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Abstract—In some applications, it is required to have contin-
uous-time low-pass analog filtering systems which simultaneously
possess a constant group delay in the passband and a narrow tran-
sition band. Usually, these systems are implemented by adding to
the output of a filter with steep-amplitude selectivity (an elliptic
filter, for instance) an all-pass filter which compensates the unfa-
vorable run of the group delay response of the first filter. How-
ever, this compensation process will also increase the duration of
the transient response of the resulting filtering system. This paper
presents a new class of delay-compensated parameter-varying low-
pass elliptic filters with a transient response of short duration. This
improvement is achieved by means of a temporary change in the
value of the filter parameters when a steplike transition with a min-
imum amplitude is detected in the input signal. As a consequence
of the control strategy used to induce parameter variations in the
proposed class of filters, its behavior is nonlinear in nature. There-
fore, its stability properties (and particularly their bounded-input
bounded-output stability) are also assessed. Simulations verifying
the effectiveness of the new class of filters are presented and com-
pared to the performance of delay-compensated and delay-uncom-
pensated elliptic filters which were chosen as study cases.

Index Terms—Elliptic filters, group delay compensation, param-
eter-varying technique, stability, time-varying systems, transient
behavior.

I. INTRODUCTION

T HE DESIGN of continuous-time analog filters is based
on the approximation of the magnitude or phase specifi-

cations in the frequency domain by means of polynomials or ra-
tional functions [1]–[3]. In the design of these systems, however,
steep-amplitude selectivity and constant group delay in the fre-
quency domain are design specifications which are not orthog-
onal to each other and, therefore, are difficult to tune simultane-
ously [4].

Elliptic filters [5]–[11], also known as Cauer filters, achieve
the narrowest transition band for the same filter order in com-
parison to other filter types. On the negative side, they have the
most nonlinear phase response over their passband. Ideally, the
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transfer function of a filter ought to provide a group delay that
is constant or nearly constant over the frequency range of in-
terest, typically the passband. If the delay is constant, signal
components over a wide frequency band are delayed equally.
Therefore, the distortion introduced by the filter on the expected
output signal is minimized. This is particularly important, for
instance, in filters used for the transmission of baseband digital
signals [12] or in pulse-shaping low-pass filters for analog read
channels in hard disk drives [13].

A low-pass filter approximation which puts a special em-
phasis on the phase linearity of its transfer function is the Bessel
approximation. Bessel filters give a constant propagation delay
across the input frequency spectrum. However, their magnitude
response is much less selective as compared to Butterworth,
Chebyshev, and elliptic filters. The usual solution considered
in the design of continuous-time low-pass analog filters which
should simultaneously possess a constant group delay in the
passband and a selective magnitude response is to compensate
the delay of a given low-pass filter which has been optimized in
its magnitude response by means of one or more all-pass filter
sections connected in cascade to the output of the low-pass filter.
However, this compensation scheme is always done at the ex-
pense of an increase in the duration of the transient behavior of
the resulting delay-compensated low-pass filter.

In this paper, a new class of continuous-time param-
eter-varying delay-compensated low-pass elliptic filters with
a transient response of short duration will be presented. The
improvement attained by this class of filters is based on a
temporary change in the value of their parameters when a
steplike transition with a given minimum amplitude is detected
in the input signal. The strategy proposed for the variation of
parameters was used previously in the past with some mod-
ifications in a number of applications. For instance, in [15],
a parameter-varying low-pass filter was used to eliminate the
oscillatory response exhibited by load cells used in weighting
applications. Another parameter-varying filter was used in [16]
to reduce the time employed in the acquisition of evoked poten-
tials generated through auditive stimuli. The parameter-varying
delay-compensated low-pass elliptic filters proposed in this
paper may have potential applications as pulse-shaping filters
[12]–[14]. It should also be noticed that there are also other
classes of continuous-time filters which have control strategies
for the variation of their parameters in order to improve their
time-domain or frequency-domain response. The interested
reader may consult, for instance, [17]–[22].

1549-8328/$25.00 © 2009 IEEE
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Fig. 1. Block diagram of group delay compensation.

The rest of this paper is organized as follows. In Section II, the
problems associated to the group delay compensation are dis-
cussed with more detail. The theory behind the technique used to
reduce the transient response of a delay-compensated low-pass
filter is presented in Section III. In Section IV, a strategy used
to detect edge-like transitions in the input signal with a given
minimum amplitude is introduced. These transitions lead to the
appearance of transient behavior at the filter output. The strategy
presented in this section is used to determine in which time in-
stants an increase of the filter parameters is required. Sections III
and IV constitute the main contribution of this paper. Finally,
some concluding remarks are given in Section V.

II. GROUP DELAY COMPENSATION

A. Delay-Compensation Fundamentals

If a filter is solely designed for a given magnitude response
in the frequency domain, the designer has no control over its
group delay. Once the magnitude response of the filter has been
chosen, its poles and zeros are also determined. Therefore, there
remains no degree of freedom to meet any additional filter spec-
ifications. In this case, the only option left is to select a filter ap-
proximation which gives the “least objectionable” group delay.

If the obtained group delay varies too much for the specifi-
cations imposed on the design, the transfer function of the filter
may be adjusted as a whole. However, this process has to be
made in such a way that the magnitude response of the filter is
not affected. For this purpose, an all-pass filter should be
connected at the output of the filter with the desired magni-
tude response as it is shown in Fig. 1.

The magnitudes of the original and the all-pass filters mul-
tiply with no contribution from the all-pass module, since

. Moreover, the phases of both filters will add.
Since the group delay of an arbitrary filter is obtained from
the negative derivative of its phase, the delay of the
original filter and the delay of the all-pass filter

will also add

(1)

A delay equalizer usually consists of one or more all-pass net-
works, each of which has the same gain for all frequencies. With
a proper design of the all-pass sections, the group delay of the
equalized filter approximates a constant group delay response.

However, as the equalizer complexity increases, so does the
number of circuit components, power consumption, and noise.
These tradeoffs must be carefully evaluated to suite the applica-
tion under consideration. However, these design problems will
not be addressed here.

B. Delay-Compensation Example and Conclusions

In this paper, a second-order elliptic filter with passband
peak-to-peak ripple dB, minimum stopband attenu-
ation dB, and cutoff frequency rad/s will be
considered as a study case. The transfer function of this filter
is of the form

(2)

In order to compensate the group delay of the aforementioned
filter, a first-order all-pass section with magnitude equal to one
will be used. The transfer function of the first-order all-pass filter
considered in this study case is given by

s
s

(3)

where is a positive constant and .
The group delay functions of the second-order elliptic filter

and the first-order all-pass filter can be ex-
pressed as

(4)

(5)

Procedures for group delay compensation are well known
from filter theory. However, these methods are based on a trial-
and-error approach [2], [3]. In this paper, an analytical method
which makes use of the Taylor series expansion around a given
frequency point of the group delay functions will be applied. In
an analogy to Butterworth filters, whose response is maximally
flat when , the group delay of the elliptic and all-pass
filters will be linearized in this example at in order to
obtain a group delay for the compensated filter which is as flat
as possible around that frequency. The Taylor expansions in (4)
and (5) around may be written as follows:

(6)

(7)

The total (compensated) group delay equals the sum of the con-
tributions due to each of the individual sections, i.e., the uncom-
pensated filter and the all-pass module. The same may be said
with respect to the Taylor expansions of the group delay func-
tions given in (4) and (5). Therefore, the total group delay is of
the form

(8)
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Fig. 2. Results of group delay compensation.

The group delay compensation method used in this paper con-
sists in determining a value of the all-pass filter parameter
for which the total delay is independent of the smallest
power of the angular frequency . In this case, it is necessary to
make equal to zero the constant associated to in (8). In other
words

(9)

This equation has a unique real solution, and it is .
The results of the group delay compensation of the second-

order elliptic filter whose transfer function is given in (2) are
shown in Fig. 2. This figure presents the group delay functions
of the original filter, the compensated filter, and the all-pass filter
section which has been used for the compensation. It is easy to
notice that the process of the group delay compensation yielded
good results. The group delay response of the compensated filter
is considerably flatter in the normalized filter passband than the
original one. For the original filter, the minimum and maximum
values of the delay in the passband are, respectively,

s and s. Therefore,
the variation in the passband is s. On the other
hand, the minimum and maximum delay values for the com-
pensated filter are s and

s. Therefore, the delay variation in the pass-
band is s.

From these values, it can be concluded that, after compen-
sation, the delay variation is 7.75 times smaller than the delay
variation of the original filter. Of course, the total (compensated)
delay is larger than the delay of the original filter. However,
the absolute delay is normally of less concern than the delay
variation.

In this example, the variations of the delay in the passband
were minimized by determining a value of the parameter as-
sociated to the all-pass filter such that the delay response of the
compensated filter is as flat as possible. There are, of course,
many other criteria that may be selected to obtain an optimized
group delay. For example, it may be desirable to construct the
filter such that the delay will have an equal ripple over the pass-

Fig. 3. Step responses of original and compensated filters.

band. In general, computer routines are often needed to solve
such requirements, but in some simple cases, closed-form solu-
tions are available.

A group delay compensation process is always made at the
expense of an increase in the duration of the transient response
of the compensated filter. Fig. 3 shows the step responses of
the original and compensated filters which have been consid-
ered in our example. It is easy to notice that the transient re-
sponse of the filter whose group delay has been compensated
lasts longer. Additionally, the response of the compensated filter
contains an undesirable undershoot. Some ciphers can throw
more light into this problem. For the original filter, the 2% set-
tling time is s, and the overshoot amounts to 10.74%,
whereas the compensated filter has, for the same specifications,
a settling time of s and an overshoot of 6.22%.
Additionally, the compensated filter has an undershoot which
equals to 13.44%. After comparing these ciphers, it may be con-
cluded that, after compensation, the settling time has increased
by 27.08%, and the overshoot has been reduced by 42.8%.

In the next sections, the fundamentals of operation of a new
class of continuous-time delay-compensated parameter-varying
low-pass elliptic filters which have improved transient responses
will be presented.

III. PARAMETER-VARYING TECHNIQUE

A. Introduction

The improvement of the transient behavior of a system for
a given set of operating conditions is an old problem which
has been considered in many fields of engineering. There is a
plethora of techniques used for this aim in adaptive and con-
trol systems. In the field of circuit design, there are many situ-
ations in which the transient behavior of a given system must
be minimized as much as possible. Operational amplifiers used
in switched-capacitor circuits are the best example of these sys-
tems. There are several techniques proposed in the literature for
the design of these circuit blocks which take into account the ad-
justment of the settling time within a given boundary (see, for
instance, [23]–[27]).
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Fig. 4. Step responses for various values of natural frequency � .

In the particular case of traditional continuous-time analog
low-pass filters, there are few options to improve their tran-
sient response without disturbing its magnitude or phase re-
sponse. If timing characteristics of the output signal of the filter
for a given stimulus are taken into account during the design
process as a design specification, the only option left to the
designer is to evaluate the performance in the time domain of
different transfer-function approximations which satisfy the re-
quired magnitude and phase specifications for his/her design
problem and choose the best approximation.

There is another possibility to solve the problem previously
described. It is possible to attain a significant reduction in the
duration of the transient behavior of a low-pass filter to a given
input signal by varying its filter passband as done in [16],
[28]–[30]. The variations of the filter passband are achieved
by varying the value of the filter coefficients during the time
interval where the transient behavior is expected to occur. The
technique used to vary the parameters of a prototype linear
time-invariant filter as well as the properties of the resulting
filtering system will be presented in the next subsections.

B. Filter Dynamics

The dynamic properties of the second-order low-pass elliptic
filter are described by the damping ratio and the undamped
natural frequency . The transfer function of such a kind of
filter is usually written in the following form:

(10)

where and are constants. The coefficient is determined
such that . For the second-order elliptic filter
which was considered in Section II, its dynamical parameters
are as follows: , , , and

. It is not difficult to demonstrate that a larger value
of the natural frequency of the second-order transfer func-
tion given in (10) will lead to a shorter duration of its transient
behavior to a step input. On the other hand, a larger value of the
damping ratio implies a reduction of the expected overshoot

Fig. 5. Step responses for various values of damping ratio � .

Fig. 6. Step responses for various values of the inverse of all-pass filter param-
eter �.

of the filter. Figs. 4 and 5 show simulation results of the step
responses of the transfer function given in (10) when and
are varied separately.

In a similar fashion, the inverse of the all-pass filter param-
eter has an effect in the control of the transient behavior of the
all-pass filter which may be comparable to the role of the natural
frequency in the second-order low-pass filter. The relation
between the duration of the transient behavior in the all-pass
filter and the value of is shown in Fig. 6. As shown, the
transient behavior strongly depends on the dynamical param-
eters of the filter. By changing these parameters in time, it is
possible to improve the dynamics of the filter and obtain a sig-
nificant reduction of the transient duration.

C. Time-Varying Filter Model for Reducing the Duration of
the Transient Behavior in Delay-Compensated Elliptic Filters

The proposed technique for the variation of parameters of
the delay-compensated elliptic filter is the result of modeling
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the scalar single-input–single-output ordinary differential equa-
tions associated to the transfer functions given in (3) and (10)
with time-varying coefficients. In order to improve the time-do-
main response of the compensated filter, it was assumed that its
dynamic parameters are varied in time. The delay-compensated
elliptic filter with time-varying parameters may be mathemati-
cally represented as follows:

(11a)

(11b)

where and are the input and output of the filter, respec-
tively. Functions , , and define the parameter vari-
ations of the natural frequency, damping ratio, and the inverse
of the all-pass filter parameter , respectively. It should be no-
ticed that, in (11a), parameters and are not time-varying,
since they do not influence the speed of the filter response. For
the same reason, the magnitude of the all-pass filter has not been
included as an additional parameter which may be varied to im-
prove the speed of the filter response.

Equation (11a) describes the dynamics of the low-pass elliptic
filter when its parameters are being varied, and (11b) represents
the all-pass filter section. In the proposed model, it has been
assumed that individual filter sections do not load each other.
It is clearly seen from (11) that the output of the elliptic filter
denoted by is, at the same time, the input signal for the
all-pass filter section.

D. Parametric Functions of the Filter

In Section II-B, it was shown how the natural frequency, the
damping ratio, and the all-pass filter parameter influence the
transient behavior of the filter. The analysis pointed out that, for
larger values of the parameters and , the duration of the
transient behavior is diminished. On the other hand, the over-
shoot of the filter is reduced for increasing values of . If these
rules are taken as a departure point, it may be concluded that,
in order to improve the dynamic behavior of the compensated
filter, a temporary increase of the filter parameters has to take
place when the filter is expected to display transient behavior at
its output. Therefore, the functions responsible for the variation
of the filter parameters , , and have been formu-
lated as follows:

(12)

(13)

(14)

where and are the natural frequency and the damping
ratio which come from the low-pass elliptic-filter approxima-
tion, and is the all-pass filter parameter which comes from
the delay-compensation calculation. The coefficients , ,
and define variation ranges of the functions , , and

, respectively. These parameters are given by

(15)

Fig. 7. Block diagram of the delay-compensated parameter-varying low-pass
elliptic filter.

For , functions (12)–(14) decrease in the varia-
tion interval. The choice of functions (12)–(14) is related to the
easiness of their generation by means of analog circuitry. The
function in (12)–(14) is the step response of the first-order
support system which is assumed to adopt the following
form:

(16)

The step response of can be written as follows:

(17)

where is the inverse Laplace transform and is the time
constant of the first-order support system. Constant can be
denoted as the exponential variation rate of functions ,

, and . In the time domain, (17) can be written in the
following form:

(18)

where stands for the unit step applied at .
Fig. 7 shows a block diagram of the proposed parameter-

varying delay-compensated low-pass elliptic filter. This di-
agram presents in a general way how the support system
influences the dynamics of the elliptic and all-pass filters by
means of the functions given in (12)–(14).

E. Functions Restrictions

In order to not alter the transfer characteristics of the delay-
compensated filter when its transient behavior has to be reduced
in duration, (12)–(14) must settle, respectively, to the values ,

, and during the time interval . Parameter stands
for the settling time of the original time-invariant filter for an
assumed accuracy factor . In other words, it is required that
the adjustment of the filter parameters is done only during the
existence of transient behavior in the filter. At the same time,
it must be guaranteed that the behavior of the filter itself will
remain stable.

The stability properties of the set of equations (11) will be
discussed first. In [31], the stability properties of the differential
equation

(19)
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are studied, and a set of conditions are given for functions
and such that the solutions of (19) are asymptotically stable.
These conditions were determined by means of the second Lya-
punov method and are given as follows:

(20a)

(20b)

(20c)

Functions and defined in (12) and (13) satisfy the
constraints given in (20a) and (20b). If the definitions for
and are substituted in condition (20c), the following in-
equality may be obtained for :

(21)

where the coefficients , , , and are given as follows:

(22a)

(22b)

(22c)

(22d)

In order to guarantee that the inequality (20c) holds, it suffices to
guarantee that . This implies that coefficient must
satisfy the following inequality:

(23)

This relation is valid provided that and . As
it will be seen soon, the stability criterion given in (23) is very
useful for the determination of the parameters , , , and
in functions (12)–(14).

Asymptotic stability as such does not guarantee bounded-
input bounded-output (BIBO) stability. However, if the ho-
mogeneous solutions of (19) are exponentially asymptotically
stable and the coefficients of (19) are bounded for all , (11a)
has BIBO stability [32], [33]. Unfortunately, it is not possible to
analytically assess whether (19) has solutions which are expo-
nentially asymptotically stable or not. Later on, in Section III-F,
a method will be presented to determine numerically whether
the solutions of (19) are exponentially bounded or not.

In the particular case of the system described by (11b), its
general homogeneous solution may be written as

(24)

where is an arbitrary constant. In order to guarantee the
asymptotic stability of the previous function, it suffices that
function is always positive. Once more, the param-
eter-varying all-pass filter described by (11b) will generate
a bounded output if its homogeneous solution is stable and

its input is bounded. If the output of the parameter-varying
low-pass elliptic filter generates a bounded output, the output
of the parameter-varying all-pass filter will also be bounded.

The dynamics of the elliptic filter may be improved when the
settling time of the functions given in (12)–(14) will equal
the settling time of the original time-invariant filter , i.e.,

(25)

where is a constant which defines the maximum permissible
error for the settling-time measurement. For an error of 2%,

. The settling time of can be derived from the
following relation:

(26)

Substituting (12) and (18) into the left side of this relation, we
have

(27)

The settling time for function can be determined from this
equation and is given by

(28)

From this last relation, it is possible to calculate the exponential
variation rate of the functions , , and . Using
(25) and (28), the exponential variation rate can be written as

(29)

If and are known, may be readily determined. In order
to preserve the stability of the system, the value of must be
selected such that the condition given in (23) holds. Finally, pa-
rameter must be equal to to guarantee that function (14)
will have the same settling time.

F. Parameter Selection

In the previous section, a lower bound for the exponential
variation rate of functions , , and was deter-
mined. Moreover, it was also concluded that the value of
determines automatically the value of and establishes a max-
imum limit for the value that may have if the stability condi-
tion given in (23) is taken into account. Here, it will be explained
how to determine an optimal value of and .

Suitable values for and must be determined via com-
puter simulations because a complete analytical solution of the
differential equation given in (11a) is unfortunately not avail-
able. The search strategy for these values is described as fol-
lows. First, an interval must be proposed in which
the optimal value of will be searched. Using ,
the exponential variation rate associated to this value should
be calculated. In this step, it is assumed that the parameter is
already known and given as a design specification. Using con-
dition (23), a second interval must be estimated for from
and the maximum proposed value of in order to determine a
search space. Once a space search has been defined, the optimal
values of and are selected by means of an optimization
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strategy in which the total efficiency factor has to be mini-
mized. The efficiency factor is expressed as the product of the
time efficiency factor and the frequency efficiency factor

(30)

The time efficiency factor is defined as the ratio of the settling
time of the delay-compensated filter with varying parame-
ters and the settling time of the original time-invariant filter
with no phase compensation. On the other hand, the frequency
efficiency factor stands for the ratio of the cutoff frequency

of the time-invariant filter which corresponds to the param-
eter-varying filter for and the cutoff frequency of the
original uncompensated time-invariant filter

(31)

Therefore, optimal values for the variation ranges and are
found for . A smaller value of the efficiency factor

implies that there has been an improvement in the transient
behavior of the designed parameter-varying filter. If the value
of the total efficiency factor satisfies the condition , then
the designed filter has better properties than the original time-
invariant filter.

Finally, once the parameters , , , and have been
chosen for the functions (12)–(14), it is necessary to assess nu-
merically whether the resulting filtering system has BIBO sta-
bility or not. For this purpose, it suffices to obtain the magnitude
of the modes associated to the homogeneous response of (11a).
At this point, it is pertinent to introduce the concept of a mode.
In systems theory, the equation

(32)

where is a vector of state variables and is the system
matrix, has one and only one mode excited if its solution for a
given initial condition adopts the form

(33)

In this expression, is a constant vector, and is an eigen-
value associated to the system matrix [34]. Assuming that
the eigenvalues of are different, it is possible to represent the
response of system (32) as a sum of modes of the form (33)
which will be linearly independent from each other. An impor-
tant property of the mode given in (33) is that it defines not only
a possible direction of growth of the general response of (32)
but also its exponential rate of growth through the eigenvalue .

The previous concept can be extended for linear time-varying
systems of the form

(34)

as it was proposed in [35]. According to [35], the magnitude of
each of the modes present in (34) may be obtained from the mag-
nitude of the orthogonalized columns of the transition matrix of
(34). The magnitude of each of the orthogonalized vectors will
contain a measure of their growth, which does not necessarily
has to decrease or increase exponentially. If the magnitudes of
each of the modes of system (34) are functions which tend to

Fig. 8. Magnitudes of the modes of the filter represented by (11a).

Fig. 9. Magnitudes of the modes of the filter represented by (11a) for a suffi-
ciently large time interval.

zero and are exponentially bounded for a given , then
system (34) is exponentially asymptotically stable [35].

In order to determine whether (11a) has exponential asymp-
totic stability or not, this equation may be cast into state form
using phase variables. After this step, the magnitudes of its
modes may be computed with the aforementioned method. If
the resulting state equation is not exponentially asymptotically
stable, then it is not possible to guarantee the BIBO stability
of the filtering system. In that case, new constants , , ,
and have to be selected such that the resulting filtering
system has exponential asymptotic stability. However, from the
numerical experiments conducted so far, it has not yet detected
a filtering system which does not have BIBO stability, so it
seems unlikely that the previously mentioned parameters have
to be recalculated.

G. Results

Applying the method presented in the previous subsection,
the following parameter values for the filtering system were de-
termined for , , and

. The magnitudes of the modes associated to (11a)
are shown in Fig. 8. As shown, the magnitude of each of the
modes tends asymptotically to zero. If the magnitudes of the
modes are plotted in a time interval sufficiently large and a loga-
rithmic scale is used for the ordinate as in Fig. 9, it can be further
verified that these functions are exponentially bounded for

s. Therefore, the resulting filtering system is BIBO stable.
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Fig. 10. Magnitudes of the modes of the uncompensated linear time-invariant
elliptic filter for a sufficiently large time interval.

Fig. 11. Step responses of original, delay-compensated time-invariant, and
parameter-varying delay-compensated low-pass elliptic filters �� � � �
�� � � ���� � � ����� � � �����.

The magnitudes of the modes of the original linear time-in-
variant uncompensated elliptic filter described in Section II are
shown in Fig. 10. If the magnitudes of the modes of the linear
time-invariant elliptic filter are compared to the magnitudes of
the modes of the parameter-varying filter, it may be seen that
both pairs have the same decrease rate when s. This is
to be expected since the time-varying coefficients of (11a) must
tend for large to the coefficients of the original elliptic filter.
However, the magnitudes of the modes associated to (11a) are
significantly smaller in the same time interval. Moreover, the
difference in magnitude between the modes of (11a) is greater
than in the linear time-invariant case. These phenomena are
a consequence of the temporary increase of the parameters in
(11a) and need to be further studied.

Fig. 11 shows the simulation results of the original, delay-
compensated time-invariant, and parameter-varying delay-com-
pensated elliptic filters when a step signal is used as an input. It
is easy to notice that the parameter-varying technique achieved a
considerable reduction of the duration of the transient behavior.
Moreover, the simulated parameter-varying filter is even faster
than the original one, and undesirable overshoot has been elim-
inated from its response.

The settling time of the parameter-varying delay-compen-
sated filter when is equal to 1.70 s. This time has to be
compared to the settling times of the original and the delay-com-
pensated filters for the same specification parameter . The set-
tling times of the original and the delay-compensated elliptic
filters are, respectively, equal to 4.80 and 6.10 s. Therefore, the
settling time of the parameter-varying delay-compensated filter
is over 3.5 times shorter than the settling time of the compen-
sated time-invariant filter and over 2.8 times shorter than the
settling time of the original filter. On the other hand, the un-
dershoot of the parameter-varying filter is of 10.28%. In other
words, it underwent a reduction of 23.5% as compared to the
undershoot of the delay-compensated time-invariant filter.

Fig. 12 shows a detailed model of the second-order param-
eter-varying delay-compensated low-pass elliptic filter which
has been discussed in this paper. In this model, the uncompen-
sated low-pass elliptic filter and the all-pass filter module are
specified. The remaining part of the model describes the system
which generates the functions of the filter parameters. A clas-
sical implementation of the parameter-varying filter as shown
in Fig. 12 requires the use of multipliers, adders, and one ad-
ditional integrator. As it can be noticed, the overall complexity
of the system underwent a significant increase. However, in sit-
uations in which the transient behavior generated by the filter
should be as short as possible, this complexity increase may
be profitable. It seems likely that this filter could be imple-
mented in CMOS technology using transconductors and capac-
itors to build the required integrators and multipliers. A linear
time-varying filter presented in [36] which emulated the be-
havior of a linear time-invariant current-mode filter was built
using such elements.

IV. CONTROL STRATEGY FOR THE PARAMETER INCREASE IN

THE PARAMETER-VARYING FILTER

Until now, a strategy has been developed to reduce the du-
ration of the transient behavior of the second-order delay-com-
pensated low-pass elliptic filter when a step function is given as
a stimulus at . Under normal conditions, an arbitrary input
signal may be expected to have fast variations in its amplitude
which are not related to the presence of noise such as the signal
shown in Fig. 13. Such variations may lead to the appearance of
transient behavior at the output of the filter. In a first approxi-
mation, these fast transitions may be treated as step signals. In
this section, a method to detect steplike transitions in the input
signal with a minimum amplitude will be proposed. This method
will be used to determine in which time instants a temporary in-
crease of the value of the filter parameters is required to reduce
the duration of the transient behavior of the filter.

In order to make useful the technique proposed in the previous
section for the filtering of signals containing steplike transitions
in the time domain which are not due to the presence of noise, it
is necessary to have another system which will be able to detect
these transitions in the input signal [28]. This is particularly pos-
sible when the signal is distorted by a small amount of additive
noise, as in Fig. 13. For this purpose, a system which delays
the input signal by a given time interval may be used.
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Fig. 12. Detailed model of the second-order parameter-varying delay-compensated low-pass elliptic filter.

Fig. 13. Input signal with additive noise.

This time should be chosen in such a way that the most signif-
icant changes in the amplitude of the input signal are detected.
A block diagram of the system required for this aim is shown in
Fig. 14. The absolute value of the difference between the input
signal and the delayed input signal is
fed to the comparator input. The comparator compares the ac-
tual value of the signal with the activation threshold . The

Fig. 14. Triggering system required for the control of the parameter variation
in the proposed filter.

value of this threshold is chosen according to the variance of
the input noise. A larger value of the activation threshold will
be used when the level of input noise is higher. In many appli-
cations (e.g., in measurement systems), the noise level is small,
and thus, it is possible to set the activation threshold of the de-
signed filter to a given value.

If the condition is met, the comparator generates
the trigger signal , which means that a steplike transi-
tion which is not due to additive noise was detected in the input
signal; otherwise, . Then, the signal is fed to the in-
tegrator and to its reset input. This integrator forms the support
filter structure and is marked with a star in the diagram shown
in Fig. 12. The trigger signal fed to the reset input of the in-
tegrator is responsible for the generation of all functions of the
filter parameters. Any rising edge of the signal will restart
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Fig. 15. Responses of the original filter, delay-compensated filter, and param-
eter-varying delay-compensated filter with triggering system to the signal shown
in Fig. 13.

the support-system integrator, which in turn causes the genera-
tion of the functions , , and . Given that the trigger
signal is generated by means of a static nonlinearity, the system
shown in Fig. 12 will be BIBO stable, since its dynamics will
still be largely dependent on the dynamics of the set of equa-
tions given in (11). It has to be noticed that the resulting filtering
system after the addition of the triggering system will be non-
linear in nature.

Fig. 15 shows the simulation results of the traditional time-
invariant elliptic filter, delay-compensated time-invariant filter,
and the proposed parameter-varying delay-compensated filter
with triggering system when the signal shown in Fig. 13 is ap-
plied as a stimulus. It is easy to notice that the application of
the parameter-varying filter in the processing of signals with
steplike transitions which are distorted by additive noise yields
much better results as compared to the performance of time-in-
variant filters. If a steplike transition is detected in the input
signal, the parameter-varying filter is considerably faster than
the traditional time-invariant one. It is necessary to add that the
group delay response is also equalized. This occurs when the
filter parameters have already settled to a constant value. If the
amplitude of a steplike transition present in the input signal is
smaller than the threshold value used in the triggering system,
a step will not be detected. Therefore, the filter will work in the
delay-compensated time-invariant mode.

The proposed filter may be applied in many signal-processing
and data-acquisition systems. There are, of course, some limita-
tions. The noise level must be small as compared to the steplike
transitions present in the input signal, and the changes of the
input signal level should not be faster than the settling time of
the filter. There are also data-acquisition processes in which it is
known when the level changes in the input signal occur, and in
this case, the triggering system is not required. Such a situation
is observed, for instance, in the processing of analog time-multi-
plexed signals such as those present in the read channels in hard
disk drives [14]. In this particular case, the increase of the filter

parameters may be needed when a different input of the multi-
plexer is selected [30].

V. CONCLUSION

In this paper, the parameter-varying technique has been
used in order to generate a new class of continuous-time
delay-compensated parameter-varying low-pass elliptic filters
with improved dynamic response. A block diagram of this
class of filters has also been presented. Parameter-varying
delay-compensated low-pass elliptic filters possess selective
magnitude response and constant group delay over the pass-
band when the filter parameters have settled to a constant
value. It was demonstrated via simulations that the new class
of filters achieved a considerable reduction of the duration
of the transient response as compared to the traditional and
the delay-compensated low-pass elliptic filters which were
used as prototypes. Moreover, the simulated parameter-varying
delay-compensated filter is even faster than the uncompen-
sated filter and has a small overshoot in its response. The
parameter-varying filter presented in this paper also satisfies
a number of conditions for asymptotic stability and displays
BIBO stability. Finally, although the proposed continuous-time
parameter-varying delay-compensated low-pass analog filter is
a system whose implementation may not be easy, preliminary
analyses have confirmed that the proposed technique may be
applied in practice successfully.
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