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The method for the minimum-phase (MP) finite impulse response (FIR) filter design, based
on Rouche’s theorem from complex analysis is presented here. The filter is designed
directly from a given specification. The method uses the cosine filters and the sharpening
technique resulting in a multiplierless filter.
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1. Introduction

There are some applications where high delay introduced by linear-phase FIR filters is not permitted like in communica-
tion data systems. If the application at hand does not require a linear-phase characteristic it is possible to obtain much lower
delay by minimum-phase filter (MP) design which preserves desired magnitude response.

The minimum-phase requirement restricts the resulting filter to have all its zeros on or inside the unit circle.
There have been proposed different methods to obtain minimum-phase filters starting from a linear-phase filter and

methods based on complex cepstrum [1–6]. The review of the methods can be found in [3].
Unlike the many known methods we propose here the design of minimum-phase filters which is multiplier-free. Besides

the minimum-phase filter is designed directly from the given specification. Method is based on cascaded expanded cosine
filters and sharpening method. The paper is organized as follows. Next section presents the cascaded expanded cosine filters
followed by sharpening technique. Section 4 introduces minimum-phase filters based on the application of Rouche’s theo-
rem and is illustrated with one example.
2. Cosine-based linear-phase filters

The simplest low-pass finite impulse response (FIR) filter is the M-point moving-average (MA) filter, also known as the
comb filter, with an impulse response
hcombðnÞ ¼
1=M; for 0 6 n 6 M � 1;
0; otherwise:

�
; ð1Þ
Its system function is given by
hcombðzÞ ¼
1
M
ð1þ z�1 þ � � � þ z�ðM�1ÞÞ ¼ 1

M

XM�1

k¼0

z�k ¼ 1
M

1� z�M

1� z�1 : ð2Þ
. All rights reserved.
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The scaling factor 1/M is needed to provide a dc gain of 0 dB. This filter does not require any multiplications or coefficient
storages.

The system function of the comb filter where M is a complete power of 2, 2p, can be expressed as
HcombðzÞ ¼ ð1þ z�1Þð1þ z�2Þ � � � ð1þ z�2p�1 Þ=M; ð3Þ
where M is an integer.
For M = 2 from (2) we have
H2ðzÞ ¼
1
2
ð1þ z�1Þ: ð4Þ
The corresponding magnitude response is
jH2ðejxÞj ¼ j cosðx=2Þj: ð5Þ
Because of this cosine form this filter is called a cosine filter.
The N-expanded filters are obtained by inserting N � 1 zeros between each sample of the impulse response. In z domain,

each delay is consequently replaced by N delays
H2ðzNÞ ¼ 1
2
ð1þ z�NÞ: ð6Þ
The magnitude response of this filter is
jH2ðejxNÞj ¼ j cosðNx=2Þj: ð7Þ
The system function of the cascade of K cosine expanded filters is given by
HcosðzÞ ¼
YK

k¼1

H2ðzkÞ ¼
YK

k¼1

1
2
ð1þ z�kÞ ð8Þ
has all zeros on the unit circle i.e. it is a minimum-phase filter.
The corresponding magnitude response is then
jHcosðejxÞj ¼
YK

k¼1

H2

����� ðejxkÞj ¼
YK

k¼1

cosðkx=2Þ
�����

�����: ð9Þ
The cascade of different expanded cosine filters results in one low-pass magnitude characteristic as shown in Fig. 1a, for
K = 5. To improve the attenuation we can cascade L filters (8) as demonstrated in Fig. 1b for L = 3. Fig. 1c presents pole-zero
plot to verify that the filter (8) is a minimum-phase filter.

However, the magnitude characteristic of filter (8) has an high passband droop and a low attenuation
To further improve the magnitude characteristic we use the sharpening technique briefly revised in the next section.

3. Sharpening technique

To improve the magnitude response characteristic of the filter (8) we propose to use the sharpening technique which can
be used for simultaneous improvements of both the passband and stopband characteristics of a linear-phase FIR digital filter
[7]. The technique uses the amplitude change function (ACF) which is a polynomial relationship of the form Hsh = f(H) be-
tween the amplitudes of the overall and the prototype filters, Hsh and H, respectively.

We consider here simple sharpening polynomial [7]
HshðzÞ ¼ 3H2ðzÞ � 2H3ðzÞ: ð10Þ
We use the cascade of L filters (8) as the filter H in sharpening polynomial (10).
The resulted sharpened filter is a linear-phase filter HLP(z)
HLPðzÞ ¼ H2L
cosðzÞf3z�ðN�1ÞL=2 � 2HL

cosðzÞg ¼ H2L
cosðzÞBLPðzÞ; ð11Þ
where N is the length of the cascaded cosine filters HL
cosðzÞ, and
BLPðzÞ ¼ 3z�ðN�1ÞL=2 � 2HL
cosðzÞ: ð12Þ
As a result of the introduced delay z�(N�1)L/2, the factor BLP(z) has a linear-phase. The magnitude characteristic of the sharp-
ened filter from Fig. 1b is shown in Fig. 2.

In order to obtain a minimum-phase filter we propose to modify (12) as follows:
HMPðzÞ ¼ H2L
cosðzÞf3� 2HL

cosðzÞg ¼ H2L
cosðzÞBMPðzÞ; ð13Þ

BMPðzÞ ¼ 3� 2HL
cosðzÞ: ð14Þ
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Fig. 1. Cascade of K = 5 cosine filters. (a) L = 1, (b) L = 3, (c) z-plane.
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Fig. 2. Sharpened filter.
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In the following we make use of the Rouche’s theorem [8] to verify that the polynomial BMP(z) has all zeros inside the unit
circle i.e. it is a minimum-phase filter.

4. Rouche’s theorem

From (8) and (14) we have
BMPðzÞ ¼ 3� 2
1

2KL ð1þ z�1ÞLð1þ z�2ÞL � � � ð1þ z�KÞL: ð15Þ
When N � 1 can be expressed as a power-of-2 integer, Eq. (15) can be rewritten as
BMPðzÞ ¼
1

2KL 3 � 2KL � 2
XN�1

i¼0

biz�i

" #L
2
4

3
5; ð16Þ
where [9]
N � 1 ¼ 1þ 2þ 3þ � � � þ K; ð17Þ
which can be expressed as [9]
N ¼ KðK þ 1Þ
2

þ 1: ð18Þ
The polynomial
PN�1

i¼0 biz�i has symmetrical integer coefficients bi, and bi P 1.
After some computation we arrive at
BMPðzÞ ¼
1

2KL 3 � 2KLzðN�1ÞL � 2 �
XN�1

i¼0

bizi

" #L
2
4

3
5: ð19Þ
Let
BMPðzÞ ¼
1

2KL PðzÞ; PðzÞ ¼ f ðzÞ þ gðzÞ; ð20Þ
where
f ðzÞ ¼ 3 � 2KLzðN�1ÞL ð21Þ
and
gðzÞ ¼ �2 � ðb0 þ b1zþ � � � þ b1zN�2 þ b0zN�1ÞL: ð22Þ
The absolute values of f(z) and g(z) are
jf ðzÞj ¼ 3 � 2KLjzðN�1ÞLj; ð23Þ
jgðzÞj < 2 � jð1þ zþ � � � þ zN�1ÞLj 6 2 � ð1þ jzj þ jz2j þ � � � þ jzN�1jÞL: ð24Þ
On the unit circle jzj = 1, and it follows:
jf ðzÞjjzj¼1 ¼ 3 � 2KL; jgðzÞjjzj¼1 6 2 � NL: ð25Þ
We write [9]
2K ¼ ð1þ 1ÞK ¼ 1þ K þ KðK � 1Þ=2!þ KðK � 1ÞðK � 2Þ=3!þ � � � þ 1 > 1þ K þ KðK � 1Þ=2 ¼ 1þ KðK þ 1Þ=2: ð26Þ
From (18) and (26) it follows:
2K > N: ð27Þ
Consequently for z on the unit circle, it follows from (25) and (27) that
jf ðzÞj > jgðzÞj: ð28Þ
The polynomial f(z) has (N � 1)L zeros at the origin, i.e. inside the unit circle (see (21)). According to the Rouche’s theorem,
the polynomial P(z) also has the same number of zeros inside the unit circle. Consequently, the polynomial BMP(z) is the min-
imum-phase filter, as the filter HMP(z) given in (13).

As an example consider cosine filters for K = 4 and L = 2
H2
cosðzÞ ¼

1

24 ð1þ z�1Þð1þ z�2Þð1þ z�3Þð1þ z�4Þ
� �2

: ð29Þ
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Fig. 3. Pole-zero plot for BMP(z), K = 4, L = 2.
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The minimum-phase factor BMP(z) of the sharpening polynomial is
BMPðzÞ ¼ 3� 2
1
28 ½ð1þ z�1Þ2ð1þ z�2Þð1þ z�3Þð1þ z�3Þ�2: ð30Þ
From (18), N = 11 and the number of zeros inside the unit circle is (N � 1)L = 20 as shown in the z-plane plot in Fig. 3.

Example 1. As an illustration of the proposed method consider a MP filter with the following specification:
xp ¼ 0:002; xs ¼ 0:15; Rp ¼ 0:0001 dB; As ¼ �100 dB; ð31Þ
where xp and xs are normalized passband and stopband frequencies, respectively, and Rp is the passband ripple, while As is
the stopband attenuation.

We choose
K ¼ d1=xse ¼ 7; ð32Þ
where dxe is the ceiling of x (the smallest integer greater than or equal to x).
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Fig. 4. Pole-zero plot for BMP(z) in Example 1.
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Fig. 5. Example 1. (a) Magnitude response of the designed MP filter and (b) passband zoom.
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According to (3), the cascaded cosine filters for K = 7 and L = 2 can be written in the form
H2
cosðzÞ ¼

1
27

1� z�8

1� z�1 ð1þ z�3Þð1� z�5Þð1� z�6Þð1� z�7Þ
� �2

: ð33Þ
Finally, the designed minimum-phase filter is
HMPðzÞ ¼ H4
cosðzÞf3� 2H2

cosðzÞg ¼ H4
cosðzÞBMPðzÞ: ð34Þ
The polynomial H4
cosðzÞ has all zeros at unit circle. As demonstrated in this paper the polynomial BMP(z) has all zeros inside

the unit circle as shown in Fig. 4.

The magnitude response and the passband zoom given in Fig. 5a and b, respectively, demonstrate that the specification is
satisfied.

The interested reader may find details about the practical implementation of the filters containing polynomial terms of
the form (1 + z�n) and (1 � z�n) in [10].

5. Concluding remarks

A method for a direct minimum-phase low-pass multiplier-free filter design has been presented. It can be effectively em-
ployed in the design of very narrow passband filters with small passband ripples and high stopband attenuation. The method
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is based on the cascade of expanded cosine filters and the sharpening technique. Rouche’s theorem is crucial to transform the
sharpened linear-phase cosine filters into a minimum-phase filters.
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