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Abstract

The development of a 2D numerical simulation methodology that accounts for thermal and

magnetic effects on the gate tunneling current of nano-scaled MOSFETs, is the main goal

of this thesis. The Schrödinger-Poisson coupled equation system is modified to account for

the influence of a static magnetic field. The wavefunctions, which are the solution to the

Schrödinger-Poisson coupled equation system, and the energy, are then obtained as a func-

tion of the magnetic field and temperature. Then, by considering open boundary conditions

with the Perfectly Matched Layer-PML method and using the Tsu-Esaki direct tunneling

model, the gate tunneling current under the influence of a magnetic field and temperature

is calculated. By modifying the source files of the commercial GTS Framework device sim-

ulation tool to incorporate the new simulation methodology, the gate tunneling current is

computed as a function of electrical bias, temperature and magnetic field. By doing so, and

by sweeping the magnetic field from negative to positive values, it is found out that electrical

charges tunneling, through the gate oxide, from the semiconductor to the gate terminal, are

swept from left to right. Therefore, the proposed simulation methodology, accompanied with

experimental results, is a very valuable tool to investigate non-homogeneous space distributed

tunneling properties.
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Resumen

El desarrollo de una metodoloǵıa de simulación numérica bi-dimensional que tome en cuenta

efectos térmicos y magnéticos sobre la corriente de tuneleo de compuerta de MOSFETs

nanométricos, es el principal objetivo de esta tesis. El sistema de ecuaciones acopladas de

Schrödinger-Poisson se modificó para tomar en cuenta la influencia de un campo magnético

estático. Las funciones de onda y las enerǵıas, las cuales son la solución del sistema de

ecuaciones Schrödinger-Poisson, se obtienen como una función del campo magnético y de la

temperatura. Considerando condiciones de frontera abiertas mediante el método Perfectly

Matched Layer PML y utilizando el modelo de tuneleo directo de Tsu-Esaki, la corriente

de tuneleo de compuerta bajo los efectos del campo magnético aplicado y la temperatura es

calculada.

Mediante la incorporación de la nueva metodoloǵıa de simulación dentro de los archivos

fuente de la herramienta comercial de simulación GTS Framework, la corriente de tuneleo

de compuerta es calculada como una función de la polarización eléctrica, la temperatura y

el campo magnético. Mediante este proceso, y haciendo un barrido del campo magnético

de valores positivos a negativos, se encontró que el tuneleo de cargas eléctricas a través

del óxido, desde el semiconductor hasta la compuerta es barrido de derecha a izquierda (de

lado de la fuenta al lado del drenaje), lo que equivale a hacer un mapeo del espacio o un

escaneo de las propiedades de tuneleo. Debido a esto, la metodoloǵıa de simulación propuesta,

acompañada con resultados experimentales, es una herramienta muy valiosa para investigar

las propiedades de tuneleo en espacios distribuidos no homogeneamente.
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Chapter 1

Introduction

1.1 Motivation

For more than four decades, the semiconductor industry has been commited to reduce the

dimensions of the MOSFET with the aim to obtain a better performance, lower cost and

higher density integration of integrated circuits. Nowadays, the dimensions of the MOSFET

have evolved from micrometer scales to nanometer scales, where for instance the channel

length of a MOSFET is in the order of tens of nanometers and the oxide thickness is less than

two nanometers [1]. According to the International Technology Roadmap for Semiconductors

(ITRS 2012) in 2022 the oxide thickness will be less than 0.9 nm [2].

Other characteristic, that has been applied since many years, is the mechanical strain on

nano-scaled MOSFETs. Mechanical strain has been applied into nano-scaled MOSFETs to

enhance the average carrier mobility and current drive capability. However, such a mechanical

stress is not uniformly distributed on the channel plane, which results in a non-homogeneous

channel plane conductive properties (Figure 1.1 and Figure 1.2) [3, 4]. A pure electrical

characterization technique for measuring the gate tunneling current Ig only gives the average

scalar value of the Ig current at the gate contact, giving no information about the non-

homogeneous space distributed conductive properties in nano-scaled MOSFET.

Recently, a new magnetic-electrical combined characterization technique for analyzing

electrical and conductive properties of nano-scaled MOSFETs with ultra thin gate oxides

1



1.1. Motivation

Figure 1.1: Simulation of the electron density distribution of a 35-nm MOSFET. [4]

has been developed at INAOE [5]. This alternative technique is based on the application

of a magnetic field ~B, which allows the electron flow to be deflected through regions with

different conductivities. Then, by measuring the average current, under different magnetic

flux magnitudes and directions, the conductivity can be scanned or mapped through different

regions of the MOSFET channel [6]. Unlike a pure electrical characterization technique, this

new electro-magnetic technique gives more information about the local space distribution

of conductive properties of the MOSFET and proves to be effective to detect inhomoge-

neous tunneling properties along the channel of a MOSFET; a phenomenon that cannot be

explained by resorting to purely electrical test techniques.

As the alternative characterization technique makes use of an externally applied mag-

netic field, there is the need to incorporate the magnetic field variable in a simulation tool.

However, until now, there is no simulation tool that allows to incorporate electromagnetic

effects in nano-scaled MOSFET simulations. In fact, this is introduced in this work, namely

the incorporation of the magnetic field variable is done in addition of the temperature, so

thermo-magnetic simulations can be performed in nano-scaled MOSFETs.

In this thesis, a preliminary modeling approach for simulating the electrical behavior

of a nano-scaled MOSFET under the influence of an external magnetic field and thermal

variations is proposed. As a first developing stage, a 2D modeling approach based on the

2



1.2. Objectives

Figure 1.2: Simulation of the stress distribution along the channel length L (a) and along

the width W (b) directions [3]

Schrödinger-Poisson system that incorporates the magnetic field and allow us to simulate the

gate tunneling current of a MOSFET under the influence of a magnetic field and thermal

variations is introduced.

1.2 Objectives

The main objective of this thesis is to develop a 2D simulation methodology for analyzing

the gate tunneling current of nano-scaled MOSFETs under the influence of a static magnetic

field. In order to achieve this general objective, the next particular objectives are proposed:

• Analyze, understand and modify the algorithm for the solution of the Schrödinger-

Poisson system.

• Establish the appropiate boundary conditions.

• Incorporate the magnetic field into the model.

• Develop a methodology to compute the gate tunneling current of a MOSFET under

the influence of a magnetic field.

• Incorporate the simulation methodology into the GTS Framework device simulator.

3



1.3. Structure of the thesis

1.3 Structure of the thesis

This thesis is organized as follows, chapter 2 introduces the theoretical fundaments about gate

tunneling current in nano-scaled MOSFETs and also shows a review of the state of the art

of tunneling current simulation approaches. Chapter 3 presents the simulation methodology

proposed in this thesis for simulating the gate tunneling current of nano-scaled MOSFETs

under the influence of a magnetic field. Chapter 4 describes the experiments and results

obtained with our simulator, and finally, in Chapter 5 the conclusions and future work are

shown.
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Chapter 2

Theoretical concepts

2.1 MOSFET scaling

The Metal-oxide-semiconductor Field-effect transistor (MOSFET) is one of the most used

transistor in microelectronics industry, where more than 90% of all digital circuits are de-

signed using the CMOS technology [7].

During the last four decades, the semiconductor industry has worked in the continuous

reduction of MOSFET’s dimensions to nanometer scales. The main reasons for pursuing

miniaturization are the increment of packing density, chip functionality, lower costs and

better performance of transistors (increment of current drive capability and speed). Following

the Moore’s law the number of transistors on IC doubles approximately every two years and

according to the ITRS 2012 the channel length will be less than 9.0 nm and the oxide thickness

will be less than 1.0 nm in 2022 [2]; (Figure 2.1).

Nevertheless, this scaling down process presents some important challenges to device

design. The short channel effects (SCEs) and the gate tunneling current are some of the

more important effects that reduce the performance of nano-scaled MOSFETs [9].

2.1.1 Short channel effects and gate tunneling current

• Impact ionization. The scaling down of MOSFETs dimensions produces high vertical

and horizontal electric fields (> 106V/cm). The rising in electric fields happens because

5



2.1. MOSFET scaling

Figure 2.1: Evolution of MOSFET gate length (filled red circles) and International Technol-

ogy Roadmap for Semiconductors (ITRS) targets (open red circles). Figure taken from [8]

.

the terminal voltages are not scaled down to maintain the speed of the MOSFET. Due

to this reduction in size but not in voltage, short channel effects appear in nano-scaled

MOSFETs. Due to the high intensity of the electric field near to the drain, the electrons

have enough kinetic energy to hit a bounded electron and release it to the conduction

band; which simultaneously produces an electron-hole pair. This process is called

impact ionization and it produces electron-hole pairs in the silicon lattice causing even

more ionization in the semiconductor. As a direct consequence, there is an increase in

the drain-source current and substrate current (Figure 2.2) [9, 10].

Figure 2.2: Impact ionization

.

6



2.1. MOSFET scaling

• Punch-Through and Drain Induced Barried Lowering (DIBL). Due to the

miniaturization of the channel length, the depletion region from drain can reach the

source depletion region. The consequence of this, is the reduction of the barrier for

electron injection and this effect is known as Punch-Through. In long channel devices,

the semiconductor is depleted completely by the gate bias but in short channel devices,

the semiconductor is depleted also by the source/drain bias. As the drain bias increases

the depletion region is expanded and it can interact with the source/channel junction

producing a lowering in the potential barrier (Figure 2.3 and Figure 2.4) [9].

Figure 2.3: Punch-Through effect

.

Figure 2.4: DIBL effect

.

• Mobility reduction. As the channel length is reduced, the lateral and vertical mag-

nitude of electric fields are increased. As a result, the carrier velocity can be saturated

and it produces a drecrease in the charge mobility [10].

7



2.2. Gate leakage current in MOSFETs

• Hot electron effect. Due to the high electric field in nano-scaled MOSFET, electrons

can acquire enough energy to pass over or tunneling the oxide barrier. Such electrons

can become trapped in the oxide region, changing the threshold voltage of the device

(Figure 2.5) [9].

Figure 2.5: Hot electron effect

.

• Gate tunneling current.

In nano-scaled MOSFETs, quantum effects as channel energy quantization and gate

tunneling current dominate the electronic properties of the transistor. Due to the

scaling down of MOSFETs dimensions, the oxide thickness is thinner than 2 nm, which

causes an important flow of current through the gate. The oxide thickness is too thin

that electrons can tunnel through the oxide barrier to the gate electrode. This tunneling

current is one of the key leakage currents that contributes most to device degradation,

leads to excessive power dissipation and loss of on-current density. Because of that,

the reduction of leakage current is the main issue in MOSFET down scaling (Figure

2.6) [7, 9, 10].

Figure 2.6: Gate tunneling current

.

2.2 Gate leakage current in MOSFETs

In nano-scaled MOSFETs, quantum effects as channel energy quantization and gate tunneling

current dominate the electronic properties of the transistor [11]. Due to the aggresive scaling

8



2.2. Gate leakage current in MOSFETs

down of the oxide thickness and the high electric fields produced by the high doping of

channel, electrons can tunnel through the oxide barrier producing a high current flow, which

results in a high power consumption in the off-state of the transistor. The gate tunneling

current is one of the biggest limitations in the attempt to further reduce the size of transistors

[12, 13].

This gate leakage current in MOSFETs is produced by different tunneling processes that

are bias-dependent, and by thermal stress. The main three tunneling processes are the

Fowler-Nordheim (FN), the Trap assisted tunneling (TAT) and the Direct tunneling (DT).

• Fowler-Nordheim tunneling

In nMOS transistors, when a large positive voltage (> 4V ) is applied to the gate, the

metal side of the band diagram is lowered enough so the potential barrier becomes ap-

proximately triangular (Figure 2.7). Due to this triangular potential barrier, electrons

can easily tunnel from the conduction band of the semiconductor to the conduction

band of the oxide. This tunneling process through an approximately triangular poten-

tial barrier is called Fowler-Nordheim tunneling. The simple expression for calculating

the FN density current tunneling is

JFN =
q3m0

16π2~moxφb
F 2e−β/F . (2.1)

Here ~ is the Planck’s reduced constant, mox is the electron effective mass in the

insulator, m0 is the electron mass in free space, q is the electron charge, φb is the

energy barrier height at the semiconductor-oxide interface, F is the electric field across

the oxide, and β = 4(2mox)1/2

3q~
φ
3/2
b .

The Fowler-Nordheim tunneling formula is very accurate for modeling gate tunneling

current of MOSFETs with oxide thickness in the order of 7-10 nm [14].

• Trap assisted tunneling

Defects in the insulator produce electronic states in the band gap of the oxide and can

split the energy barrier into two parts, (Figure 2.8). These states allow the charge tun-

9



2.2. Gate leakage current in MOSFETs

b

Figure 2.7: Fowler- Nordheim Tunneling (triangular barrier)

neling through thinner energy barriers. Electrons have a higher probability of tunneling

in oxides with traps than those that tunnel the entire oxide. The basic model for the

current density assited by traps JTAT is [15]

JTAT = q

∫

NT

τc + τe
δx, (2.2)

where NT is the trap density at a distance x away from the emitting electrode, τc

characteristic times for carrier capture and τe is the characteristic times for emission

by the trap.

NT

Figure 2.8: Trap assited tunneling

• Direct tunneling

In ultra-thin oxide MOSFET (below 5nm), the strength of the electric field at the oxide

is so high (107V/cm) and the oxide is too thin (< 5nm) that electrons can tunnel in

10



2.2. Gate leakage current in MOSFETs

a direct way through the barrier of the oxide. In this tunneling process, electrons can

transverse the entire width of the potential barrier, even with lower applied voltage,

and for this case the oxide potential profile is trapezoidal, (Figure 2.9).

Oxide

__>

Figure 2.9: Direct Tunneling (trapezoidal barrier)

The tunneling probability increases drammatically as the oxide thickness is reduced

[9]. This tunneling process is called direct tunneling and the electron flux from this

tunneling process is the most dominant gate leakage process through oxides below 5nm

[15], which is the case of a 28 nm CMOS transistor. Moreover, in order to model this

effect, classical physics is not appropiate and quantum physics needs to be considered.

The direct tunneling current can be described by the Tsu-Esaki formula [17],

J =

∫ Emax

Emin

TC(Ei)S(Ei)dEx, (2.3)

where S represents the number of electrons in an energy level, which are available

for tunneling through the barrier potential function, the TC term is the transmission

coefficient, Ex represents the electron kinetic energy in the direction perpendicular to

the barrier.

Due to the impact of the direct tunneling current on the performance of nano-scaled

MOSFETs with ultra-thin oxides, in this thesis we are particulary interested in modeling

the direct tunneling (DT). In the next section a review of different modeling approaches for

direct tunneling currents is introduced.
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2.3. Literature Review of direct tunneling modeling

2.3 Literature Review of direct tunneling modeling

Since the scaling of gate oxide started in the 1970’s, a lot of gate tunneling modeling ap-

proaches have been developed. In the 70’s Harrison [16] and Tsu [17] proposed one of

the first general direct tunneling current formula. The authors assume that the band struc-

ture varies slowly and the potential barrier has a triangular or trapezoidal shape. In order

to calculate the transmission coefficient, they use the Wenztsel-Kramers-Brillouin (WKB)

method [19]. The WKB method gives an approximation of the solution of the Schrödinger

equation by means of an analytical formula, which depends on the width of the barrier. Such

approximation method is accurate for triangular potential barriers. After that, Rana et

al. [20] solved the self-consistent Schrödinger-Poisson system in one dimension for accumu-

lation layers in MOS devices. The authors consider extended and quasi bound states for

tunneling current. Moreover, they compare a semi-classical model with their model, obtain-

ing almost the same current results. Then, Lo et al. [22] considered a tunneling current

from the quantized states in the inversion layer of nano-scaled MOSFETs. The authors have

calculated the lifetimes of quasi-bounded states and found that more than 80 percent of the

total current comes from the lowest two energy states. The authors used the matrix-transfer

method for calculating the transmission of the wavefunctions. The matrix-transfer method

is used for calculating the transmission coefficient of a potential barrier. The method divides

the potential barrier into a number of potential energy steps. By using a piecewise represen-

tation of the potential, the wavefunctions are approximated by constant values [23, 24]. In

1998, another work focused in the solution of the model in 1D was developed by Janick and

Majkusiak [25]. These authors assumed a linear distribution of the potential (considering a

system of decoupled equations Schrödinger-Poisson ), rendering an analytical expression for

the charge distribution. The Janick and Majkusiak’s work considers a confined triangular well

in a closed system. Register et al. [27] introduced an analytical model for direct tunneling

gate current in MOSFETs. The analytical expression is based on the WKB method and the

electric field on the surface. This method is accurate only for low electric fields (< 106V/cm).

Mundanai et al. [28] used a WKB approximation and obtained the tunneling current for

different dielectrics materials and thicknesses. Lee et al. [30] used a modified WKB method
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2.3. Literature Review of direct tunneling modeling

for calculating the direct tunneling current of MOS structures and investigated the effects on

the direct tunneling current with different uniform doping concentrations in the substrate.

In 2004, another important work was developed by Driskill [35]. This work computes the

charge density and the tunneling current in a 1D quantum well. Moreover, Driskill assumes

open boundary conditions, and calculates the tunneling current by means of the transfer

matrix method and using finite difference method.

One of the first research groups, which solves the 2D Schrödinger-Poisson system, was

the group of Spinelli et al [31] and the group of Trellakis [21]. In 2002, The authors

solved a closed 2D Schrödinger-Poisson system using a finite element method. In order to

calculate the current, they use a semiclassical approach, adopting a drift-diffusion model.

After that, in 2003 the NANOTCAD2D simulator was developed by Curatola et al [32,33].

This simulator solves the 2D Schrödinger-Poisson system by means of the finite difference

method. It is a robust simulator that the device can be defined as a closed system (two

dimensions confined), semi-open system (one dimension confined and one dimension open),

and an open system (all dimensions open); it also has models for ballistic current. Then,

another complete work was the one developed by Polizzi and Abdallah [34]. The authors

propose a methodology for solving in 1D and 2D the Schrödinger-Poisson system, considering

either an open or a closed system. In such a work, the device is subdivided in slices of one

dimension and the waves functions are calculated in each slice; at the end of the process,

the waves functions are integrated to compute the global quantities, i.e., the charge density.

This methodology solves the equations by means of the finite element method. Finally, there

is another research group from the Technical University of Vienna, which has developed

a simulator called Vienna Schrödinger Poisson Solver (VSP Solver) [37, 40, 46]. The VSP

Solver is a robust and complete semiconductor device simulator with more than twenty models

to choice, having particularly a special module that can solve the Schrödinger-Poisson system

(1D and 2D) for both closed and open systems. The simulator is based on the volume finite

method and allows the definition of a variety of structure devices and a wide variety for

materials. Table 2.1 shows a review of gate tunneling simulation methodologies for nano-

scaled MOS-FETs.
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2.3. Literature Review of direct tunneling modeling

Author Year 1D 2D 3D Model Method

Harrison [16] 1961 X WKB

Tsu and Esaki [17] 1973 X WKB

Rana [20] 1997 X S-P FDM

Lo, Buchanan y Taur [22] 1997 X S-P

Janik y Majkusiak [25] 1998 X Analytic

Shih et al. [26] 1998 X WKB FDM

Register et al. [27] 1999 X WKB

Mudanai et al. [28] 2000 X S-P FDM

Cai et al. [29] 2001 X WKB

Lee et al. [30] 2002 X Analytic

Spinelli,Pirovano y Lacaita [31] 2002 X S-P FEM

Curatola y Iannaccone [32] 2003 X S-P FDM

Curatola,Fiori y Iannaccone [33] 2004 X S-P FDM

Polizzi y Abdallah [34] 2004 X X S-P FEM

Driskill [35] 2004 X S-P FDM

Gu et al. [36] 2004 X Analytic

Gehring [37] 2004 X S-P FVM

Curatola,Doornbos,Loo et al. [38] 2005 X S-P FDM

Karner,Gehring,Holzer,Pourfath,Selberherr [40] 2007 X X Green Func. FVM

Soreé,Magnus,Pourtoisé [42] 2008 X Analytic

Anderson [44] 2009 X S-P FDM-FVM

Baumgartner,Stanojevic,Schanss, et al. [46] 2013 X X S-P VFM.

Table 2.1: Comparison of gate tunneling simulation methodologies for nano-scaled MOS-

FETs.

So far, all these are pure electrical models, but only a few simulators account for the effect

of the magnetic field, some of them allows to analyze the transistor under the influence of

an external magnetic field. There are many works like those described in [47–50, 52], which

model a MOSFET under the influence of a magnetic field clasically. All these works are based

on the drift-difussion model in which magnetic field dependent terms are added for account-

ing the action of the Lorentz’ force on the motion of the carriers. Popovic et al. proposed

a methodology for calculating the drain current under the influence of a magnetic field. Also
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2.3. Literature Review of direct tunneling modeling

this method is based on the drift-difussion model and uses the finite element method. The

authors assumed a lineal source-drain potential over the channel length. Nathan et al. also

used a drift-difussion model that includes magnetic field terms, but they assumed a constant

drain source field over the channel length. They used the finite difference method as a dis-

cretization method. Riccobenne et al. ’s model took into account the hole and electron

currents. The authors developed their model in a simulation tool called GENSIM and they

used a box integration method for the discretization of the system. Rodŕıguez et al. devel-

oped a 2D/3D methodology based on the drift-diffusion approximation, which incorporates

magnetic field terms. The authors developed their methodology in the MINIMOS-NT simu-

lation tool and used the finite volume method as discretization scheme. Yosry et al., based

on the Rodŕıguez’s work, developed a compact model (empirical model) for calculating the

drain current under the influece of a magnetic field, which depends on geometrical properties.

All these metioned works calculate the drain current (but not the gate tunneling current)

under the influence of a magnetic field. However, in order to model the new nano-scaled

MOSFETs, models based in quantum mechanics needs to be accounted for.

Until now, there are few simulators that incorporate electromagnetic effects using quan-

tum models, such is the case of Birner et al. [53]. The simulator created by them is called

Nextnano and it allows to simulate quantum wires (2D considering a closed system), under

the influence of a magnetic field. Although the simulator can compute the wavefunctions

and the charge density under the influence of a magnetic field, but it cannot calculate the

gate tunneling current. This simulator also is capable of modeling only the charge transport

of a transistor without the presence of a magnetic field.

Another interesting work is the one developed by Sudiarta [57], in this work only the

Schödinger equation (not coupled with Poisson equation) is solved under the influence of a

magnetic field but considering a closed system. A summary of the methodologies developed

for modeling transistors under the influence of a magentic field is shown in table 2.2.
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2.4. Discussion

Author Year Model Simulation Current Numerical method

Popov́ıc [47] 1984 Drift-Diffusion 2D Drain current FEM

Nathan,Huiser y Baltes [48] 1985 Drift-Diffusion 2D Drain current FDM

Riccobene,Bürgler y Baltes [49] 1994 Drift-Diffusion 2D Drain current FVM

Lau,Ko,Chan [50] 1995 Drift-Diffusion 2D Drain current FDM

Rodŕıguez R., Gutiérrez, Klima y Selberherr [52] 2004 Drift-Diffusion 2D,3D Drain current FVM

Birner,Zibold,Andlauer,..,Trellakis,Vogl [53] 2007 S-P 2D,3D No

Sudiarta and Geldart [57], 2007 Schrodinger 2D No FDM

Yosry,Fikry,El-henawy,Marzouk [55], 2009 Compact model 2D Drain current

Table 2.2: Comparison of methodologies for modeling MOSFETs under the influence of a

magnetic field.

2.4 Discussion

In spite of the advantages and disadvantages that exhibit the device simulators mentioned

above, until now there is no simulation tool that allows to analyze the gate tunneling current

of a nano-scaled MOSFET under the influence of a magnetic field. As we mentioned in

chapter one, with the emergence of the new electromagnetic characterization techniques,

there is a necesity to incorporate thermo-magnetic effects in simulation tools that help us to

analyze non uniform conductive properties in nano-scaled MOSFETs.

Taking into account all these properties, in this thesis, in colaboration with the Technical

University of Vienna, a simulation methodology for solving the 2D Schrödinger-Poisson sys-

tem that incorporates the magnetic field and allows to calculate the gate tunneling current

of a nano-scaled MOSFET is developed.

In the next chapter the methodology simulation proposed in this work is described.
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Chapter 3

Simulation methodology

3.1 Schrödinger-Poisson system

In nano-scaled MOSFETs various quantum effects become dominant over the device perfor-

mance. For instance, gate-oxide tunneling and channel energy quantization are some quan-

tum mechanical effects that impact the MOSFET performance. Calculation of these quantum

effects in nano-scaled transistors are frequently based on the self consistent Schrödinger-

Poisson system. [13]- [46].

The wavefunctions and the energies of the system are calculated by solving the time-

independent Schrödinger equation,

[

~̂p2

2m∗

+ V (~r)

]

ψ(~r) = Eψ(~r), (3.1)

where ~̂p = −i~∇ is the momentum operator, ψ is the wavefunction, E is the energy

eigenvalue, V (~r) is the potential energy and m∗ is the effective mass. The potential V (~r) is

defined by

V (~r) = −qφ(~r) +△Ec~r (3.2)
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3.1. Schrödinger-Poisson system

where △Ec~r is the energy potential profile generated by the bending of the oxide-substrate

energy bands, q is the electron charge and φ is the electrostatic potential.

The relation between the space charge and the electrostatic potential is calculated by

means of Poisson equation,

∇2φ(~r) = −
q

ε
(Nd(~r)− n(~r)) , (3.3)

where ǫ is the permittivity, φ is the electrostatic potential, Nd(~r) is the ionized donor

concentration and n(~r) is the electron density distribution. The electron density n(~r) is

determined from the solution of the Schrödinger equation and it is given by,

n(~r) =
m∗kT

2π~2

∑

i

| ψi(~r) |
2 ln

(

1 + exp(
Ef − Ei

kT
)

)

, (3.4)

where k is the Boltzmann constant, T is the temperature, ~ is the reduced Planck constant,

Ef is the fermi level and Ei is the energy level associated to eigenfunction ψi(~r). In equation

3.4, the Fermi-Dirac distribution is assumed. This means, that all the particles into a system

are considered identical with half-integer spin. Moreover, the Fermi-Dirac distribution allows

to consider the many-particle system in terms of a single particle energy states, in which a

null interaction between the particles of the system is considered.

A complete description of the charge transport of a nano-scaled MOSFET can be achieved

by means of the self consistent solution of the Schrödinger and Poisson coupled equations.

The Schrödinger-Poisson system is solved in a consistent way in order to find the potential

distribution and the corresponding carrier concentration. The consistent solution of the

system is found by solving both equations in a loop until the solution converges. Figure 3.1

shows the flowchart of the Schrödinger-Poisson system solution.
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3.2. Schrödinger-Poisson system for a constant magnetic field

Figure 3.1: Self consistent solution flow chart of the Schrödinger-Poisson system.

3.2 Schrödinger-Poisson system for a constant mag-

netic field

In the presence of a constant magnetic field ~B, where ~B can be described by a vector potential

~A such that

~B = ∇× ~A(~)r, (3.5)
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3.2. Schrödinger-Poisson system for a constant magnetic field

the kinetic potential term in the Hamiltonian operator is modified [56]. The quantum

mechanical momentum operator ~̂p becomes ~̂p − q ~A(~r) and the Schrödinger equation for a

particle in a magnetic field can be defined as

[

1

2m∗

(~̂p− q ~A)2 + V (~r)

]

ψ(~r) = Eψ(~r). (3.6)

Suppose we have a surface formed by the xy plane and a constant magnetic field along

the z direction is applied (Figure 3.2), then a posible choice for ~A is given by

~A = (0, Bx, 0) (3.7)

Figure 3.2: Constant magnetic field applied perpendicular to the surface of the xy plane.

Any gradient of a scalar potential θ(~r) can be added to ~A without changing the value of

the magnetic field ~B, since ∇×∇θ(~r).

This invariance of the magnetic field for different choices of θ(~r) is called gauge invariance.

Another choice for a vector potential ~A that generates the same constant magnetic field ~B

along the z-direction is given by

~A(~r) = (−By, 0, 0) (3.8)
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3.2. Schrödinger-Poisson system for a constant magnetic field

In order to incorporate the magnetic field into the Schrödinger equation we modified the

general scheme of the solution of the self-consistent loop shown in figure 3.1. The module

correponding to the solution of the Schrödinger equation was changed for the Schrödinger

equation that includes the magnetic field; see equation 3.6. The proposed scheme of the

self-consistent loop that includes the magnetic field is shown in figure 3.3.

Figure 3.3: Self consistent solution flow chart of the Schrödinger-Poisson system, considering

a magnetic field.
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3.3. Gate tunneling current

3.3 Gate tunneling current

Once the wavefunctions ψ and the energies E are computed, the direct tunneling current can

be calculated. The direct tunneling current can be described by the Tsu-Esaki formula [17],

J =

∫ Emax

Emin

TC(Ex)S(Ex)dEx, (3.9)

where S represents the supply function, TC represents the transmission coefficient, Ex

represents the electron kinetic energy, Emin represents the lower energy and Emax represents

the higher value of the discretized energies into the potential well. The supply function is

given by

S = ln

(

1 + exp [Efs − E/kBT ]

1 + exp [Efg −E/kBT ]

)

, (3.10)

where Efg and Efs are the electron Fermi levels in the gate and semiconductor, respec-

tively, Ex is the electron energy. Moreover, the supply function represents the number of

electrons in an energy level, which are available for tunneling through the barrier poten-

tial [18].

The transmission coefficient TC represents the probability of a particle tunneling through

the barrier potential and it can be calculated as

TC =
Jt
Ji
, (3.11)

where the Jt term corresponds to the transmitted current density and Ji corresponds to

the incident current density. The current density probability J can be defined as

J(~r) =
q

2m∗

(

ψ∗(~̂pψ)− (~̂pψ)∗ψ
)

. (3.12)
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3.3. Gate tunneling current

The simulation methodology proposed in this thesis, for calculating the gate tunneling

current under the influence of a magnetic field, is shown in Figure 3.4.

Figure 3.4: Proposed simulation methodology for calculating the gate tunneling current of a

nano-scaled MOSFET under the influence of a magnetic field.
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3.4. GTS Framework

3.4 GTS Framework

The Technical University of Vienna in colaboration with Global TCAD Solution Company

(http://www.globaltcad.com/en/products/gts-framework.html) have developed a TCAD Frame-

work which includes simulation tools for analyzing 2D/3D semiconductor device structures

[60]. The TCAD tool is called GTS Framework and it consists in four simulation tools: GTS

Structure, GTS Vision, MINIMOS-NT and VSP tool, Figure 3.5 and Figure 3.6.

Figure 3.5: Main screen of the GTS Framework.

• GTS Structure. This is a graphical simulation tool for definition of 2D/3D semicon-

ductor device structures. With this tool, the meshing, the doping, and the geometry

of the device structure can be defined.

• GTS Vision. This is a visualization tool, which allows to analyze device structures

and simulation results.

• MINIMOS-NT. This is a simulation tool for 2D/3D classical modelling of micro-

scaled semiconductor device structures.
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3.4. GTS Framework

• VSP. The Vienna Schrödinger Poisson (VSP) is a simulation tool for 2D/3D quantum

modelling of nano-scaled semiconductor device structures [65–67].

(a) GTS Structure. (b) GTS Vision.

(c) MINIMOS-NT. (d) VSP.

Figure 3.6: Simulation tools inside GTS Framework

3.4.1 Vienna Schrödinger Poisson solver VSP

The VSP simulation tool is focused in the solution of the Schrödinger-Poisson equations

system. The VSP is developed in C++ programming language under the object oriented

paradigm and it uses stable libraries (Blas, Lapack and Arpack) for numerical calculations.
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3.4. GTS Framework

The flowchart of the VSP module is shown in Figure 3.7. The VSP requires two input

files: the semiconductor device structure created in the GTS Structure tool (Figure 3.8(a))

and the ipd file in which the initial conditions and models are defined (Figure 3.8(b)).

Figure 3.7: Flowchart of the VSP solver.

Once the initial parameters are established, the initial guess value for the potential energy
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3.4. GTS Framework

(a) Structure device. (b) File.ipd.

Figure 3.8: Input files of VSP tool.

VINITIAL is calculated by means of a clasical model simulation (drift-diffusion model). This

potential energy VINITIAL is used in the first iteration of the Schrödinger equation and by

means of the Finite Volume Method [63], and the ARPACK numerical library [64], the

wavefunctions and energies are calculated. Then, the wavefunctions and energies obtained

from the Schrödinger module are used in order to calculate the charge density, which then it

is used in the Poisson module to obtain the electrostatic potential φ. Using the electrostatic

potential φ a new potential energy is calculated. If the difference between the new potential

energy and the old potential energy is less than a convergence criterion, the iteration loop

stops. Otherwise, the new potential energy Vnew is used in the Schrödinger equation and the

process is repeated until the convergence criterion is reached.

The output of the VSP module are the wavefunctions and the discretized energies which

are saved in a .debvz file, see Figure 3.9.

The VSP procedure to solve numerically the differential equations into the Schrödinger-

Poisson system is defined by three stages: definition of the boundary conditions, conversion

of the differential equations into a system of algebraic equations, and finally the solution of

the algebraic equations, see Figure 3.10.
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3.4. GTS Framework

Figure 3.9: Wavefunction of a cross section of a circular nanowire.

• Definition of the boundary conditions. The VSP uses closed boundary conditions,

which means that the wavefunctions vanish to zero at the Si− SiO2 interface. These

boundary conditions do not allow that the wavefunctions pass through the barrier

potential, thus the tunneling current cannot be calculated.

• Discretization of differential equations. The VSP tool uses the finite volume

method as a discretization method. The finite volume method (FVM) is a method to

approximate the solution of a partial differential equation [61–63]. The FVM uses the

representation of the partial differential equation (3.13) by its integral form as is show

in equations 3.14 and 3.15.

uxx(x) = f(x) (3.13)

∫ xi+1/2

xi−1/2

uxx(x) dx =

∫ xi+1/2

xi−1/2

f(x) dx (3.14)

ux(xi+1/2)− ux(xi−1/2) =

∫ xi+1/2

xi−1/2

f(x) dx). (3.15)

The FVM takes into account three points in the mesh xi−1/2, xi, xi−1/2, and with this

information the derivative can be approximated, see Figure 3.11.
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3.4. GTS Framework

Figure 3.10: Flowchart of the VSP procedure to solve numerically a partial differential equa-

tion.

Figure 3.11: Discretization points using finite volume method.

Then by means of the midpoint integration rule [61, 62],

∫ x1

x0

f(x) dx ≈MP (f, h) = hf(x0 +
h

2
), (3.16)
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the right-hand side of equation 3.15 can be approximated by,
∫ xi+1/2

xi−1/2

f(x) dx ≈ hf(xi), (3.17)

and the left-hand side can be approximated by central finite differences by

ux(xi+1/2)− ux(xi−1/2) ≈
u(xi+1)− u(xi)

h
−
u(xi)− u(xi−1)

h
. (3.18)

Finally the discretized equations are defined as

u(xi+1)− 2u(xi) + u(xi−1) = h2f(xi) (3.19)

• Solution of the algebraic equations. After differential equations are dicretized, the

set of algebraic equations are solved for each node in the mesh. The system is solved by

means of general solution methods ( Gauss-Jordan, LU descomposition, Gauss-Seidel).

Particularly, the VSP tool uses the ARPACK numerical library to solve the algebraic

system [64].

3.5 Computer implementation of the proposed simula-

tion methodology into the VSP tool

The Vienna Schödinger-Poisson tool does not consider magnetic effects on the Schödinger-

Poisson coupled equations system. Moreover, the VSP neither allows to calculate tunneling

currents because it considers only closed boundary conditions. In this thesis, we made a

colaboration with the Technical University of Vienna and we added a module for calculating

the gate tunneling current under the influence of a magnetic field.

The first step in order to incorporate the magnetic field was to define the magnetic vector

potential ~A. Because in this tesis, we are interested in analyzing the magnetic effects on

the gate tunneling current, the magnetic field ~B was applied parallel to the surface of the

MOSFET and perpendicular to the gate current lines (Figure 3.12).

Thus, we defined the vector potential ~A such as

~A(~r) = −y ~exB, (3.20)

30



3.5. Computer implementation of the proposed simulation methodology into the VSP tool

Figure 3.12: magnetic field B was applied parallel to the surface of the MOSFET and per-

pendicular to the gate current lines.

where ~ex is the cartesian unit vector along the z-direction and ~B is the component of

magnetic field, in the z-direction.

Moreover, we had to change the Schödinger equation by adding the vector potential A

in the kinetic energy term as is described in equation 3.6. The VSP solves the Schrödinger-

Poisson system considering a closed system. A closed system means that all axes are confined

and at the boundaries of the device geometry the wavefunctions vanish 3.13.

Figure 3.13: System with closed boundary conditions in which the wavefunctions are trans-

mitted and reflected.

In order to calculate the gate tunneling current in a nano-scaled MOSFET, open bound-

aries need to be considerated. The energies of an open system are complex values E = Er+Ei
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where the real part Er is the resonant energy and the imaginary part Ei can be understood

as the decay probability of the electron can have into the domain. In recent works, a method

based on absorbing boundary conditions (Perfectly Matched Layer method) has been applied

to determine the energies of an open system [40, 73, 74]. The PML method adds absorbing

layers with non physical meaning which act as artificial open boundary conditions preventing

reflections 3.14. When the wavefunction enters to the absorbing layer, the wavefunction is

attenuated and it decays exponentially.

Figure 3.14: System with open boundary conditions by adding absorbing layers in which the

wavefunctions are transmitted but not reflected.

This process is done by means of replacing coordinates x by stretched coordinates x̃ =

x + if(x), where f(x) represents how the imaginaty axis has been deformed. Then the

derivatives of the system can be expressed as

δx̃ =

(

1 + i
δf(~x)

δx

)

δx, (3.21)

There is a variable change in order to define the equation in terms of the real coordinates

x where s(x) = 1 + iσx(x), then the derivatives of the equation are changed by

δ

δx̃
= −

1

sx

δ

δx
, (3.22)
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3.5. Computer implementation of the proposed simulation methodology into the VSP tool

In the PML regions where σ is equal to zero, the term sx is equal to 1 and the wavefunction

does not change. For the case when σ > 0 the imaginary part of the wavefunction increases

and as a result the wavefunction decays exponentially. This happens because the wavefunc-

tion can be seen as eikx = eik(Rex+iImx) = eikRex−kImx), thus the solution exponentially decays

as Imx increases (where the equation is evaluated in the positive real and imaginary axis).
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Chapter 4

Results and discussion

4.1 Magnetic effects on wavefunctions and energies

As a first benchmark device a circular n-type Si nanowire of 30 nm with equivalent oxide

thickness EOT of 2.0 nm, ND = 1 · 1017 cm−3 and NA = 3 · 1017 cm−3 was used for analyzing

the magnetic effects on the wavefunctions and energies. For this experiment, closed boundary

conditions were used. Thus, the wavefunctions are confined in the silicon region and they

vanish to zero at the Si − SiO2 interface. The magnetic field B was applied perpendicular

to the xy plane of the nanowire, see Figure 4.1.

Si

SiO2

Metal

Figure 4.1: Circular nanowire structure
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4.1. Magnetic effects on wavefunctions and energies

Figures 4.2 and 4.3 show the probability density |ψ|2 of wavefunctions of the second and

sixth state respectively, under the influence of a magnetic field B of 0T, 50mT, and 500mT.

When a perpendicular magnetic field is applied, there is a effect called hybridization or

mixture of states and the wavefunctions are modified.

This happens because when a magnetic field is applied the Hamiltonian is perturbed and

no longer separates the states and them begin to mix.

As a direct consequence the mixing of states results in new hybrid states, which results

in an increase of the propability of found electrons where before cannot be found.

The hybridization between two degenerated electronic states produces a repulsion between

each other in energy which lifts the degeneracy of the states.

(a) B=0T (b) B=50mT (c) B=500mT

Figure 4.2: Probability density |ψ|2 of the second level wavefunction of a cross section of

a circular nanowire under the influence of a magnetic field applied perpendicular to the xy

plane.

Moreover, when hybridization between two degenerated electronic states occurs, the states

repulse each other in energy resulting in an energy spliting which is called Zeeman effect

[71, 72] (Figure 4.4).
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4.1. Magnetic effects on wavefunctions and energies

(a) B=0T (b) B=50mT (c) B=500mT

Figure 4.3: Probability density |ψ|2 of the sixth level wavefunction of a cross section of a

circular nanowire under the influence of a magnetic field applied perpendicular to the xy

plane.

Figure 4.4: Split energies due to the applied magnetic field.

Furthermore, in Figure 4.5 we see the probability density of the second state |ψ2|
2 and

the density probability of the third state |ψ3|
2.
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4.1. Magnetic effects on wavefunctions and energies

For this case, both states are degenerated because they have the same energy value. When

a perpendicular magnetic field is applied, the second and third states begin to mix and with

stronger magnetic fields both states will exhibit a circular or ring shape [72].

(a) ψ2,B=0T (b) ψ3,B=0T

(c) ψ2,B=500mT (d) ψ3,B=500mT

Figure 4.5: Hybridization of ψ2 and ψ3 states.

38



4.2. Magnetic effects on nano-scaled MOSFET

4.2 Magnetic effects on nano-scaled MOSFET

Asymmetrical channel conductivity

In the work’s of Póndigo developed at INAOE [6,68], the Id−V g characteristic curve of the

28-nm nMOSFET, without applying an external magnetic field, was measured (Figure 4.6).

Ideally, the transistor should be off at V g = 0.0V, but we see in Figure 4.6 that there is a

leakage current Ioff of 10pA at V d = 0.1V.

Furthermore, the subthreshold sope S should be close to its ideal 60mV/dec value. The

subthreshold slope S is given by

S =

[

δVg
δlog(Id)

]

= ln(10)
mkT

q
, (4.1)

where k is the Boltzmann constant, q is the electron charge, and m is a numerical factor

in the 1 to 2 range.

An external magnetic field was applied perpendicular to the surface of the MOSFET, the

leakage current Ioff the subthreshold slope S were measured as a function of the magnetic

field B (Figure 4.7).

We see that there is no parabolic reduction of the Ioff current and neither in the sub-

threshold slope S [69]. Under an ideal situation, for negative B field the current lines should

be deflected by the Lorentz force to the left side in the x-axis direction, while for positive B

field to the right side of the FET channel plane showing a symmetrical behavior, see inset

Figure 4.7.

Moreover, they measured the transconductance gm and the threshold voltage V t as a

function of a magnetic field (Figure 4.8). We see that there is an asymmetry in the transcon-

ductance and also in the threshold voltage. There is an asymmetry in the experimental

results which cannot be explained with the assumption of an isotropic and homogeneous

channel FET conductance [5]. This non-homogeneous conductance can be attributed to the
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4.2. Magnetic effects on nano-scaled MOSFET

Figure 4.6: Measurement Id−V g characteristic curve of a 28-nm nMOSFET with B = 0mT

with VDS = 0.1V.

Figure 4.7: Measurement of the leakage current Ioff and subthreshold slope S for 28-nm

nMOSFET as a function of a magnetic field applied perpendicular to the surface of the

MOSFET with VDS = 0.1V.
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4.2. Magnetic effects on nano-scaled MOSFET

Figure 4.8: Measurement of the transconductance gm and subthreshold voltage V t for 28-

nm nMOSFET as a function of a magnetic field applied perpendicular to the surface of the

MOSFET with VDS = 0.1V.

asymmetry and non-homogenity caused by the mechanical stress induced in the transistor or

by process variations [3].

Magnetic effects on the gate tunneling current

In order to analyze the non-homogenity of the gate tunnel current under the influence of an

external magnetic field ~B, we used as a benchmark device a 28-nm n-type Si MOSFET with

equivalent oxide thickness EOT of 2.0 nm, gate width W of 1.0 µm, ND = 5 · 1019 cm−3 and

NA = 3 · 1018 cm−3, see Figure 4.9.

We applied an external magnetic field parallel to the surface of the channel (z-axis) and

perpendicular to the gate current lines (Figure 4.10). The measurement tunneling current was

compared with the results obtained from our simulation tool. Figure 4.10 shows the measured

and simulated magnetomodulated gate current ∆IG = IGB 6=0
− IGB=0

under the influence of

a static magnetic field B = ±400mT with VDS = 0.5V. There is a good agreement between

measurement data and the results obtained with our simulation tool. The error obtained
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4.2. Magnetic effects on nano-scaled MOSFET

(a) Doping definition (b) Grid definition

Figure 4.9: Definition of a nano-scaled 28-nm MOSFET into the GTS Strcuture tool.

between simulation and measured data could be associated with the fact that a homogeneous

and symmetrical oxide is considered in the simulation settings.

Error=20.13%

Error=14.21%

Figure 4.10: Magneto-modulated gate current ∆IG for 28-nm nMOSFET at VDS = 0.5V in

a magnetic field B = −400mT.

As we mentioned before, a strained 28-nmMOSFET may have a non uniform conductance

along the length and width of the channel [3, 6], such a non-uniformity of the conductive

properties of the channel can be recreated by means of a non-uniform gate oxide thickness or

by means of a non-uniform doping profile. In this work, we recreate such a non-uniformity

for both cases.

42



4.2. Magnetic effects on nano-scaled MOSFET

Figure 4.11 shows the percentage of change of magnetomodulated gate current (∆IG/IG)

for three different non uniform oxide profiles. Oxide number one has ToxL = 2.0 nm and

ToxR = 2.5 nm, oxide number two has ToxL = 2.0 nm and ToxR = 2.6 nm, and oxide number

three has ToxL = 2.0 nm and ToxR = 2.7 nm. We see that there is a higher percentage of

change of ∆IG for oxide three which is the most non uniform device structure. In Figure 4.12

we show that the asymmetry of ∆Ig − B, with respect of the ∆IG when ~B = 0, increases

and tends to saturate at large values for the oxide thickness non-uniformity.

Figure 4.11: Simulated percentage of change of magneto-modulated gate current ∆IG/IG(%)

for 28-nm nMOSFET with VDS = 0.0V and VG = 1.0V.

Moreover, the behavior of the supply function S and the transmission coefficient TC for

the third oxide profile under the influence of a magnetic field are shown in Figure 4.13. We

see that for high values of the magnetic field B, depending on the magnetic field polarity,

the transmission coefficient decreases or increases. This happens due to the non uniformity

of the oxide, there is a higher transmission probability when electrons are deflected by the

Lorentz force to the thinner oxide side. Moreover, the supply function decreases when a

magnetic field is applied. A reduction of the supply function implies a decrease of the charge

population with an energy range with a transmission probability to tunnel through the gate

oxide. Therefore, a reduction of the supply function implies a reduction of the current that

tunnels through the gate oxide.
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4.2. Magnetic effects on nano-scaled MOSFET

Figure 4.12: Simulated percentage of change of magneto-modulated gate current ∆IG/IG(%)

for 28-nm nMOSFET with an increase in the right side in the x-axis direction (towards the

drain side) of the oxide thickness ToxR in a magnetic field B = −500mT.

Figure 4.13: Simulated supply function Sf and transmission coefficient TC for oxide number

three under the influence of a magnetic field with VDS = 0.0V and VG = 1.0V.

In order to study the effects of a nano-scaled MOSFET having an non homogeneous

channel conductive properties, a structure with three different non uniform doping profiles

has been used, see Figure 4.14. Doping profile number 1 has DopL = 2 · 1018 cm−3 and
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4.2. Magnetic effects on nano-scaled MOSFET

DopR = 5 ·1018 cm−3, doping profile number 2 has DopL = 1 ·1018 cm−3 and DopR = 5 ·1018

cm−3, and doping profile number 3 has DopL = 9 · 1017 cm−3 and DopR = 5 · 1018 cm−3.

Figure 4.14: Non uniform doping distribution profiles in the channel for 28-nm nMOSFET.

Figure 4.15 shows the percentage of change of magnetomodulated gate current (∆IG/IG(%))

for the defined non uniform doping profiles.

In Figure 4.15, we see that there is a higher percentage of change of ∆IG when a magnetic

field with positive polarity is applied. With a positive B field the current lines are deflected by

the Lorentz force to the right side in the x-axis direction (towards the drain side) where there

is a larger doping profile. A larger doping profile implies an increase of the threshold voltage

which results in a lower inversion layer charge population. Therefore, the supply function

decreases and as a direct consequence the tunneling current decreases. The most non-uniform

doping profile number three shows the most pronounced asymmetrical magnetomodulated

gate current ∆IG.

Figure 4.16 shows the relation between the non-uniformity of the semiconductor doping

profile ∆Doping = DopR−DopL and the magnetomodulated gate current ∆IG. The highest

doping profile asymmetry results in the largest asymmetrical magnetomodulated gate current

∆IG.
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4.2. Magnetic effects on nano-scaled MOSFET

Figure 4.15: Simulated percentage of change of magneto-modulated gate current ∆IG/IG(%)

for 28-nm nMOSFET for three different channel doping profiles in a magnetic field B =

±400mT with VDS = 0.0V and VG = 1.0V.

5 10 ¹⁸ 4 10 ¹⁸ 3 10 ¹⁸ 2 10 ¹⁸ 1 10 ¹⁸ 9 10 ¹⁷ 8 10 ¹⁷ 7 10 ¹⁷

DopL (cm⁻³)

. . . . . . . .

Figure 4.16: Simulated percentage of change of magneto-modulated gate current ∆IG/IG(%)

for 28-nm nMOSFET with channel doping profile variations in a magnetic field B = ±400mT

with VDS = 0.0V and VG = 1.0V.

Thermal effects on the gate tunneling current

In order to study the effects of the temperature on the gate tunneling current of a nano-scaled

MOSFET, Figure 4.17 shows the relation between temperature and gate tunneling current
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4.2. Magnetic effects on nano-scaled MOSFET

IG from simulated and experimental data. Moreover, Figure 4.18 shows the same relation

Ig − Temp in logarithmic scaled. For this experiment, we used a as a benchmark device

a 28-nm n-type Si MOSFET with equivalent uniform oxide thickness EOT of 2.0 nm, gate

width W of 1.0 µm, ND = 5 · 1019 cm−3 and NA = 3 · 1018 cm−3. For the simulation device,

we assumed a uniform oxide and a uniform doping profile along the channel device.

Error=6.69%

Error=5.55%

Error=2.21%

Figure 4.17: Ig-Vg characteristics of 28-nm nMOSFET under the influence of thermal vari-

ations at VDS = 0.5V.

Figure 4.18: Semi-logarithmic Ig-Vg characteristics of 28-nm nMOSFET under the influence

of thermal variations at VDS = 0.5V.
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4.2. Magnetic effects on nano-scaled MOSFET

There is a good agreement between measurement data and the results obtained with our

simulation tool. For the case of V g < 0.2 the simulation tool sets Ig = 0.0. Because of that,

the error obtained considers only the values of Ig for V g >= 0.2V .

The tunneling current rises as there is an increase in temperature. This happens because

temperature affects the behavior of the supply function S and the transmission coefficient

TC; see Figure 4.19. With temperature, both the supply function and the transmission

coefficient increase [70], and so does the gate tunneling current. For the case of the supply

function with more temperature there are more electrons available to tunnel through the

barrier potential. While for the case of the transmission coefficient with more temperature

the effective mass is changed and there is an increment in the transmission coefficient.

Figure 4.19: Simulated supply function and transmission coefficient of 28-nm nMOSFET

under the influence of thermal variations at VDS = 0.5V.

Simulation tool performance

In order to analyze the performance of our simulation tool, the runtimes and percentual errors

of our methodology were computed. Figure 4.20 shows the runtime of our methodology with
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4.2. Magnetic effects on nano-scaled MOSFET

respect to the grid size definition for one voltage step V g. We see that as it was expected,

with a finer grid size the runtime increases. Moreover, we saw that for our particular device

size, the device can be divided into a gride size lower than 0.5 nm the potential energy

converges.

Figure 4.20: Runtime dependence on the grid size definition.

Furthermore, we analyzed the runtime of our methodology with respect to the number

of the eigenvalues calculated, see Figure 4.21.It is important to say that only the ten first

eigenvalues have a real contribution to the gate current [40].

We also tested the runtime when a magnetic field is applied and we see that there is a

difference of 4.453 seconds approximately for considering the magnetic field in our methodo-

logy.

The average percentual error between measurement data and simulation results is shown

in Figure 4.22. We can see that the maximum error is obtained with a V g = 0.2V and the

minimum error is obtained with a V g = 0.7V .
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Figure 4.21: Runtime dependence on the number of eigenvalues computed.
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Figure 4.22: Percentual average error simulations.
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Chapter 5

Conclusions and future work

A 2D simulation methodology for analyzing thermo-magnetics effects on nano-scaled MOS

transistors has been introduced. This has been achieved by incorporating the magnetic field

and temperature as additional variables into the solution of the Schrödinger-Poisson coupled

system using the Vienna Schrödinger-Poisson solver (VSP) [46]. This implementation into

the GTS Framework [60] simulation tool allows us to calculate the gate tunneling current in

nano-scaled MOSFET devices under the influence of thermo-magnetics effects.

The calculation of the gate tunneling current has been performed using the Tsu-Esaki

model and considering open boundary conditions by using the Perfectly Matched Layer

method.

An external magnetic field was applied perpendicular to the gate tunneling current of the

MOSFET. With the aplication of the magnetic field, it has been shown a mix of the states of

the wavefunctions and the spliting of the energy levels of the system, which have an impact in

the gate tunneling current of the MOS device. Moreover, the transmission coeffient and the

supply function were calculated in function of the magnetic field and temperature variations.

The non-uniformity of the channel in real strain nMOS devices was reproduced by means

of non-uniform oxide profiles and non-uniform doping profiles. By using the magnetic field

we were able to scan the non-uniformity of the tunneling properties along the channel.

The proposed simulation methodology has shown a good agreement with experimental

results. Therefore, the proposed simulation methodology, is a very valuable tool to investigate
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non-homogeneous space distributed tunneling properties and other termo-magnetics effects

on the gate tunneling current.

As a future work, in order to do more robust the gate tunneling model, more gate tunneling

mechanims need to take into account; for instance trap assited tunneling.

Another future work can be focussed on studying the magnetic field effects having different

orientations and directions. Until now, the VSP can handle 2D structures; however, in order

to consider the application of magnetic fields in different directions, the VSP tool needs to

handle with 3D structures. With the inclusion of this characteristic, device structures like

FINFETs could be analyzed.

Finally, another future work is the implementation of a drain current model which in-

corporates the thermo-magnetic field effects. With this extension of the simulation tool,

thermo-magnetic effects on the drain current by means of applying an external magnetic

field perpendicular to the surface of the MOSFET could be done.
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[66] Stanojević Zlatan. Simulation of Carrier Transport in Ultra-Thin-Body Devices.

MS Dissertation.Technical University of Vienna. Institute for Microelectronics. June

(2009).

[67] Stanojevic, Z., Karner, M. ; Schnass, K. ; Kernstock, C. ; Baumgartner, O. ; Kosina,

H.A versatile finite volume simulator for the analysis of electronic properties of

nanostructures. SISPAD, (2011).

59



Bibliography

[68] E. Póndigo de los Ángeles. ”Experimental characterization and analysis of magneto-

conductance performance of 28nm MOSFETs ” PhD Dissertation, INAOE, 69-72

(2014).

[69] Y. Yu , ”Fundamentals of Semiconductors.” Springer, First Edition, 223 (1996).

[70] Slava V. Rotkin and Karl Hess, ”Possibility of a metallic field-effect transistor.”

Applied Physics Letters, 84(16), 3139 (2004).

[71] Shue-Chue Shen, Jing-Bin Zhu, Yao-Ming Mu, and Pu-Lin Liu. ”Wavefunction mix-

ture and composition for hybridized Zeeman states of P in Si.” Physical Review B,

vol 49, no. 8, (1994).

[72] W. Lei,O. Wibbelhoff, C. Notthoff, B. Marquardt, D. Reuter, A.D. Wieck, A. Lorke.

”Magnetic field induced modification of the wavefunctions in InAs quantum dots.”

Physica E, 40 (6) (2008).
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