recent works [5] pro-
poses a fuzzy scheduler as an Evolutionary Programming Tech-
nique of sequences and times for a predetermined production goal.

Although for engineering applications linear and multi-factorial
decisions technique has been the most common application for
process control, in this work feedback extensions will be consid-
ered as the best alternative to deal with this issue. Feedback exten-
sions showed to be the fastest scheme of decision for non-
deterministic sequences, when historical values for one or more
process parameters are obtained. Consequently, the computational
time is lower than other approaches [18].

3. Recursive decision feedback extension

The next part is considered to define the new extension. The
first approach was developed by Li and Yen [8]. In this section,
the principle of the maximum membership is used to introduce
the application of fuzzy extensions in the decision-making concept,
where feedback scheme is used to define the new extension in
terms of recursive algorithm.

3.1. Principles of the maximum membership

(a) The first principles of the maximum membership.

Let (U,C,F] be a description frame and A1,A2, . . . ,An 2 F (U) be
the extensions of concepts a1,a2, . . . ,an 2 C, respectively. For
a given object u0 2 U, if these exist an index i 2 {1,2, . . . ,n}
such that A1 satisfies:

Aiðu0Þ ¼maxfA1ðu0Þ;A2ðu0Þ; . . . ;Anðu0Þg; . . . ; ð1Þ ð1Þ

Then u0 is said to belong to Ai according to the first maximum
membership principle.

(b) The second principle of the maximum membership.

Let (U,C,F] be a description frame and A 2 C be the extension
of a 2 C. For n objects u1,u2, . . . ,un, if these exist an index
i 2 {1,2, . . . ,n} such that ui satisfies:

AðuiÞ ¼ max Aðu1Þ;Aðu2Þ; . . . ;AðunÞf g ð2Þ

Then ui is said to belong to A according to the second maxi-
mum membership principle.

3.2. DFE decisions and its types

Let us consider a more concrete setting under the description
frame (U,C,F] by defining a group of tactics U, called the tactics
set, and C, a group of concepts upon tactics in U. For example,
‘‘good tactics”, ‘‘fair tactics”, and ‘‘bad tactics”. F-the factor set with
respect to these tactics.
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If the extensions of concepts in C are known, then decision mak-
ing will be simpler, because one can use the principles of the three
highest memberships. However, decisions must be made when the
extensions of concepts are unknown. An approach to decision mak-
ing under such circumstances is to find the extensions of concepts
in C.

These extensions could be found if we could obtain their feed-
back extensions (which, in turn, could be realized by G-envelopes).
Then, the decision making through the process is based on feed-
back extensions (DFEs). There are three types of DFEs, which will
be described as next.

(a) Orderable: In this case, c ¼ fag is a singleton, for instance,
a = ‘‘good tactics”. If we can find the G-envelope, A[G], then
A[G] : U ? [0,1], which will order tactics of U in [0,1]. There-
fore, if the set of tactics obtained by the strategy contains
one element in the list which is maximum, then that ele-
ment is taken as the best tactic.

(b) Competitive: In this case, U = {u} is a singleton and C contains
at least two concepts. Let C ¼ fa1;a2; . . . ;akg and A be the
extension of a1 1 6 i 6 k. If we can get Ai[G] for each i,
1 6 i 6 kðor p� closures Ai½p�Þ, then we will be able to
determine the concept (or Ai) to which u belongs.

(c) Competitive/Orderable: In this case, both U and C are not sin-
gletons. Let U ¼ fu1;u2; . . . ;ung and C ¼ fa1;a2; . . . ;ang .First
we classify U by competition. For example, if
ui1;ui2; . . . ;uip; p 6 n belongs to aq, some q(6 k), we can order
ui1;ui2; . . . ;uip via Aq[G](or Aq[p]); the first on the list which
takes a maximum value is considered the best tactic. Like-
wise, we can obtain the best tactic for each aj;1 6 j 6 k.
We can adopt one or more of these best tactics if the condi-
tion dictates to do so.
3.3. Recursive procedure for DFE (RDFE)

Considering the outline of the DFE implementation procedure
obtained by Li and Yen [8] in the following steps, the illustration
is tailored to the type 1 DFE previously defined.

Step 1. Define a tactics set U ¼ fu1;u2; . . . ;ung, which is a group of
tactics or strategies.

Step 2. Determine the concept a in C ¼ fag and name that con-
cept, e.g., ‘‘good tactic”. U is the universe of the concept a.

Step 3. Determine the set of atomic factors p ¼ ff1; f2; . . . ; fmg of U
and is factor spaces fXðfjÞgð16j6mÞ.

Step 4. Set F = P(p), _ ¼ U;^ ¼ \;� ¼ =;1 ¼ p and 0 = U.
Then (F;_;^; c;1;0) is a Boolean algebra, and therefore,
(U,C,F] is a description frame.

Step 5. Construct BðfiÞ;1 6 i 6 m; the representation extensions
of a, on the representation universe, 1 6 j 6 m, using
the methods discussed later.

Step 6. Take an appropriate m-dimensional triangular norm and
form the representation extension Bð1Þ in Xð1Þ from Tm

and BðfiÞ as in
Bð1Þðx1; x2; . . . ; xmÞ ¼ TmðBðf1Þðx1Þ; Bðf2Þðx2Þ; . . . ;BðfmÞðxmÞÞ
ð3Þ
Table 1
Algorithm for RFDE.

1. Get [P1(t), P2(t), P3(t), P4(t)] for each machine (i)
2. Repeat
Step 7. Determine fi (ua), the state of the tactic on the atomic fac-
tor j, where i = 1,2, . . . ,n and j = 1,2, . . . ,m. Then, we can
obtain the state of the complete factor 1 on each tactic
as in
(a) Z [P1(t), P2(t) P3(t), P4(t)] = [P1(k), P2(k), P3(k), P4(k)]
1ðuiÞ ¼ ðf1ðu1Þ; f2ðu2Þ; . . . ; fmðuiÞÞ i ¼ 1;2; . . . ;n ð4Þ

(b) Fuzzyfing [ P1(k), P2(k), P3(k), P4(k)]
(c) A(uij) = B[1] [f1j(u), f2j(u), f3j(u), f4j(u)]
Step 8. Construct 1�1, the feedback extension of a, which is

regarded as the approximation of A. For any ui 2 U, then
AðuiÞ � ð1�1ÞðBð1ÞÞðuiÞ ¼ Bð1Þð1ðuiÞÞ
¼ Bð1Þðf1ðuiÞ; f2ðuiÞ; . . . ; fmðuiÞÞ
¼ TmðBðf1ÞÞðf1ðuiÞ;Bðf2Þðf2ðuiÞÞÞ; . . . ;BðfmÞðfmðuiÞÞ ð5Þ
Now we can proceed to pick the best tactic ui by the principles
of the maximum membership.

Step 9: Evaluate Eq. (5) for each change in any of the fj fuzzified
parameters under measurement.

The last step (RFDE) refers to covert the fuzzy method into a
recursive procedure. It includes the discrete operations Z-trans-
form for each one of the parameters defined for each machine,
which are being considered for the decision-making of the process.

Considering RFDE scheme, now a fuzzy scheduling strategy can
be developed to obtain ‘‘good performance” in the use of the defi-
nition of fuzzy scheduler (FSch) using Pij vector of parameters for
each ith element under evaluation. The obtained RDFE algorithm
is presented in Table 1.

If an industrial process is required in terms of one goal of pro-
duction, FSch can obtain the best sequence of function for the set
of machines involved in the process, considering several set of Pij,
which can be evaluated for any event time of digital supervisor
and with this information calculate the candidature of one ma-
chine or machines to develop the task for the process.

4. Process decision scheduling – the case of a hydroplant

4.1. Model plant description

Dinorwig power station is a large pumped storage hydroelectric
scheme located in North Wales. The station feeds power into the
national grid from six 300 MW rated turbines, driving synchronous
generators. Water flows from an upper reservoir (lake Marchlyn)
through the main tunnel. Each turbine receives the water flow
from a penstock, using a guide vane to regulate the flow; all the
penstocks are connected to the main tunnel by a manifold. Individ-
ual classic controllers in each unit control the electrical power gen-
erated. The water is pumped back into the upper reservoir, during
off-peak periods, using the turbo/generators as a motorised pump,
Fig. 1.

The hydroelectric plant model can be separated into three sub-
systems: guide vane, hydraulics and turbine/generator (Fig. 2). In
this work, a linearised model [19] of the hydraulic subsystem
was used (Fig. 4). The transfer function of the guide vanes used
to control the water flow is given in

G ¼ 1
ð0:19Sþ 1Þð0:4Sþ 1Þ ðset positionÞ ð6Þ

Fig. 3 shows the hydraulic subsystem. In this model G is the per
unit (p.u.) gate opening, Go is the operating point, Pmech is the
mechanical power produced by a single turbine, Tmt is the water
starting time of the main tunnel, Tw is the water starting time of
any single penstock and Twt is the water starting time of the main
tunnel and a single penstock (Twt = Tmt + Tw). The values of Tmt, Tw

and Twt depend directly on the constructional dimensions of the



Fig. 1. Dinorwig hydraulic subsystem (not a scale).
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main tunnel and the penstocks. At is the turbine gain, whose value
depends directly on the turbine MW rating and inversely on the
Generator MVA rating. The electrical subsystem (Fig. 4) is based
on the ‘swing’ equations [20], and includes the effect of synchro-
nizing torque. The first-order filter is included in the feedback loop
for noise reduction. The models are expressed in the per-unit sys-
tem, normalized to 300 MW and 50 Hz.

The water starting time varies depending on the number of ac-
tive units [21,22]. Fig. 5 presents a MIMO model of the hydraulic
subsystem, considering two penstocks only, showing the hydraulic
coupling of the plant. Because the units have the same manifold, a
change in the position of either guide vane affects the output of
both machines. A MIMO model representing all six machines is
used in later simulations. If the operating point is fixed to
0.95 p.u., the parameters of the hydraulic model are

Go ¼ 0:95 qnl ¼ 0 Tw ¼ 0:31
Twt ¼ 0:67 At ¼ 1:12

This model was implemented in Simulink. It was designed to be
scalable, allowing different behaviours to be selected according to
the objective of the study. For the purposes of this work, a multi-
variable linear model was chosen.

4.2. Process decision scheduling of the power plant

The process proposed to show the benefits of the novel deci-
sion-making scheme is a typical hydroplant, where the hydro-
mechanical power is applied to four independent electrical gener-
ators. The plant is controlled by 1 PLC configured in close loop and
supported by a digital event recorder for four digital channels and
four analogue variables.

The performance of the power generation is evaluated in terms
of four parameters defined for each generator. The fuzzy scheduler
controls the connection between each machine and the electrical
net. For the engineering applications of this novel fuzzy strategy,
a model proposed by Gracios-Marin et al. was used to simulate a
Neural PID for a typical hydroplant [23].

The scanning cycle of the event recorder was 40 ms for all the
registered values. The simulated process is presented schemati-
cally in Fig. 6.

Let us consider the problem of how to select the best scheduling
pattern among four Power Generators: PG1, PG2, PG3 and PG4

(Fig. 7). Following the procedure proposed just described, we
have

Step 1: Let u1 = PG1, u2 = PG2, u3 = PG3 and u4 = PG4,
so:U = {u1,u2,u3,u4};

Step 2: Define a = ‘‘good performance”; then C = {a} = {good
performance};

Step 3: Let f1 = parameter 1, f2 = parameter 2, f3 = parameter 3,
and f4 = parameter 4. Set p = {f1, f2, f3, f4} and
X(fi) = [0,1], j = 1,2,3,4;

Step 4: Let F = P (p) .Then (U,C,F] is a description frame.
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Step 5: Define
BðfiÞ;1 6 i 6 m!
BðfjÞðxÞ ¼
1 ;0:9 6 x 6 1:0

x�0:8
0:1 ;0:8 6 x < 0:9
0 ; 0:0 6 x < 0:8

8><
>:

ð7Þ

This membership function was obtained by the experience
operator in the plant of Dinorwig [23].
Step 6: Construct Tm T(4), a four-dimensional triangular norm, as
T4 ¼ ðx1; x2; x3; x4Þ ¼
Y4

j¼1

xj ¼ x1 � x2 � x3 � x4 ð8Þ

Hence,

Bð1Þðx1; x2; x3; x4Þ ¼ T4ðBðf1Þðx1Þ;Bðf2Þðx2Þ;
� Bðf3Þðx3Þ; Bðf4Þðx4ÞÞ ¼ Bðf1Þðx1Þ
� Bðf2Þðx2Þ � Bðf3Þðx3Þ � Bðf4Þðx4Þ ð9Þ
Step 7: The values of each performance parameter (fj) by each
machine (ui) are given in Table 2. Its corresponding mem-
bership function values B (fi) (f(ui)) are given as follows in
Table 3.
0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

Fig. 6. Fuzzy scheduling f
Step 8: Calculate A (ui)) for i = 1, 2, 3, 4.
60

or the four m
Aðu1Þ � Bð1Þð1ðu1ÞÞ ¼ Bð1Þðf1ðu1Þ; f2ðu1Þ; f3ðu1Þ;
� f4ðu1ÞÞT4ðBðf1Þðf1ðu1ÞÞ;Bðf2Þðf2ðu1ÞÞ;
�Bðf3Þðf3ðu1ÞÞ;Bðf4Þðf4ðu1ÞÞÞ
¼ Bðf1Þðf1ðu1ÞÞ �Bðf2Þðf2ðu1ÞÞ
�Bðf3Þðf3ðu1ÞÞ �Bðf4Þðf4ðu1ÞÞ
¼ 0:6x1x1x1¼ 0:6 ð10Þ
Similarly, we get A (u2) 0.9, A (u3) 0.5 and A (u4) 0.3. So, for this
particular case PG2 has the best performance of the four machines,
where in the actual condition, it can be considered to have a good
functioning condition.

Now consider that a performance curve index is proposed to de-
fine the best schedule for the four machines in terms of the four
parameters defined, then a novel algorithm can be developed for
a recursive version for the DFE strategy (see Fig. 2).

In this case for each time analysis, the ‘‘best” candidate machine
is selected in terms of index variation. The deterministic schedul-
ing is obtained, when a 300 MW of average power generation is
programmed. If the second feedback connection is established for
each machine, then a soft function is obtained when the actual of
next machine will be on, which was developed in a FPGA architec-
ture using typical floating point for ARX scheme.

The parameters considered for each machine were P1: electrical
power efficiency, P2: frequency, P3: phase, and P4: velocity.
70 80 90 100

achines.



Table 2
Average performance indexes.

unf P1 P2 P3 P4

M1 0.86 0.91 0.95 0.93
M2 0.98 0.89 0.93 0.90
M3 0.90 0.92 0.85 0.96
M4 0.91 0.83 0.91 0.87

Table 3
Fuzzy membership.

unf f1 f2 f3 f4

u1 0.6 1 1 1
u2 1 0.9 1 1
u3 1 1 0.5 1
u4 1 0.3 1 0.7
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5. Conclusions and future work

The possibility of non-deterministic activities on the industrial
processes by using fuzzy scheduling has been demonstrated in
the present paper. Fuzzy decision using feedback extensions was
used to implement a novel fuzzy scheduling scheme, which was
applied to achieve a pre-established performance that allows a
production goal. This type of schedule represents a novel alterna-
tive to transform typical industrial process on ‘‘intelligent process”
inserting AI agents in the regulation/control of activities for each
resource. Consequently, the control now has a better capacity to
take control decisions. RDFE also improves the requirements of
agility and fault tolerance of processes, and because the computa-
tional requirements are low and the fuzzification process is simple,
the agent can be developed using rapid prototyping architectures
like FPGA.

The practical results compared using Matlab� showed the best
performance in the function of the machines processes, validating
the possibility to recursive a basic feedback extension definition.

The next step for the scheduling scheme is to obtain a soft
behaviour in the decision, increasing the number of tactics that
RDFE evaluates for the decision process and introducing the con-
cept of multifunction/multivariable on the decision structure. The
objective function could include other characteristics such as life-
time consumption. Furthermore, the information collected from
RDFE could derivate into an expert system that may be able to tune
the power plant governors.
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