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Abstract

We consider physical conditions for realizing the Bragg regime of one-, two-, and three-phonon scattering of light in
optically anisotropic crystalline materials. The exact and closed analytical models for describing these regimes are
developed and solved. The performed analysis takes into account an opportunity of realizing 100% efficiency of light
scattering in these regimes. Possible applications lie in the fields of creating large-aperture modulators of light. In
connection with this, the problems of optimizing the frequency bandwidths and potential resolution of such
modulators are studied. Reasonable attention is paid to the contribution of acoustic anisotropy to frequency
bandwidth. The analytical results are illustrated by computer simulations and compared with proof-of-principle
experimental data related to a multi-phonon light scattering in a tellurium dioxide crystal.
r 2007 Elsevier GmbH. All rights reserved.
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1. Introduction

The nonlinear behavior of light beams with Bragg
acousto-optical interaction in a crystal can be easily
achieved in an experiment without any observable effect
of the scattering process on the acoustic wave, when the
powers of the incident light and ultrasound are close to
e front matter r 2007 Elsevier GmbH. All rights reserved.
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each other and do not exceed a level of about 100mW
[1,2]. In this case, the amplitude of the acoustic wave is
governed by a homogeneous wave equation, and it is
agreed that the regime of so-called weak coupling takes
place [3]. Here, we assume that the area of propagation
for the acoustic wave, traveling almost perpendicular to
the light, is bounded by two planes x ¼ 0 and x ¼ L in a
crystal, and initially take into account both angular
and frequency mismatches in the wave vectors. Usually,
the Bragg acousto-optical process includes three waves,
the incident and scattered light modes as well as the
acoustic mode, and incorporates conserving both the
energy and the momentum for each partial act of a one-
phonon light scattering. However, if the central cross-
section of a pair of the wave vector surfaces, reflecting

www.elsevier.de/ijleo
dx.doi.org/10.1016/j.ijleo.2007.06.027
mailto:alex@inaoep.mx
mailto:tepichin@inaoep.mx
mailto:aaguirre@mixteco.utm.mx
mailto:mtberlin@aol.com


ARTICLE IN PRESS
A.S. Shcherbakov et al. / Optik 120 (2009) 301–312302
two eigen-states of polarization in optically anisotropic
medium, is crossed by a direct line, placed close enough
to a joint center of those surfaces and being collinear to
the wave vector of an acoustic beam, one will obtain
three or four points of intersection, see Figs. 1a and b.
This fact indicates that generally the chosen geometry of
acousto-optical interaction in anisotropic medium al-
lows, as a maximum, a three-fold scattering of light by
acoustic waves in the Bragg regime and in doing so
represents the most complicated case of just the Bragg
non-collinear interaction in crystals. In the particular
case, when these four intersections are equidistant, a
three-fold scattering of light can be provided by only
one harmonic acoustic wave, as shown for a tellurium
dioxide crystal in Fig. 1d. Then, one can consider the
degenerated version for this case as well, which gives us
a two-fold scattering of light, see Fig. 1c. By this it is
meant that under certain conditions, i.e. at a set of
angles of light incidence on selected crystal cut and at
fixed frequency of the acoustic wave, one will be able to
observe the Bragg scattering of light caused by
sequential participation of one, two, or even three
phonons. In doing so, attention can be given to
searching the points of extrema for intensities of the
scattered light that hold the greatest interest from the
viewpoint of the light modulation technique. It is easy to
show that the effects in hands are potentially suitable for
realizing 100% efficiency for multi-fold light scattering
via multi-phonon processes. In this paper, the feasibility
of applying such a phenomenon to the modulation of
light is analyzed and the problems related to optimizing
the bandwidths of modulation and improving the
potential resolution in these modulators are investigated
theoretically, simulated numerically, and examined
during proof-of-principle experiments.

The conservation laws are given by om+1 ¼ om+O
and km+1 ¼ km+K simultaneously (om, km and O, K
Fig. 1. Feasible geometries of acousto-optical interaction in

optically anisotropic crystals: two arbitrary cases (a, b) and the

particular cases of multi-phonon processes in a tellurium

dioxide crystal (c, d).
are the cyclic frequencies and the wave vectors of light
and acoustic waves, m ¼ 0, 1, 2, 3 as the case requires).
Such processes occur at various angles y0 of light
incidence and the characteristic frequencies O2,3,
peculiar to just a two- and three-fold Bragg scattering
of light as

Two�fold scattering:

ðaÞ sin y0 ¼ ðn0Þ
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jn2

0 � n2
1j

q
,

ðbÞ O2 ¼ 2pf 2 ¼ 2pl�1V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jn2

0 � n2
1j

q
, ð1Þ

Three�fold scattering:

ðaÞ sin y0 ¼ 3ð4n0Þ
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jn2

0 � n2
1j

q
,

ðbÞO3 ¼ 2pf 3 ¼ pl�1V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jn2

0 � n2
1j

q
, ð2Þ

where n0 6¼n1 are the refractive indices of a crystal, V is
the ultrasound velocity, and l is the incident light
wavelength. The polarization states of light in various
orders of scattering can be orthogonal to each other,
whereas the frequencies of light beams in the first,
second, and third orders are shifted by O2 and 2O2 or
O3, 2O3, and 3O3, as the case requires, relative to the
zero-order light beam, see Fig. 2.
Fig. 2. Optical beam arrangements inherent in two-phonon (a)

and three-phonon (b) processes of light scattering; light arrows

show the corresponding acoustic waves passing through

crystals from the piezoelectric transducers to the absorbers.
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2. Analytical model for a multi-fold Bragg

acousto-optical interaction

Here, our attention will be focused on a novel
approach to the Bragg regime of N-fold, namely, a
one-, two- or three-fold light scattering in optically
anisotropic media [3,5] caused by multi-phonon pro-
cesses, wherein the plane elastic wave with angular
frequency O and wave number K is traveling, say, along
the y-axes. Under action of such an elastic wave, the
dielectric permittivity e becomes a function of the
coordinate y and time t, so it is varied as

�ðy; tÞ ¼ �0 þ �1 sinðKy� Otþ FÞ, (3)

where e0 is the dielectric constant for a non-perturbed
medium, e1 is the amplitude of variations in the dielec-
tric constant, and F is the initial phase of elastic wave.
The values of e1 and F are constant for a uniform plane
wave. Then, let us assume that the area of propagation
for the elastic wave is bounded by two planes x ¼ 0 and
x ¼ L, and that N plane electromagnetic waves

Ein ¼
XN

p¼0

Ap exp½iðkpx cos yp þ kpy sin yp � optþ jpÞ�

(4)

strike the plane x ¼ 0 at angles yp to the x-axis. Here
p ¼ 0, 1, 2,y,N; while Ap, jp, op, and kp are the
normalized real amplitude, initial phase, angular fre-
quency, and wave number of the pth incident light wave;
op ¼ o0+pO and kp ¼ jkpj ¼ op�

1=2
0 c�1. Without the

loss in generality, one may state that all the fields are
independent of the third coordinate. Because the
directions for passing the light waves are pre-assigned
by the Bragg conditions from Eqs. (1) and (2), a scalar
version of the wave equation, governing the electric
component E(x, y, t) of electromagnetic wave in area of
interaction, may be used. It would be natural to
represent the project of solution in the area of xA[0,
L] as a sum of partial waves with the normalized
complex amplitudes Cp(x), so

ðaÞ
q2E
qx2
þ

q2E
qy2
�

1

c2
q2ð�EÞ
qt2

¼ 0,

ðbÞ E ¼
XN

p¼0

CpðxÞ exp½iðkp;xxþ kp;yy� optÞ�. ð5Þ

Here, kp,y ¼ k0sin y0+pK and kp;x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

p � k2
p;y

q
.

Eq. (5b) does not contain any waves, being reflected
by the dynamic acoustic grating in a medium. This may
be tolerated, because usually the length for coherent
interaction between co-directional waves far exceeds the
same length for oppositely directed waves. Practically in
experiments, each transition p! p� 1 corresponds to
only one type of scattering, normal or anomalous, and
each amplitude CP describes only one state of polariza-
tion. In the chosen approximation, we yield

dCpðxÞ

dx
¼ qp�1Cp�1ðxÞexp½ið2Zp�1xþFÞ��qpþ1Cpþ1ðxÞexp½ið2Zpxþ FÞ�,

(6)

ðaÞ qp ¼ �1k
2
pð4kp;x�0Þ

�1; ðbÞ 2Zp ¼ kp;x þ Kx � kpþ1;x.

(7)

Both Eqs. (7) are explained in terms of x-components
for light wave vectors. It follows from Eqs. (6) that only
the neighboring pairs of orders govern the redistribution
of optical energy in each pth order of scattering. When
the angles yp of incidence for all the light beams are
chosen in an arbitrary way, all the values 2ZpL far
exceed p, so the scattering is not sufficiently effective.
Nevertheless, for specific angles yp, being close to the
Bragg angles, a few values 2ZpL turn out to be small, so
rather effective scattering into the corresponding pth
order takes place.
3. A one-fold light scattering; bandwidth of a

one-phonon interaction

At first, we consider the conventional regime of a one-
fold light scattering. In this case, Eqs. (6) and (7) give
the well-known [4,5] set of combined equations that
governs the evolution of the complex amplitudes C0(x)
and C1(x) of light waves:

ðaÞ
dC0

dx
¼ �q1C1 expð�2iZ0xÞ,

ðbÞ
dC1

dx
¼ q0C0 expð2iZ0xÞ. ð8Þ

Using the boundary conditions C0(x ¼ 0) ¼ 1,
C1(x ¼ 0) ¼ 0, and the conservation law jC0j

2þ

jC1j
2 ¼ 1, resulting from Eq. (8), one can write the

solution to Eq. (8b) in terms of the scattered light
intensity with q2 ¼ q0q1 as

jC1j
2 ¼

q2

q2 þ Z20
sin2ðx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Z20

q
Þ. (9)

The bandwidth of light scattering can be naturally

estimated by the condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqxÞ2 þ ðZ0xÞ

2
q

¼ p=2,

corresponding to a level of about �4 dB for the sinus
function in Eq. (9). It follows from this condition that an
acceptable magnitude of the normalized mismatch Z0x
decreases as the parameter qx grows. Formally speak-
ing, the bandwidth cannot be determined correctly by
this condition with qxXp/2. In fact, however, we have
to restrict the normalized mismatch by the stronger
inequality qxpp/2 due to the unacceptable level of the
side lobes in the intensity distribution with qxXp/2. This
is illustrated in Fig. 3 by a three-dimensional intensity
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Fig. 3. A three-dimensional intensity distribution (a) for

jC1ðqx; Z0xÞj2 and two cross-sections of the light intensity

distribution with two sets of fixed parameters qx versus the

normalized mismatch Z0x; (b) the region qxpp/2 (dashed line

is for qx ¼ 0.5, dot-dashed line is for qx ¼ 1.0, and solid line is

for qx ¼ p/2), when the bandwidth can be well identified

independently of the value of qx for an arbitrary magnitude of

Z0x; (c) the region of p/2oqxpp (dashed line is for qx ¼ 2,

dot-dashed is line for qx ¼ p, and solid line is for qx ¼ 4),

when the bandwidth cannot be always determined correctly.

Fig. 4. Vector diagram related to the bandwidths of the

normal scattering (a), the non-optimized anomalous scattering

(b) with z-0, and the optimized anomalous scattering (c) with

z 6¼0.
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distribution for jC1ðqx; Z0xÞj
2 and a pair of cross-

sections of this distribution. The set of plots in Figs. 3
obviously demonstrates that it is simpler to use the
concept of a small signal bandwidth. It can be estimated
with q-0 from the previous equality, which takes now
the form of Z0x ¼ p/2.

A one-phonon non-collinear light scattering in iso-
tropic medium is associated with the Bragg condition
[4,5]

sin y ¼ �K=ð2k0Þ ¼ �lf 1=ð2nV Þ (10)
for the normal regime without changing the state of light
polarization. The corresponding wave vector diagram is
depicted in Fig. 4a. The frequency bandwidth of
acousto-optical interaction Df1 can be estimated through
differentiating this Bragg condition in Eq. (10) as
Df 1 ¼ Dyð2nV=lÞ cos y, where Dy is the variation of
the angle of light incidence associated with the variation
of the acoustic frequency Df1 needed to provide the
Bragg condition. In the case of light modulation, we
usually have the geometry of interaction with a rather
wide optical beam, whose angle of spreading dy is small,
and a rather narrow aperture of the acoustic beam (i.e. a
rather large size LT of the piezoelectric transducer),
whose angle of spreading is dj � ðV=f 1LTÞbdy in the
case of ordinary acoustic beam diffraction in an
isotropic medium. Assuming that dj � Dy, LT � L,
and cos yE1, we obtain the following rather good
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approximations:

ðaÞ Df 1 �
2nV 2

lLf 1

; ðbÞ Df 1 �
2nV

l
dj, (11)

for the bandwidth of normal Bragg acousto-optical
interaction in an isotropic medium. This approximate
equality follows geometrically from the plot in Fig. 4a,
because DK ¼ 2pðDf 1Þ=V and 2k0dj cos y � 4pnV=
ðlLf 1Þ. Moreover, in the case of normal one-phonon
light scattering, Eq. (7b) together with Fig. 3a give us
Z0 ¼ plf 1ðDf 1Þ=ð2nV2Þ. Using the equality Z0x ¼ p/2
with x ¼ L, one can obtain Eq. (11a) again.

The regime of a one-phonon anomalous non-collinear
light scattering in a slightly anisotropic medium, when
the state of light polarization becomes changed via the
scattering process, is characterized by the modified
Bragg condition [6]:

ðaÞ sin y0;1 ¼
lf

2n0;1V
1�

V2z2

l2f 2

� �
; ðbÞ z2 ¼ n2

0 � n2
1,

(12)

where n0,1 are the refractive indices. In the frames of this
regime, two different cases can be recognized here. The
first case of a non-optimized one-phonon non-collinear
anomalous light scattering can be associated with an
approximation of z ¼ 0 due to rather small birefrin-
gence; it is presented in Fig. 4b. Comparing Figs. 4a and
b, one can see that in fact these two plots are very close
to each other. That is why one can suppose that, if the
birefringence is small enough in an anisotropic medium,
the same approximation, i.e. just Df1, may be approxi-
mately applied to estimate the bandwidth of acousto-
optical interaction in an anomalous Bragg regime with a
one-phonon non-collinear light scattering. Together
with that, in the second case, a one-phonon non-
collinear light scattering in anisotropic medium can be
optimized with z 6¼0 due to choosing the special acoustic
frequency f0 ¼ Vz/l, which corresponds to the absolute
minimum of the function y0(f) on the frequency interval
fA[0, fmax ¼ Vl�1(n0+n1)]. On the one hand, substitut-
ing such a special acoustic frequency in the modified
Bragg condition, see Eq. (12), differentiating Eq. (12)
with respect to frequency f, and using an expansion into
a power series, one can obtain the frequency bandwidth

ðaÞ Df 0 � 2V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0=ðlLÞ

p
; ðbÞ Df 0 � 2V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0zl

�1dj
q

,

(13)

for the optimized geometry of a one-phonon non-
collinear anomalous acousto-optical interaction, which
is shown schematically in Fig. 4c. On the other hand, in
the case of anomalous one-phonon light scattering,
Eq. (7b) together with Fig. 3c give us Z0 ¼ plðDf 0Þ

2=
ð2nV2Þ. Using again the equality Z0x ¼ p/2 with x ¼ L,
one can obtain Eq. (13a) as well. Then, the following
ratio Df 0=Df 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lz2=ðln0Þ

q
41 can be constructed to

compare normal and anomalous regimes. This ratio
determines an advantage of applying the optimized
anomalous process to light modulation in comparison
with normal one from the viewpoint of the bandwidth
for light scattering.
4. Two-fold light scattering; bandwidth of a

two-phonon interaction

Using the Eqs. (6) and (7), one can obtain the
evolution equations describing a two-fold light scatter-
ing as well. In the case of a two-fold light scattering
presented in Fig. 1c, Eq. (6) can be considerably
simplified because one can disregard all the amplitudes
Cp(x) in Eq. (6) with the exception of the amplitudes C0,
C1, and C2, so that

ðaÞ
dC0ðxÞ

dx
¼ �q1C1ðxÞexpð�2iZ0xÞ,

ðbÞ
dC1ðxÞ

dx
¼ q0C0ðxÞexpð2iZ0xÞ � q2C2ðxÞexpð�2iZ1xÞ,

ðcÞ
dC2ðxÞ

dx
¼ q1C1ðxÞexpð2iZ1xÞ. ð14Þ

It may be tolerated on the above-mentioned assump-
tion that the shifts in carrier angular frequencies of light
waves, included in the amplitude coefficients for
different orders, can be neglected. All the parameters
qp with p ¼ 0, 1, 2 describe the efficiency of interaction
with changing the state of light polarization, and what is
more, these two steps of scatterings are provided by the
same photo-elastic constants. That is why one can put
q0 ¼ q1 ¼ q2 � q. We analyze Eqs. (14) with the simplest
boundary conditions jC0ðx ¼ 0Þj2 ¼ 1 and C1;2ðx ¼ 0Þ
¼ 0. The exact solution to Eqs. (14) related to C2(x) in
this regime [7] can be written in a reasonable format as

C2ðxÞ ¼ iq2 1� exp½ið2Z� a0Þx�

ða0 � a1Þða0 � a2Þ
þ

1� exp½ið2Z� a1Þx�

ða2 � a1Þða0 � a1Þ

�

�
1� exp½ið2Z� a2Þx�

ða2 � a1Þða0 � a2Þ

�
. ð15Þ

Here, am are roots of the cubic equation a3 � 2ðZ0 þ ZÞ
a2 � ð2q2 � 4ZZ0Þaþ 2q2Z ¼ 0 and Z ¼ Z0+Z1. Gener-
ally, as it follows from Eq. (15), the intensity of this
scattered light wave jC2ðxÞj

2 is periodic in x. When
Z0 ¼ Z1 ¼ 0, one can obtain a0 ¼ 0 and a1;2 ¼ �q

ffiffiffi
2
p

, so
that C2ðxÞ ¼ sin2ðqx=

ffiffiffi
2
p
Þ. Consequently, in this case of

the exact phase synchronism, even 100% of the incident
light can be scattered into the second order at
qx ¼ p=

ffiffiffi
2
p

.
Now, we assume a precise angular alignment and

extend Z0 and Z1 into a series in terms of the only
frequency detuning f�f2 for the current frequency f
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relative to the central frequency f2 determined by
Eq. (1b). In the second approximation with respect to
f�f2, one can obtain from Eq. (7b) and the diagram of
wave vectors in Fig. 1c that [4]

ðaÞ 2Z0 � �pln�10 V�2ðf � f 2Þ
2,

ðbÞ 2Z1 � �4pln�10 V�2f 2ðf � f 2Þ

� 7pln�10 V�2ðf � f 2Þ
2. ð16Þ

Consequently, in the first approximation with respect
to f�f2, we obtain

ðaÞ Z0 � 0; ðbÞ Z1 � �2pln�10 V�2f 2ðf � f 2Þ. (17)

Exploiting Eq. (17) for the sake of simplicity and
substituting Eq. (17) into Eq. (14), one can draw a three-
dimensional distribution for jC2ðxÞj

2, see Fig. 5a, and
estimate the dependence of light intensity jC2ðxÞj

2 on the
product Z1x, where the mismatch Z1 is connected with
the frequency detuning ðf � f 2Þ � Z1n0V2ð2plf 2Þ

�1. It is
seen from Fig. 5a that the first maxima of unity level in
this distribution can be reached at qx ¼ �p=

ffiffiffi
2
p

. At the
same time, by analogy with the previous section, one
should take Z1x ¼ p=2 with x ¼ L, see Fig. 5b, to find
the bandwidth Df 2 ¼ 2ðf � f 2Þ of a two-phonon light
scattering:

ðaÞ Df 2 �
n0V2

2lf 2L
; ðbÞ Df 2 �

n0V

2l
dj. (18)

The comparison of this formula with Eq. (11) makes it
possible to conclude that the bandwidth of a two-
Fig. 5. A three-dimensional distribution (a) for jC2ðqx; Z1xÞj2

and (b) the cross-section of that distribution at qx ¼ p=
ffiffiffi
2
p

.

phonon light scattering is about four times narrower
than a bandwidth of the normal one-phonon scattering.
5. A three-fold light scattering; a simplified

estimation for the bandwidth of a three-phonon

interaction

Now we can disregard all the amplitudes Cp(x) in
Eq. (6) with the exception of the amplitudes C0, C1, C2,
and C3, as shown in Fig. 1d, and, in so doing, obtain the
following set of only four simplified ordinary differential
equations for complex amplitudes of the scattered light
waves:

ðaÞ
dC0ðxÞ

dx
¼ �q1C1ðxÞ expð�2iZ0xÞ,

ðbÞ
dC1ðxÞ

dx
¼ q0C0ðxÞ expð2iZ0xÞ � ~q2C2ðxÞexpð�2iZ1xÞ,

ðcÞ
dC2ðxÞ

dx
¼ ~q1C1ðxÞ expð2iZ1xÞ � q3C3ðxÞexpð�2iZ2xÞ,

ðdÞ
dC3ðxÞ

dx
¼ q2C2ðxÞ expð2iZ2xÞ. ð19Þ

In Eqs. (19), the parameters qp (p ¼ 0, 1, 2, 3) can be
rewritten in terms of normal and anomalous scattering
of light in a uniaxial crystal as ~q1 ¼ ~q2 ¼ qn and
q0Cq3 ¼ qa. The factors qn and qa describe both the
material properties relative to normal and anomalous
processes of light scattering and the acoustic power
density, and they can be taken to be constants.
Generally, qn 6¼qa, because these factors include different
components of the photo-elastic tensor inherent in a
crystal.

Now, we again assume a precise angular alignment
and extend Z0, Z1, and Z2 into a series in terms of the
only frequency detuning f�f3 for the current frequency f

relative to the central frequency f3 determined by
Eq. (2b). In the first approximation with respect to
f�f3, one can obtain from Eq. (7b) and the diagram of
wave vectors in Fig. 1d that [4]

ðaÞ 2Z0 � pln�10 V�2f 3ðf � f 3Þ,

ðbÞ Z1 � �3Z0,

ðcÞ Z2 � �7Z0. ð20Þ

Varying the ratio q ¼ qa/qn and substituting Eq. (20)
into Eq. (19), one can estimate the dependence of light
intensity jC3ðxÞj

2 on the product qnx. The plots in
Fig. 6a show that the ratio q ¼ qa/qn should be
optimized from the viewpoint of applications to light
modulation. The best value of this ratio q ¼ 0.866
provides the monotonic character of increasing the light
intensity jC3ðxÞj

2 and an opportunity of reaching the
100% maximum intensity at qnx ¼ p, see the solid line
in Fig. 6a. A similar possibility exists for the ratio
q ¼ 1.936, but it gives a non-monotonic character of
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Fig. 6. Distributions of the light intensity jC3ðxÞj
2. Here, (a)

the dependences on the product qnx: dashed line is for

qn ¼ 0.559, solid line is for qn ¼ 0.866, dotted line is for

qn ¼ 1.414, and dot-dashed line is for qn ¼ 1.936. (b) The

dependence on the product 2Z0x: qnx ¼ p and q ¼ 0.866.
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increasing the light intensity jC3ðxÞj
2 with qnx, see the

dot-dashed line in Fig. 6a. Then, in the case of qnx ¼ p,
one can consider the dependence of the light intensity
jC3ðxÞj

2 on the product 2Z0x, see Fig. 6b, where Z0 is
connected with the frequency detuning f � f 3 �

2Z0n0V
2ðplf 3Þ

�1. By analogy with the previous sections,
one has to take 2Z0xEp/6 at x ¼ L. Such a selection
makes it possible to find the expression

ðaÞ Df 3 ¼ 2ðf � f 3Þ �
n0V

2

3lf 3L
,

ðbÞ Df 3 �
n0V

3l
dj, ð21Þ

for the bandwidth of a three-phonon light scattering with
q ¼ 0.866. Finally, the value of Df3 is approximately six
times less than the bandwidth Df1 of a one-phonon light
scattering in normal regime, described by Eq. (11).
6. Potential resolution of the modulators under

consideration

Potential resolution of acousto-optical modulator has
the same physical nature as the resolution of conven-
tional diffractive grating in optics, because an acousto-
optical cell represents in fact a dynamic acoustic grating
inside the cell’s material. To estimate the resolution of
an optical modulator let us use the quantum mechanical
approach. Generally, the momentum p of a photon is
connected with the wave number k as p ¼ hk/(2p), where
h is the Planck constant, so an uncertainty dp ¼ h(dk)/
(2p) in the momentum is related to the uncertainty in the
wave number dk of a photon. The same view is true, if
one will consider the phonons. Namely, the momentum
P of a phonon is connected with the wave number K as
P ¼ hK/(2p), and an uncertainty dP ¼ h(dK)/(2p) in the
momentum is related to the uncertainty in the wave
number dK of a phonon. Then, because the phonon
wave number is K ¼ 2pf/V, one can note that an
uncertainty of the phonon wave number, in its turn,
can be explained in terms of an uncertainty in the
phonon frequency df as dK ¼ 2p(df )/V. The limiting
case of just Bragg light scattering in acousto-optics is
determined by the well-known [8] dimensionless inequal-
ity lf 2L/V2

b1. In this limit an uncertainty in the
momentum of the issuing photon is characterized by the
relation dpEdP, and, consequently, dkEdK, because
they both are localized inside the same spatial area
determined by the aperture D. Together with this, the
value of dk is significantly smaller than the photon wave
number variation connected with scattering from the
order j to the order j+1, i.e. jkjþ1 � kjjbKbdKbdk.
By this, it is meant that the wave numbers of both
the photons and the phonons are well determined in the
Bragg limit of acousto-optical interaction. Due to the
Heisenberg uncertainty principle [9] proclaiming that
dp � dx�h with dxED, one can find that

df � V=D. (22)

Just this value determines the potential frequency
resolution of acousto-optical modulators independently
of the number of phonons taking part in a process of the
Bragg light scattering.

Eq. (22) gives us an opportunity to estimate the
number Nm ¼ Dfm/df of resolvable spots for each of the
modulators under analysis. In so doing and using
Eqs. (11a), (13a), (18a), and (21a) together with
Eq. (22), one can calculate for a one-phonon (normal
as well as the anomalous optimized), two-phonon, and
three-phonon processes of light scattering

ðaÞ N1 ¼
2nVD

lf 1L
; ðbÞ N0 ¼ 2D

ffiffiffiffiffiffiffi
2n0

lL

r
,

ðcÞ N2 ¼
n0VD

2lf 2L
; ðdÞ N3 ¼

n0VD

3lf 3L
. ð23Þ

Then, one can consider the angular resolution of these
acousto-optical modulators. For simplicity sake, let us
omit for a moment the optimized anomalous regime and
take the angular-frequency dependences in the forms

sin ym ¼
m

2

K

km

¼
m

2

lf m

n0V
, (24)
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Fig. 7. Cross-section of a surface for the acoustic waves phase

velocities by the ð1 1̄ 0Þ-plane in a TeO2 crystal; the velocities

are measured in 1	 105 cm/s.
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which are true within the limits of the corresponding
bandwidths Dfm. These equations directly follow from
Fig. 4a for m ¼ 1, Fig. 1c for m ¼ 2, and Fig. 1d for
m ¼ 3. It is easy to find from Eq. (24) that small
variations varym of the angles ym are connected with the
corresponding variations var fm of the frequencies fm as

var ym ¼
ml

2n0V cos ym

var f m. (25)

The angular size of a resolvable spot is determined by
the width of the light beam or the modulator’s aperture
D as dyEl/(n0D). Using this ratio, one can estimate the
number of resolvable spots Mm located inside a two-side
small angular interval of variation as

Mm ¼
2 var ym

dy
¼ m

D

V cos ym

� �
var f m, (26)

where practically cos ymE1. In Eq. (26), the term
T ¼ D/V cos ym describes the time of scanning the light
beam through just one resolvable spot, i.e. characterizes
the speed of a modulator’s operation. Among other
things, one can state that values of the variations var fm

are the same for all m ¼ (1, 2, 3). In this particular case,
Eq. (26) shows that one and the same modulator
operating in one and the same frequency bandwidth
provides the number of resolvable spots directly
proportional to the number m of phonons taking part
in the light scattering process. In other words, the
exploitation of a two- and/or three-phonon light
scattering provides the increasing specific resolution of
modulators under consideration. Taking alone the
regime of a one-phonon light scattering with (m ¼ 1)
and choosing var f1 ¼ Df1, one can derive the equiva-
lence between Eqs. (26) and (23a). When m ¼ (2, 3), the
corresponding relations become more complicated due
to additional restrictions within the varying wave
vectors on the diagrams in Figs. 1c and d. These
restrictions are ultimately conditioned by the necessity
of meeting the conservation laws at all the intermediate
stages of multi-phonon light scattering.
7. Effect of acoustic anisotropy

For our experiments with multi-phonon processes, we
have selected a well-known and very effective acousto-
optic material such as the tellurium dioxide single crystal
[10], which is very anisotropic in behavior. Its acoustic
anisotropy can be illustrated, for example, by one of the
cross-sections of a three-dimensional surface for the
acoustic waves phase velocities in TeO2 by the ð1 1̄ 0Þ-
plane [11], see Fig. 7. One can see that the slow shear
acoustic mode, which is marked as the M2-mode in
Fig. 7, has the absolute minimum (V ¼ 0.616	 105 cm/s)
on passing along the [1 1 0] or ½1 1̄ 0� axes due to a
tetragonal symmetry of a TeO2-crystal.
Generally, when an elastic (acoustic) wave passes
through an anisotropic medium, the energy flow tips out
of the wave vector K ¼ (2p/L)m ¼ Km, where L is the
acoustic wavelength and m is the unit vector of the wave
normal. Velocity and direction of passing the energy flow
are characterized by the group velocity vector w ¼ qO/
qK ¼ ws, where s is the unit vector of the energy flow. The
scalar product w .m ¼ V shows that wXV, and the
acoustic group velocity w is equal to the phase velocity
V only if s||m. The angleC between the flow vector w and
the wave vector K is determined by cosC ¼ m � s, and it
can reach rather large values, of the order of tens of
degrees, in the acoustically anisotropic crystals.

Now, let us discuss the dependence of w on the length
K of the wave vector K and its unit vector m. One can
write in the form of vector components that

wi ¼
qO
qKi

¼
qO
qK

qK

qKi

þ
qO
qmj

qmj

qKi

. (27)

A triplet of the orthogonal axes {x, y, z} for a crystal
(in this section) can be chosen in Eq. (27) in various ways;
in particular, one can state that this triplet includes the
crystallographic axes f½0 0 1�; ½1 1 0�; ½1 1̄ 0�g, respectively.
Because O ¼ VK, one can obtain qO/qK ¼ V and
qO=qmj ¼ KðqV=qmjÞ. The other derivatives are

qK

qKi

¼
q
ffiffiffiffiffiffiffiffiffiffiffi
KiKi

p

qKi

¼
Ki

K
¼ mi,

qmj

qKi

¼
qðKj=KÞ

qKi

¼
1

K2
K

qKj

qKi

�
qK

qKi

Kj

� �

¼
1

K
ðdij �mimjÞ. ð28Þ

Substituting Eqs. (28) into Eq. (27), one can obtain in
the vector components (a) as well as in the vector form
(b) that

wi ¼ Vmi þ ðdij �mimjÞ
qV

qmj

; w ¼ Vmþ ðI �mmÞ
qV

qm
.

(29)
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Thus, the group velocity vector w can be represented
as a sum of the phase velocity vector Vm and a part of
the derivative qV/qm, which is orthogonal to the unit
vector m of wave normal. Together with this, Eq. (29) is
associated with the two following equalities: the first for
the scalar product (m �m ¼ 1), conditioned by normal-
izing the unit vector m, and the second for the above-
mentioned product w �m ¼ V, because ðd�mmÞ�

ðqV=qmÞ ? m. Eq. (29) give that sjjm at the points
where qV/qm ¼ 0, for example, at a direction of the
[1 1 0]-axis. Together with this, Eq. (29) shows that the
more the flow vector w tips out of the wave vector K, the
more the phase velocity V varies with the direction m
due to qV/qm 6¼0 with such a variation, so the angle
C ¼ arccos(m � s) goes from zero. Then, Eq. (29)
predicts that the faster the phase velocity varies with
m, the farther the vector w tips from the vector K.
Moreover, the vector w tips in a direction of the
increasing velocity, i.e. just outside of a point of a
minimal value of the phase velocity in a TeO2-crystal.
That is why, in its turn, the presence of even small tips of
the vector m from the ½1 1̄ 0�-axis in that crystal, which
can be governed, for example, by diffraction of the
acoustic waves and the corresponding spreading of an
angular spectrum of the plane waves generated initially
by a piezoelectric transducer due to its finite length L,
leads immediately to the appearance of the above-noted
tips of the vector w. As a result, to estimate angular
distribution of the acoustic energy in a crystal one has to
take into account an additional two-side angular
contribution 2C, caused by the anisotropy of a crystal,
together with the previously introduced contribution dj,
caused by the diffraction.

To estimate this phenomenon one can exploit
Eq. (29). Let us assume that m lies in the ð1 1̄ 0Þ-plane
(|m| ¼ 1) and a is the angle between the wave normal m
and the [1 1 0]-axis. In this case, qV=qmj ¼ ðqV=qaÞ
ðqa=qmjÞ in Eq. (29a) and mx ¼ sin a, my ¼ cos a, dmx/
da ¼ cos a, dmy/da ¼ �sin a, so that da/dmx ¼ 1/cos a
and da/dmy ¼ �1/sin a. Now, let us find the dependence
of the phase velocity V on the angle a, see Fig. 8.

We assume that, when a is small enough, an area in
the vicinity of the local minimum for the phase velocity
Fig. 8. Parabolic approximation of the phase velocity V for

the slow shear M2-mode in the vicinity of the [1 1 0]-axis in a

TeO2 crystal, see Fig. 7.
V at the [1 1 0]-axis in the TeO2-crystal for the M2-mode
in Fig. 7 can be approximated by the parabolic profile
V ¼ V0+bx2, where b is a factor to be found. Together
with this, it follows from Fig. 8 that x ¼ V sin a.
Combining these two expressions, one can write the
algebraic equation V ¼ V0+bV2sin2a. Only one of the
solutions to this algebraic equation has physical mean-
ing. It takes the form VEV0+bV0

2sin2a and describes
the needed dependence of the phase velocity V on the
angle a. A similar solution can be calculated with the
usage of the extension

ffiffiffiffiffiffiffiffiffiffiffi
1� z
p

� 1� ðz=2Þ � ðz2=8Þ in
the second approximation. After that, one can find the
derivative qV/qa ¼ 2bV0

2sin a cos a. Using this formula
together with previous ones, one can calculate

ðaÞ
qV

qmx

¼ 2bV2
0 sin a; ðbÞ

qV

qmy

¼ �2bV 2
0 cos a.

(30)

Then, applying Eq. (29a), one can obtain

ðaÞ wx ¼ V0 sin aþ 4bV 2
0 sin a cos2a;

ðbÞ wy ¼ V 0 sin a� 4bV 2
0 sin

2 a cos a:
(31)

The length w of the vector w can be found as

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

x þ w2
y

q
¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4b2V 2

0sin
2
ð2aÞ

q
, where 4b2V2

0

sin2ð2aÞ51 due to the expected smallness of the angle a.
Using this formula, one can estimate

cos C ¼ m � s ¼ m �
w

w
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4b2V2

0 sin
2
ð2aÞ

q . (32)

Because the angle C is expected to be rather small as
well as a, Eq. (32) can be reduced in the second approxi-
mation at cos C � 1� ðC2=2Þ � 1þ 2b2V 2

0sin2ð2aÞ �
1þ 8b2V2

0a
2. Thus finally, one can obtain

C � 4bV0a. (33)

The above-mentioned parabolic approximation
V ¼ V0+bx2 for the M2-mode in the vicinity of the
local minimum for the phase velocity V at the [1 1 0]-axis
in TeO2-crystal gives the best result when the factor b is
chosen to be close to b ¼ 5. In so doing, one can
estimate from Eq. (33) that, in the particular case of
V0 ¼ 0.616, we obtain CE12.3a. In an acousto-optical
cell, in fact, the angle a is equal to the half of a two-side
angle dj of spreading the acoustic beam in a cell. That
is why, to take into account the effect of acoustic
anisotropy, one should substitute the angle dj in
Eqs. (11b), (13b), (18b), and (21b) by the enlarged value
of (2	 12.3+1)djE25.6dj, because the contribution
from the acoustic anisotropy significantly (about 20
times) exceeds the contribution from the acoustic
diffraction.
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Fig. 9. General schematic arrangement for measuring the

frequency bandwidths of a TeO2 modulator in various regimes

of multi-phonon light scattering.
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8. Estimations and experimental results

It is worthwhile for our purposes to begin the
consideration from a few practical estimations. We have
selected a tellurium dioxide single crystal as a material
for the acousto-optical cell. This crystal has a rather
dispersive refractive index n0, whose values are equal to
n0 ¼ 2.26 at l ¼ 633 nm, n0 ¼ 2.33 at l ¼ 488 nm and
n0 ¼ 2.35 at l ¼ 442 nm [12], and the ultrasound
velocity V ¼ 0.616	 105 cm/s for the slow shear acoustic
mode running along the ½1 1̄ 0�-axis with the displace-
ment vector directed along the [1 1 0]-axis [12], see
Section 7. The figure of acousto-optical merit for this
shear mode wave in a TeO2-crystal is M2E1200	
10�18 s3/g [10,12], the most for solid-state acousto-
optical materials in the visible range. At first, we have
to check the realization of just the Bragg regime for light
scattering in the chosen cell. In such a regime, the
Klein–Cook parameter Q ¼ lLf2/(nV2) [8] should ex-
ceed unity. Operating at the light-blue optical wave-
length l ¼ 448 nm and at the lowest expected acoustic
wave frequency f ¼ 40MHz with L ¼ 1.0 cm, one can
calculate QE10 that confirms the Bragg character of
light scattering in the regime selected within the visible
range of the light spectrum. Then, to estimate the
frequency bandwidth of acousto-optical interaction with
one-, two-, and three-phonon mechanisms of light
scattering, one can use Eqs. (13b), (18b), and (21b)
with the above-mentioned substitution of the angle
dj ¼ V/(Lf) by the enlarged value of djE ¼ 25.6dj due
to the contribution from the acoustic anisotropy. Thus,
one can write

ðaÞ Df 0 � 2V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0zl

�1djE

q
,

ðbÞ Df 2 �
n0V

2l
djE,

ðcÞ Df 3 �
n0V

3l
djE. ð34Þ

Strongly speaking, Eq. (21b) had been derived in
Section 5 for the ratio q ¼ 0.866. Nevertheless, the plots
obtained via computer simulations show that Eq. (34c),
following from Eq. (21b), is acceptable in the first
approximation for estimating the frequency bandwidth
of a three-phonon light scattering with the ratio
q ¼ 1.936 as well, see Section 5. In the case of using
Eqs. (13b), (18b), and (21b) directly, i.e. with
djE10�3 rad, the following set of values can be
obtained: Df0E33MHz at l ¼ 633 nm, Df2E1.4MHz
at l ¼ 488 nm, and Df3E1.2MHz at l ¼ 442 nm. By
contrast, the numerical estimations, based on Eq. (34),
give the set Df0E167MHz at l ¼ 633 nm, Df2E36MHz
at l ¼ 488 nm, and Df3E28MHz at l ¼ 442 nm. Practi-
cally, of course, both these sets of data should be
considered only as a lower and upper limit of
bandwidths, respectively, for acousto-optical processes
under analysis, because the first set does not include
acoustic anisotropy, while the second one does not take
into account a number of restricting external factors.
Nevertheless, Eqs. (34) predict that the contributions
caused by the acoustic anisotropy are able to enlarge the
frequency bandwidth of acousto-optical interaction in
comparison with the case of pure acoustic diffraction.

Our experimental studies consisted of two parts. The
first one included measuring the bandwidths of acousto-
optical interaction in the regimes of a one-, two-, and
three-phonon light scattering. The general schematic
arrangement of the corresponding setup for these
measurements is presented in Fig. 9. Lasers with three
different wavelengths (i.e. with the red, light-blue, and
deep-blue lines) were exploited to observe a triplet of the
wide-band intensity–frequency distributions depicted in
Fig. 10. A set of values recorded during these experi-
ments with the same TeO2-cell includes Df0E31MHz
at l ¼ 633 nm, Df2E16MHz at l ¼ 448 nm, and Df3E
4.5MHz at l ¼ 442 nm.

Let us discuss these data. The measured acousto-optic
bandwidth Df0E31MHz is close to estimation without
the acoustic anisotropy. Moreover, the value of
Df0E31MHz represents approximately an octave at
the central frequency 60MHz, see Fig. 10a. Most likely,
two these facts mean that the acousto-optical bandwidth
Df0 is mainly determined by the bandwidths of the
piezoelectric transducer by itself, so that acoustic
anisotropy has no chance to manifest itself in the regime
of a one-phonon anomalous light scattering. The
restriction appearing from the transducer covers
the effect of acoustic anisotropy, and that is why the
experimental value of 31MHz is too close to the
numerical estimation of 33MHz from Eq. (13b). At
the same time, the measured acousto-optical bandwidths
Df2E16MHz and Df3E4.5MHz are rather far from
both the above estimations, see Figs. 10b and c. Because
all these measurements had been done with the same
acousto-optical cell, it is unlikely that influence of the
piezoelectric transducer took place in the last two cases.
Undoubtedly, we are meeting here the contribution of
acoustic anisotropy. However, together with broadening
the bandwidth due to that anisotropy, the other physical
factor exists, which has the restricting effect. Evidently,
such a physical factor consists in the effect mentioned at
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Fig. 10. Intensity–frequency distributions for one-phonon (a),

two-phonon (b), and three-phonon (c) light scattering pro-

cesses in a tellurium dioxide single crystal.

Fig. 11. General schematic arrangement for measuring the

intensity profile of an individual spot.

Fig. 12. Intensity distributions of an individual spot in the

focal plane of the integrating lens for a two-phonon light

scattering in a TeO2 acousto-optical modulator: (a) experi-

mental plot; (b) numerical simulation.
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the end of Section 6. This effect is connected with
varying the wave vectors on the diagrams in Figs. 1c and
d, because it is ultimately conditioned by the necessity of
meeting the conservation laws at all the intermediate
stages of multi-phonon light scattering. That is why a
contribution from the acoustic anisotropy is not able to
exhibit itself by the full measure, and experimentally one
can observe a sort of balance between the contributions
inherent in anisotropic spreading of the acoustic beam
and approximate fulfilling of the conservation laws in
intermediate stages.

The second part of our experiments was related to
estimating the possible resolution of modulators under
consideration. In fact, the intensity distributions of an
individual spot in the focal plane of the integrating lens
for a multi-phonon light scattering in a TeO2 acousto-
optical modulator had been studied. In so doing, the
experimental setup was re-arranged at the scheme shown
in Fig. 11, where the technique, which had long been in
use, with a scanning very narrow slit diaphragm was
applied to our needs. This technique gives an opportu-
nity to fix the continuous distribution of light intensity
in the lobes of an individual spot really carefully in a
rather wide dynamic range of about 25 dB. In parallel,
the corresponding numerical estimations have been
carried out to provide the possibility of their comparison
with the experimental data obtained. The fulfilled
measurements have shown an expected result that the
intensity distributions of individual spots, correspond-
ing to the regimes of a one-, two-, and three-phonon
light scattering, are very similar to each other. Such a
result is caused by the fact that the angles of light
scattering in these regimes do not exceed a few degrees
in the case of a TeO2 acousto-optical modulator, so that
conditions for a one-, two-, or three-fold scattering of
light are almost the same; mainly, they are determined
by optical quality of a crystal and homogeneity of the
acoustic beam inside the modulator. That is why only
one example of the intensity distributions at an
individual spot, related to a two-fold light scattering,
is presented in Fig. 12a; the plot obtained from
numerical estimation at the same conditions is displayed
in Fig. 12b. One can see that the measured level of the
first lobes lies at a level of around �13 dB with initially
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homogeneous lighting of the modulator’s aperture,
which is in good coincidence with the well-known
theoretical prediction [13] and looks rather acceptable
practically from the viewpoint of application of a multi-
phonon light scattering to spectral analysis of radio-
wave and optical signals.
9. Conclusion

We have updated and developed a special approach to
the Bragg scattering of light in optically anisotropic
crystals marked by the inclusion of multi-phonon
processes. In particular, the configurations related to
one-, two-, and three-phonon scattering processes have
been analyzed in detail to highlight both the frequency
bandwidth and potential resolution inherent in optical
modulators operating over a multi-fold light scattering.
Because one-, two- and three-phonon processes provide
the possibilities of realizing 100% efficiency within light
scattering in the corresponding regimes, possible appli-
cations of these processes lie in implementing the optical
modulators with rather large optical and acoustical
aperture. That is why we have investigated the problems
of optimizing the frequency bandwidths and potential
resolution of such modulators. In so doing, we have
included into consideration the contribution of the
acoustic anisotropy of a cell’s crystalline material. The
analytical results have been confirmed by computer
simulations and successfully compared with proof-of-
principle data obtained during the experiments with a
multi-phonon light scattering in a tellurium dioxide
crystalline cell.
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