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a b s t r a c t

We propose a novel method for the autonomous determination of endmembers that employs recent

results from the theory of lattice based auto-associative memories. In contrast to several other existing

methods, the endmembers determined by the proposed method are physically linked to the data set

spectra. Numerical examples are provided to illustrate lattice theoretical concepts and a hyperspectral

image subcube, from the Cuprite site in Nevada, is used to find all endmember candidates in a single

pass.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Advances in passive remote sensing has produced imaging
devices with ever growing spectral resolution. The high spectral
resolution produced by current hyperspectral imaging devices
facilitates identification of fundamental materials that make
up a remotely sensed scene and thus supports discrimination
between them. A typical pixel of a multispectral or hyperspectral
image generally represents a region on the ground consisting of
several square meters. For example, each Landsat Thematic
Mapper pixel represents a 30� 30 m2. Thus, a hyperspectral
image pixel can have all or parts of many different objects
in it. The collection of measured reflectance values associated
with the pixel is called the spectrum of the pixel. It is, there-
fore, useful to know the percentage of different, fundamental
object parts that are most represented in the spectrum of a
given pixel. The most widely used spectral mixing model is the
linear mixing model, which assumes that the observed reflectance
spectrum of a given pixel is a linear combination of a small
ll rights reserved.
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number of unique constituent deterministic signatures known as
endmembers. This model has been used by a multitude of
researchers ever since Adam et al. [1] analyzed an image of
Mars using four endmembers. In the cited reference and various
other applications, hyperspectral image segmentation and analy-
sis takes the form of a pattern recognition problem as the
segmentation problems reduces to matching the spectra
of the hyperspectral image to predetermined spectra stored in a
library. In many cases, however, endmembers cannot be deter-
mined in advance and must be selected from the image directly
by identifying the pixel spectra that are most likely to represent
the fundamental materials. This compromises the autonomous

endmember detection problem. Unfortunately, the spatial resolu-
tion of a sensor makes it often unlikely that any pixel is
composed of a single endmember. Thus, the determination of
endmembers becomes a search for image pixels with the least
contamination from other endmembers. These are also referred to
as pure pixels. The pure pixels exhibit maximal reflectance in
certain spectral bands and correspond to vertices of a high
dimensional simplex. This simplex, hopefully, encloses most if not
all the pixel spectra.

In this paper we assume the linear mixing model, which is
based on the fact that points on a simplex can be represented as a
linear sum of the vertices that determine the simplex [8,17,18].
The mathematical equations of the model and its constraints are
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given, respectively, by Eqs. (1) and (2):

x ¼
Xm
k¼1

akek þ n ¼ Eaþ n, (1)

Xm

k¼1

ak ¼ 1 and akX0 8k, (2)

where x 2 Rn is the measured spectrum over n bands of an image
pixel, E ¼ ðe1; e2; . . . ; emÞ is an n�m matrix whose columns are the
m endmember spectra assumed to be affinely independent, a ¼
ða1; a2; . . . ; amÞ

T is an m-dimensional column vector whose entries
are the corresponding fractional abundances or, equivalently, the
percentages of endmember spectra present in x, and n 2 Rn is an
additive noise vector.

Endmembers may be obtained from spectral libraries for
certain specific materials, or autonomously from the image by a
variety of techniques [3,4,27,33,34]. Autonomous endmember
detection has received wide attention since signatures of various
objects that may be present in an image are unknown before
hand. Boardman [3,4] uses the framework of the geometry of
convex sets to identify the mþ 1 endmembers as the vertices of
the smallest simplex that bounds the measured data. A major
problem is that the vertices need not be image pixels (which in
most cases they are not) and, hence, need not have any physical
connection to actual image data.

Winter’s N-FINDR method [33,34] is based on inflating a
simplex within the data set to determine the largest simplex
inscribed within the data. It is not clear how pixels outside the
inscribed data are handled and the exact algorithm is not available
in print or on the web. Additionally, the algorithm is computa-
tionally intensive despite claims to the contrary. Individual pixels
need to be examined and simplex volume recalculated for each
image pixel. In contrast, the autonomous endmember determina-
tion proposed in this paper is extremely fast and carries little
computational overhead. The method is derived from examining a
lattice based auto-associative memory that stores the hyperspec-
tral image cube in its memory. Graña et al. [10–12,14] was the first
to propose the use of lattice based auto-associative memories for
autonomous endmember determination. Specifically, he employs
the notion of morphological independence which does not
necessarily lead to finding an affinely independent set of vectors
that in some sense provides a maximal simplex within the data
set. Graña’s algorithm forces the user to choose a starting pixel
and different starting pixels can produce different results. The
method described in this paper is different and will always
provide the same sets of endmembers for a given hyperspectral
image. Recent works based on strong lattice independence
and alternative criteria to get a set of final endmembers appear
in [13,36].
2. Mathematical background

2.1. Linear and affine independence

If X ¼ fx1; . . . ; xkg � Rn, denotes a finite set of real vectors,
recall that a linear combination of X is an expression of the formPk

x¼1axxx where the ax’s are scalars, i.e., ax 2 R for all
x 2 K ¼ f1; . . . ; kg. Then, X is said to be a linearly independent set
if the unique solution to the equation

Pk
x¼1axxx ¼ 0 is given

by ax ¼ 0 for x 2 K. Otherwise, the vectors in X are said to be
linearly dependent. The next lemma states a basic result in linear
algebra [9].

Lemma 2.1. Let Kg
¼ Knfgg denote the index set from which index g

has been deleted. If the set of vector differences, X0 ¼ fxx � xg : x 2
Kg
g is linearly independent for some g 2 K , then X0 is a linearly

independent set 8g 2 K.

Thus, to form set X0, any vector xg in X, considered as a ‘‘point’’,
can be selected as an origin for the remaining vectors in Xnfxgg.
From a geometrical point of view, an affine combination or
barycentre is a linear combination of X subject to the conditionPk

x¼1ax ¼ 1. Furthermore, a convex combination is an affine
combination such that, axX0 8x 2 K , and the set of all convex
combinations formed with elements of X is known as the convex

hull of X, denoted here as CðXÞ. In effect, an affine combination is a
weighted average of the points in question. For example, the
unique point x 2 CðXÞ computed as ð1=kÞ

Pk
x¼1xx, is the convex

combination known as the center of mean distances of X.
With the help of Lemma 2.1, it is possible to characterize the

notion of affine independence as follows: X ¼ fx1; . . . ; xkg � Rn is

said to be an affinely independent set if X0 ¼ fxx � xg : x 2 Kg
g � Rn

is a linearly independent set for some g 2 K [9]. Notice that,

although set X has k elements, there are only k� 1 points in X0.

Also, it is not difficult to justify that, the vectors x1; . . . ; xk 2 Rn are
affinely independent if the unique solution to the simultaneous

equations
Pk

x¼1axxx ¼ 0 and
Pk

x¼1ax ¼ 0 is given by ax ¼ 0 for all

x ¼ 1; . . . ; k [5]. Hence, linear independence implies affine in-
dependence but not vice versa.

2.2. Basic concepts from lattice theory

Computational concepts for neural networks based on lattice
theory [2,21,29] are governed by the bounded lattice ordered group

ðR�1;_;^;þ;þ0Þ or R�1-blog, where R denotes the set of real
numbers, R�1 ¼ R [ f�1;1g is the set of extended real numbers,
_ and ^ denotes, respectively, the binary operations of maximum
and minimum, and þ;þ0 denotes addition and its dual operation
defined by

xþ0y ¼ yþ x 8x 2 R; y 2 R�1,

1þ0ð�1Þ ¼ 1 ¼ ð�1Þþ01,

1þ ð�1Þ ¼ �1 ¼ ð�1Þ þ1. (3)

If x 2 R�1, then its additive conjugate is given by x� ¼ �x. In a
similar fashion, for a given vector x 2 Rn

�1, its conjugate is defined
by x� ¼ �xT, where T denotes transposition. Scalar addition in the
Rn
�1-blog, where Rn

�1 denotes the n-fold Cartesian product of
R�1, is defined component wise. That is, if a 2 R�1 and x 2 Rn

�1,
then aþ x ¼ ðaþ x1; . . . ; aþ xnÞ

T; the dual operation, aþ0x, is
defined similarly. As our application domain concerns only with
finite sets of real valued vectors, X ¼ fx1; . . . ; xkg � Rn

�1 for which
xx 2 Rn for each x 2 K where K ¼ f1; . . . ; kg. With this restriction
the operation of scalar addition is self-dual since aþ0xx ¼ aþ xx for
any a 2 R�1 and for all x 2 K. Henceforth, we suppose that
X ¼ fx1; . . . ; xkg � Rn.

A linear minimax combination of vectors from the set X is any
vector x 2 Rn

�1 of the form

x ¼ Sðx1; . . . ; xkÞ ¼
_
j2J

^
x2K

ðaxj þ xxÞ, (4)

where J is a finite set of indices and axj 2 R�1, 8j 2 J and 8x 2 K.
The expression Sðx1; . . . ; xkÞ given by (4) is also called a linear

minimax sum. A vector x 2 Rn is lattice dependent on X if and only if
x ¼ Sðx1; . . . ; xkÞ for some linear minimax sum of vectors from X.
The vector x is said to be lattice independent (LI) of X if and only if
it is not lattice dependent on X. The set X is said to be LI if and only
if 8l 2 f1; . . . ; kg, xl is LI of the reduced set Xl defined as Xnfxlg ¼
fxx 2 X : xalg [22].

Given two m� n matrices A ¼ ðaijÞ and B ¼ ðbijÞ with entries
from R�1, then the pointwise maximum, A _ B, of A and B, is the
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m� n matrix C defined by A _ B ¼ C, where cij ¼ aij _ bij. Similarly,
the pointwise minimum of the same two matrices is defined as
A ^ B ¼ C, where cij ¼ aij ^ bij. If A is m� p matrix and B is p� n

matrix, then the max product of A and B is the matrix C ¼ A B

whose i; j-th element, cij is given by Eq. (5). The min product of A

and B is the matrix C ¼ A B whose entries are computed
following Eq. (6). For i ¼ 1; . . . ;n and j ¼ 1; . . . ;m

cij ¼
_p
k¼1

ðaik þ bkjÞ, (5)

cij ¼

p̂

k¼1

ðaikþ
0bkjÞ. (6)

These two matrix products are collectively referred to as minimax

products [6,7]. A vector x 2 Rn
�1 is called a max fixed point of A if

A x ¼ x and a min fixed point of A if A x ¼ x. An n� n matrix A is
said to be diagonally max dominant if and only if, for each
j 2 f1; . . . ;ng, it satisfies condition (7) for i ¼ 1; . . . ;n. Dually, A is
said to be diagonally min dominant if and only if, for each
j 2 f1; . . . ;ng, Eq. (8) is verified for i ¼ 1; . . . ;n:

ajj � aij ¼
_n
k¼1

ðajk � aikÞ, (7)

ajj � aij ¼

n̂

k¼1

ðajk � aikÞ. (8)
3. Lattice auto-associative memories

3.1. Fundamental properties

Suppose X ¼ fx1; . . . ; xkg � Rn and Y ¼ fy1; . . . ; ykg � Rm are
two finite sets of pattern vectors with desired association given
by the diagonal fðxx; yxÞ : x 2 Kg of X � Y where K ¼ f1; . . . ; kg. The
goal is to store these pattern pairs in some memory M such that
for x 2 K;M recalls yx when presented with the pattern xx. With
each pair of pattern associations ðX;YÞ we define two canonical
lattice based associative memories [23,24], the min memory WXY

and the max memory MXY , both of size m� n, whose elements wij

and mij, for i ¼ 1; . . . ;m and j ¼ 1; . . . ;n, are given by

wij ¼

k̂

x¼1

ðyxi � xxj Þ; mij ¼
_k
x¼1

ðyxi � xxj Þ. (9)

The memories are called lattice auto-associative memories (LAMs)
whenever Y ¼ X. Observe that the diagonals of the matrices WXX

and MXX consist entirely of zeros, i.e. wii ¼ mii ¼ 0 for all
i 2 f1; . . . ;ng. Also, when speaking of fixed points of the matrices
WXX and MXX , we always mean a fixed point of WXX with respect
to the operation and of MXX with respect to the operation .
The next lemma is a fundamental tool to prove several properties
of LAMs [22].

Lemma 3.1. Given X ¼ fx1; . . . ; xkg � Rn, let wij (resp. mij) denote

the i; j-entry of the min auto-associative memory WXX (resp. max

auto-associative memory MXX). If i; j; ‘ 2 f1; . . . ;ng, then wij þ

wj‘pwi‘ (resp. mij þmj‘Xmi‘).

Proof. We give an argument only for the min memory W since a
similar proof, for the max memory M, is immediate by using the
right expression in Eq. (9) and changing the sense of all
inequalities. From the first expression of Eq. (9), entries wij

and wj‘ satisfy, respectively, the following inequalities for
all g ¼ 1; . . . ; k:

wij ¼

k̂

x¼1

ðxxi � xxj Þpxgi � xgj , (10)

wj‘ ¼
_k
x¼1

ðxxj � xx‘ Þpxgj � xg‘ . (11)

Therefore, for all g 2 f1; . . . ; kg,

wij þwj‘pðx
g
i � xgj Þ þ ðx

g
j � xg‘ Þ ¼ xgi � xg‘ . (12)

Hence, wij þwj‘p
Vk

x¼1ðx
g
i � xg‘ Þ ¼ wi‘. &

Lemma 3.2. Given X ¼ fx1; . . . ; xkg � Rn, let wij (resp. mij) denote

the i; j-entry of the min auto-associative memory WXX (resp. max

auto-associative memory MXX). Then,

wij ¼

n̂

‘¼1

ðwi‘ �wj‘Þ; mij ¼
_n
‘¼1

ðmi‘ �mj‘Þ. (13)

Proof. From Lemma 3.1, it follows for fixed values of i; j 2

f1; . . . ;ng that wijpwi‘ �wj‘ for all ‘ ¼ 1; . . . ;n. Therefore,

wijp
n̂

‘¼1

ðwi‘ �wj‘Þ. (14)

If wijo
Vn
‘¼1ðwi‘ �wj‘Þ, then wijowi‘ �wj‘ for any ‘ 2 f1; . . . ;ng; let

‘ ¼ j, so wijowij �wjj ¼ wij which is a contradiction. Whence our

lemma follows. The right equality in Eq. (13) is proven in a similar
manner. &

Let X ¼ fx1; . . . ; xkg � Rn be a finite pattern set and let x 2 Rn,
then the following statements, proven in [22], characterize the
algebraic behavior of LAMs:
P1.
 WXX xx ¼ xx ¼ MXX xx; 8x 2 K.

P2.
 WXX x ¼ x if and only if MXX x ¼ x.

P3.
 x is a fixed point of WXX if and only if x is lattice dependent on

X.

P4.
 WXX is diagonally max dominant; MXX is diagonally min

dominant.
According to P1, both WXX and MXX are perfect recall memories
for uncorrupted input. Also, property P2 says that WXX and MXX

share the same set of fixed points [30,31], defined as

FðXÞ ¼ fx : WXX x ¼ x ¼ MXX xg. (15)

Statement P3 provides an algebraic classification of the set FðXÞ

in terms of linear minimax combinations. Closely related to the
notion of diagonally max or min dominance mentioned in
proposition P4 is the notion of max or min dominance of a set
of vectors.

The set X ¼ fx1; . . . ; xkg � Rn is said to be max dominant if and
only if for every l 2 K there exists an index jl 2 f1; . . . ;ng such that
Eq. (16), or equivalently, Eq. (17) is satisfied for i ¼ 1; . . . ;n

xljl � xli ¼
_k
x¼1

ðxxjl � xxi Þ, (16)

xljl � xli Xxxjl
� xxi 8x 2 K . (17)

Similarly, X is said to be min dominant if and only if for every
l 2 K there exists an index jl 2 f1; . . . ;ng such that Eq. (18), or
equivalently Eq. (19) is satisfied for i ¼ 1; . . . ;n

xljl � xli ¼
k̂

x¼1

ðxxjl
� xxi Þ, (18)

xljl � xli pxxjl
� xxi 8x 2 K . (19)
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Assume that X is a max or min dominant set and let
X0 ¼ fxljl 2 J � Kg. Since Eqs. (16)–(19) remain valid for all jl; i 2

f1; . . . ;ng for l; x 2 J, then any proper subset X0 of X is also max or
min dominant. The notion of max or min dominance is the key to
the concept of strong lattice independence. A set of LI vectors
X ¼ fx1; . . . ; xkg � Rn is said to be strong LI (SLI) if and only if X is
max dominant or min dominant (or both). It is important to
emphasize that for a set X to be strongly LI it needs to satisfy two
properties, namely lattice independence and either Eq. (17) or Eq.
(19) or both [22,26].

Henceforth, the set of vectors consisting of the columns of the
min memory matrix WXX will be denoted by W and the set of
vectors consisting of the columns of the max memory matrix MXX

will be denoted by M. In particular, wj 2W corresponds to the j-th
column vector of WXX and its i-th component is represented by
wj

i ¼ wij. Similarly, mj 2 M corresponds to the j-th column vector
of MXX with entries denoted by mj

i ¼ mij. It follows from property
P4 that the sets W and M are max and min dominant, respectively.
However, as shown in the following numerical example, W and M

need not be LI and, hence, not strongly LI.

Example 3.1. Suppose X ¼ fx1; x2; x3g, where x1 ¼ ð�1;0;1ÞT,
x2 ¼ ð1;2;3ÞT, and x3 ¼ ð3;4;5ÞT. Then

W ¼WXX ¼

0 �1 �2

1 0 �1

2 1 0

0
B@

1
CA ¼ ðw1;w2;w3Þ.

However, w1 ¼ 1þw2, w1 ¼ 2þw3, and w2 ¼ 1þw3. Therefore

W is not LI and neither is M since MXX ¼WXX . If W1
¼ ðw2;w3Þ,

W2
¼ ðw1;w3Þ, and W3

¼ ðw1;w2Þ, then WW1W1 ¼WW2W2 ¼

WW3W3 ¼W . Besides, it is easy to verify that, WWlWl wl ¼ wl

for l ¼ 1;2;3. By construction, x2 ¼ 2þ x1 and x3 ¼ 4þ x1, hence
X itself is lattice dependent.

3.2. Computational procedures

In fact, properties P2 and P3 provide the basis for a simple
computational procedure used to test lattice independence in a
vector set. A working algorithm described in mathematical
pseudocode is given below with key steps (S) consecutively
numbered for reference. The pattern set X � Rn is given as a
matrix of size n� k, where n represents the number of rows
(dimensionality) and k represents the number of patterns; the
output is a binary variable b 2 f0;1g, if b ¼ 1 then set X is LI
otherwise it is not.

Algorithm 1 (Lattice independence set test).
[Initialize counter]

S1 s 0

[Scan all vectors in X]

S2 for l ¼ 1 to k

[assume current vector is lattice dependent]

bl  0

[build associative memory from Xl]

A WXlXl

[compute output vector]

x A xl

[output vector is a fixed point?]

bl  1 if xaxl

[add flag value of tested vector]

s sþ bl
[Return test result]

S3 b ðs ¼ kÞ
Notice that the value assigned to A, within step S2, can be
replaced with the max-auto-associative memory MXlXl and
correspondingly, instead of using the max product, the output
vector x must be computed with the min product of A and xl, i.e.,
x ¼ A xl. Alternative algorithms have also been developed based
on criteria derived from the definition of a LI set [32].

To obtain from a given vector set X, a reduced set X0 that is LI
we present next a procedure, based on Algorithm 1, that uses a
simple selection and elimination mechanism.

Algorithm 2 (Lattice independence set generation).
[Select vectors in X sequentially]

S1 for l ¼ 1 to k

[compute reduced set]

Xl
 Xnfxlg

[compute output vector]

x WXlXl xl

[delete vector if output is a fixed point]

X Xl if x ¼ xl

[Return lattice independent subset X0]

S2 X
In the second instruction of the main cycle S1, the max-memory
can be used instead of the min-memory W. In that case, the
output vector x should be computed with the min-product of
MXlXl and xl, i.e., x ¼ MXlXl xl. A more general scheme would
use a random selection mechanism to probe vectors in X for
lattice independence but additional steps are required to keep a
register of the column indices that have been tested. Also, due to
randomization, the resulting subset X0 could be different each
time the procedure is executed.
4. Endmember determination using LAMs

4.1. Theoretical foundation

The linear unmixing model described by Eqs. (1)–(2), assumes
that the endmembers are affinely independent and the impor-
tance of strong lattice independence in the determination of
endmembers is due to the following conjecture.

Conjecture 4.1. If X ¼ fx1; . . . ; xkg � Rn is strongly LI, then X is

affinely independent.

This conjecture was stated as a theorem in [22], nevertheless a
gap has been recently found in its proof and the result awaits
further scrutiny to establish its validity. Also, since we have not
been able to disprove it, we can use Conjecture 4.1 as a working
platform for the techniques developed here. As mentioned in
Example 3.1, the sets of column vectors W and M derived from
WXX and MXX need not be strongly LI and, therefore, not affinely
independent. There is, however, an easy method to reduce these
sets to affinely independent sets. This method is derived from the
constructive proof of the next theorem. In the proof we assume
the following fact.

Lemma 4.1. Let X ¼ fx1; . . . ; xkg � Rn, then WWW ¼WXX and

MMM ¼ MXX .

Proof. From Eq. (9), the ij-element of the memory matrix WXX is

wij ¼
Vk

x¼1ðx
x
i � xxj Þ for all i; j ¼ 1; . . . ;n. Similarly, the ij-element of

the memory matrix WWW is defined as cij ¼
Vn
‘¼1ðw

‘
i �w‘

j Þ, where

the upper index has changed to n because the W ¼WXX matrix

has size n� n. Since
Vn
‘¼1ðw

‘
i �w‘

j Þ can be written asVn
‘¼1ðwi‘ �wj‘Þ, it follows from Lemma 3.2, that cij ¼ wij for all

i; j 2 f1; . . . ;ng. Hence, WWW ¼WXX . Using the definition for the
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max memory, the same argument can be given to show that
MMM ¼ MXX . &

Theorem 4.1. There exist sets of vectors V �W and N � M such that

V and N are strongly LI and FðVÞ ¼ FðNÞ ¼ FðXÞ or, equivalently,
WVV ¼WXX and MNN ¼ MXX .

Proof. We only prove the existence of the set V as the existence of
the set N can be proven in an analogous fashion. The set of vectors
W is max dominant and any subset V of W is, therefore, also max
dominant. Thus, all we need to show is the existence of a LI set V

such that WVV ¼WXX . Let W ¼ fw1; . . . ;wng and set
W1 ¼Wnfw1g. If WW1W1

¼WXX , set V1 ¼W1, otherwise set
V1 ¼W . Hence, if V1 ¼W1, then w1eV1, and if V1 ¼W , then
w1 2 V1. In other words, w1eV1 whenever w1 is lattice depen-
dent, and w1 2 V1 whenever w1 is LI. In either case, we have
WV1V1

¼WXX . Next, set V2 ¼ V1nfw2g if WV2V2
¼WXX , otherwise

set V2 ¼ V1. Again, in either case we will have WV2V2
¼WXX .

Continue in this manner until Vn ¼ Vn�1nfwng if WVnVn
¼WXX ,

otherwise set Vn ¼ Vn�1. Once W has been exhausted, set V ¼ Vn.
By construction, V �W is a LI subset for which WVV ¼WXX .
Besides, V is also max dominant, therefore V is strongly LI. &

The computational algorithm derived from the above proof is
shown next. The input set X � Rn is given as a matrix of size n� k

where k is the number of patterns, each of dimension n, and the
output is a strongly LI subset V of W . Notice that, after step S3 is
executed, V is a matrix of size n� n, hence the main cycle in S4
goes from column 1 to n. To abbreviate instruction comments, we
use the word column instead of ‘‘column index’’ or ‘‘current
column index’’;similarly, we use the word displacement instead of
‘‘column displacement counter’’.

Algorithm 3 (Strong lattice ind. set generation).
[Compute associative memory from input set X]

S1 A WXX

[Initialize column and displacement]

S2 l 1;c 1

[Assume all vectors in V ¼WXX are SLI]

S3 V  A

[Scan all columns in V]

S4 for x ¼ 1 to n

[remove column]

X0  Vnfvlg

[build new memory from X0]

B WX0X0

[matches original memory WXX ?]

if B ¼ A

[compute reduced set]

then V  X0

[column to delete is last displacement]

l c

[next column to bedeleted]

else l lþ 1

[update displacement]

c l
[Return strong lattice independent subset]

S5 V
In steps S1 and S4 of Algorithm 3, the assignment to matrix
variables A and B can be replaced, respectively, with the max-
auto-associative memories MXX and MX0X0 . A technique to test or
generate SLI sets based on definitions has been described
elsewhere [32]. Recently, a complementary discussion of lattice
independence with proofs presented in array oriented program-
ming languages, such as APL and J, appears in [28].

Using Lemma 3.1 with j ¼ l and ‘ ¼ x, it follows that
wil þwlxpwix, or equivalently, �wilXwlx �wix. Since wll ¼ 0,
then wll �wilXwlx �wix. Therefore, taking the row index l as
any il 2 f1; . . . ;ng, we have that wl

il
�wl

i ¼
Wn

x¼1ðw
x
il
�wx

i Þ for
i ¼ 1; . . . ;n. It turns out that the column vectors of WXX form a set
that is diagonally max-dominant. A dual argument can be given to
establish that the columns of MXX form a vector set that is
diagonally min-dominant. The previous discussion makes clear
why Algorithm 3 is concerned only with lattice independence
since minimax dominance is inherent to LAMs.

Using the method outlined in the proof of 4.1 and embodied in
Algorithm 3, we are able to find a set of affinely independent
points. However, the relationship of this set of affinely indepen-
dent points to the set X is not directly obvious. To obtain affinely
independent points that are related to the data set points, we have
to do the following additive scaling. Let v ¼

Vk
x¼1xx;u ¼

Wk
x¼1xx

denote, respectively, the minimum and maximum vector bounds of
X whose entries are defined for all i ¼ 1; . . . ;n by

vi ¼

k̂

x¼1

xxi ; ui ¼
_k
x¼1

xxi . (20)

Define two new matrices M and W by setting, for all i ¼ 1; . . . ;n

mi
¼ vi þmi; wi

¼ ui þwi. (21)

Lemma 4.2. Given X ¼ fx1; . . . ; xkg � Rn, let wij (resp. mij) denote

the i; j-entry of matrix W (resp. M). If i; j; ‘ 2 f1; . . . ;ng, then wij þ

wj‘puj þwi‘ (resp. mij þmj‘Xvj þmi‘).

Proof. From the second expression in Eq. (21), we have that,
ðuj þwijÞ þ ðu‘ þwj‘Þpuj þ ðu‘ þwi‘Þ, simplifies to wij þwj‘pwi‘ ,
which follows immediately from Lemma 3.1. In a similar way,
ðvj þmijÞ þ ðv‘ þmj‘ÞXvj þ ðv‘ þmi‘Þ is obtained after substitution
using the first part of Eq. (21), and reduces to mij þmj‘Xmi‘ (dual
statement of Lemma 3.1). &

Using Lemma 4.2 with j ¼ l and ‘ ¼ x, it follows that
wil þwlxpul þwix, or equivalently, �wilXwlx �wix � ul. Since
wll ¼ ul, then wll �wil � ulXwlx �wix � ul. Therefore, taking
the row index l as any il 2 f1; . . . ;ng, we have that wl

il
�wl

i ¼Wn
x¼1ðw

x
il
�wx

i Þ for i ¼ 1; . . . ;n. It turns out that the column vectors
of W form a set that is diagonally max-dominant. A dual argument
can be given to establish that the columns of M form a vector set
that is diagonally min-dominant. In other words, max and min
dominance is an invariant property of the LAMs WXX and MXX

with respect to the additive scaling defined by Eq. (21). An
analogous result for LI sets was proven in [22]. Therefore, it is not
difficult to see that wipu and mi

Xv for all i ¼ 1; . . . ;n; observe
that, the maxmin vector bounds, u and v, are equal to the main
diagonals of W and M, respectively. Geometrically, it means that u
is the max-envelope of all columns of W and v is the min-envelope

of all columns of M.
It is important to remark that the sets M and W contain,

respectively, n minimum and n maximum points, where the
couple of points fmi;wi

g occur along the ith coordinate. Further-
more, we have

Lemma 4.3. The set of points, P ¼ M [W [ fv;ug, forms a convex

polytope P with 2ðnþ 1Þ vertices that contains X.

Proof. Since fm;1;w1; . . . ;mn;wn; v;ug is a finite set of points, the
convex hull generated with these 2nþ 2 points is the desired
polytope, i.e., P ¼ CðPÞ. From Eq. (20), it follows that vipxxi and
uiXxxi for any x and all i, hence, vpxxpu for all x 2 K . Take an

arbitrary entry of pattern xx 2 X, say xxl, then, for some i 2

f1; . . . ;ng we have that, xxl � xxi p
Wk

x¼1ðx
x
l � xxi Þ. Equivalently,

ui þ ðx
x
l � xxi Þpui þwi

l ¼ wi
l, or, xxl þ ðui � xxi Þ ¼ xxl þ e ¼ wi

l where

eX0 (see Eq. (21)). Therefore, xxlpwi
l. Similarly, xxl � xxi X

Vk
x¼1ðx

x
l �

xxi Þ and vi þ ðx
x
l � xxi ÞXvi þmi

l ¼ mi
l, or, xxl þ ðvi � xxi Þ ¼ xxl þ d ¼

mi
l where dp0 (see Eq. (21)). Therefore, xxlXmi

l for some
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i 2 f1; . . . ;ng. Thus, along each coordinate, the l-entry of any xx 2

X is bounded from above (resp. below) by a l entry of some wi
2

W (resp. mi
2 M). Hence, X � P. &

Example 4.1. Consider a finite set X � R2 whose convex hull CðXÞ

is spanned by the points of X0 � X, where

X0 ¼ ðx1; . . . ; x6Þ ¼
2:5 2 2:5 4 5 4:5

3:5 2 1 2 4 5

� �
.

It follows from statements P1 and P2, that WXX and MXX are
completely determined by X0. In this case,

WXX ¼
0 �1

�2 0

� �
and MXX ¼

0 2

1 0

� �
.

Clearly, each set W ¼ fð0;�2ÞT; ð�1;0ÞTg and M ¼ fð0;1ÞT; ð2;0ÞTg is
strongly LI and hence affinely independent but neither set
contains points of CðXÞ. However, from Eq. (20), v ¼ ð2;1ÞT and
u ¼ ð5;5ÞT. Then, using Eq. (21) for additive scaling, we obtain

M ¼
2 3

3 1

� �
and W ¼

5 4

3 5

� �
,

where M ¼ ðm1;m2
Þ and W ¼ ðw1;w2

Þ. The inequalities, mi
Xv

and wipu for i ¼ 1;2, are readily confirmed.

Fig. 1 indicates the physical relationship between the vertices of
the convex polygon determined by P ¼ fm1;m2;w1;w2; v;ug and
the set X representing the data. Observe that fmi;wi

g are extreme
points, minimum and maximum, along both coordinates. The
intercept points below and above the origin on the x2 axis (x1 ¼ 0),
drawn with small circles, correspond to the first column of WXX

and MXX , respectively; similarly, the intercept points to the left
and right of the origin on the x1 axis ðx2 ¼ 0Þ, represent the second
column of W and MXX . To obtain a large simplex containing most
of the data in X, one can use the points of W and use v as the dark
x2

m1

x1

x6

x5

x3 m2

w2

u

v1

2

−1

5

5

−1

1 3 4

2

3

4

x1

x2

x4

w1

−2

Fig. 1. The fixed point set FðXÞ is the infinite strip bounded by the two lines of

slope 1. The intersection of FðXÞ with the box determined by v and u equals P

(shaded area).
point. However, other simplexes can also be formed that may
prove useful in image segmentation and object identification. In
the pictorial sample, triangles such as ðw1;m2;w2

Þ or ðm1;w2;m2
Þ

could also be used. Although visualization is possible only for
points in R2 and R3, we remark that the geometrical description
and interpretation of the picture shown in Fig. 1 generalizes to any
dimension.

4.2. Application example

In our approach to endmember determination we consider the
set X to be a subset of pixels obtained from the hyperspectral
image cube. This cube may have been significantly reduced in
spectral dimensionality by applications of a chosen technique
such as principal component analysis, minimum noise fraction
transform, or adjacent band removal of highly correlated bands
[10,17]. Such reductions are often necessary to eliminate undesir-
able effects produced during data acquisition as well as to
diminish computational requirements.

For example, the maximal storage space required for a single
hyperspectral image scene, of size 614� 512� 224 (pixels, lines
and bands), captured by NASA-JPL’s Airborne Visible and Infrared
Imaging Spectrometer (AVIRIS) is 134.3125 MB [37]. More speci-
fically, we consider for our application example, a subcube
corresponding to scene no. 4 of the 1997 AVIRIS flight over the
Cuprite mining site in Nevada, displayed in Fig. 2. With respect to
the image format used by AVIRIS, pixels 81–614 and bands
169–220, covering the wavelength range from 1.95 to 2.47mm,
where selected to compare our results with the USGS (United
States Geographical Survey) Cuprite 1995 mineral distribution
made by Clark and Swayze. Thus, the hyperspectral image
subcube is of size 534� 512� 52 and the data set X has
273,408 vectors of dimension 52.

The first step is to form the memories WXX and

MXX ¼W�
XX ¼ �WT

XX . We then form the sets of vectors W and M

from the columns of WXX and MXX , respectively. Using the vectors
v and u computed with Eq. (20), the elements of W and M are
Fig. 2. Scene #4 of the Cuprite Nevada site. Enhanced grayscale image obtained

from an RGB pseudocolor composition of bands 207 (red), 123 (green), and 36

(blue).



ARTICLE IN PRESS

2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 re
fle

ct
an

ce

alunite
buddingtonite
calcite
kaolinite
muscovite

Wavelength (μm)

Fig. 4. Mineral reference spectra similar to the final endmembers shown in Fig. 3.
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then scaled in order to obtain W and M. It is these sets that can
then be reduced to affinely independent sets using the procedure

outlined in Algorithm 3. It turns out that W and M (of size
52� 52) are strongly LI sets and by Conjecture 4.1 they are
affinely independent. Therefore, each memory matrix provides us
with 52 ‘‘candidate’’ endmembers. Since contiguous columns
are highly correlated, most of these potential endmembers
can be discarded using appropriate techniques. For example,
minimum mutual information has been used to obtain a final set
of endmembers [13]; here, pattern elimination is based on
minimal Chebyshev distance or angle between pairs of vectors
(see Appendix for details). In addition, the scaling based on Eq.
(21), generates an ‘‘upward spike’’ in endmembers selected from

W since wii ¼ ui, or a ‘‘downward spike’’ if endmembers come

from M because mii ¼ vi. The anomalous spikes can be smoothed
so that, the global shape of each final endmember agrees with
available library reference spectra. A simple smoothing procedure
considers the nearest one or two spectral samples next to wii or

mii [20]. It is given, for any i 2 f1; . . . ;ng, by

eii ¼

e2;1 3 i ¼ 1;
1
2ðei�1;i þ eiþ1;iÞ 3 1oion;

en�1;n 3 i ¼ n;

8><
>: (22)

where the endmember vector e can be a selected column vector w
or m.

Fig. 3 displays five final endmembers extracted from scene no.
4 of Cuprite. Note that a correspondence between endmembers
and laboratory spectra cannot be exact, since some wavelength
values over the entire spectral range are different between
airborne imaging spectrometers and ground instrumentation.
Thus, small ‘‘shifts’’ of the absorption bands characteristic of each
mineral may be noticed in endmember curves. The approximate
mineral tags have the following endmember column correspon-
dence: w33 is alunite, m16 is buddingtonite, w25 is calcite, w2 is
kaolinite, and m27 is muscovite. In comparison, Fig. 4 shows the
subsampled spectra in the range 2.0–2.5mm of similar minerals
obtained from the USGS spectral library (splib06a, 2007)
corresponding to: Alunite-al706, Buddingtonite-gds85, Calcite-
hs483b, Kaolinite-kga2, and Muscovite-gds108. We remark that
spectral characteristics are common to a family of minerals that
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Fig. 3. Final endmembers determined from sets W and M, computed with data of

the Cuprite site (scene 4).
are variants or mixtures, and hence, are not restricted to a single
material. Therefore, an abundance map calculated from a set of
final endmembers usually represents a class of minerals with
analogous spectral behavior.

For the unmixing stage, recall that Eq. (1) is an overdetermined

system of linear equations ðn4mÞ, subject to the restrictions of
full additivity and non-negativity of abundance coefficients as
stated in Eq. (2). In the present case, both matrices W and M have
full rank, thus their columns are linear independent vectors. Also,
it happens that, the set of final endmembers, E ¼ fw33;m16;

w25;w2;m27
g �W [M, is a linear independent set whose pseu-

doinverse matrix is unique. Although, the unconstrained solution
corresponding to Eq. (1), where n ¼ 5245 ¼ m, has a single
solution, some coefficients turn out to be negative for many pixel
spectra and do not sum up to unity. If full additivity is enforced,
again negative coefficients appear. Therefore, the best approach
consists of imposing non-negativity for the abundance propor-
tions and simultaneously, relaxing full additivity by considering
the inequality

Pm
k¼1ako1. Specifically, we use the non-negative

least squares (NNLS) algorithm that solves the problem of
minimizing kEa� xk2 (Euclidean norm) subject to the condition
aX0. The details related to the NNLS algorithm can be found in
[16,19]. Fig. 5 illustrates the abundance maps corresponding to
three of the five approximate endmembers. The maps shown
where obtained with the NNLS method as implemented in
Matlab. They have been enhanced for visual clarity by increment-
ing their brightness and contrast in 15%. The maps correlate well
with the standard USGS reference map (after color thresholding)
and with the results presented in [35].
5. Conclusions

In this paper we have described a novel method that
approximates all potential endmembers of a hyperspectral image
after a single scan, from which a subset of representative
endmembers can be selected. Our approach is based on a scaled
version of the LAMs, WXX and MXX , namely the sets W and M,
whose algebraic properties as well as geometric characterization
are fundamental to the success of the computational technique
derived from it. The computations involved are very fast since
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Fig. 5. Top to bottom: abundance maps of alunite, kaolinite, and muscovite.

Grayscale values indicate relative abundance proportion; brighter zones signal

high mineral content, darker zones signal low content or mineral mixtures.

Table 1
Potential endmember groups and representatives.

W columns Rep. wj M columns Rep. mj

f1; . . . ;15g f2�;5g f1; . . . ;10g f1g

f16; . . . ;27g f25�g f11; . . . ;20g f16�g

f28; . . . ;35g f33�g f21; . . . ;32g f26;27�g

f36; . . . ;41g f39g f34; . . . ;41g f38g

f42; . . . ;48g f45g f42; . . . ;48g f47g

f49; . . . ;52g f51g f49; . . . ;52g f51g

Final endmembers are marked with an asterisk.
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Fig. 6. Chebyshev distance curves for w2, w25, and w33.
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simple arithmetical operations are required. Since the cardinality
of either set W or M equals n, the dimensionality of pixel spectra,
the LAMs based algorithm gives 2n possible endmembers. The
search for final endmembers, although based on quantitative
criteria such as minimal Chebyshev distance or minimal spectral
angle, is still performed interactively. However, the mathematical
theory provided and the AVIRIS application results, demonstrate
that our approach is effective and competitive with other available
methods. Unsupervised methods based on the same theoretical
ground as presented in this paper are described in [15], and an
alternative development based on LAMs and endmember linear
independence has been proposed recently in [25]. As a future line
of research, we will consider dimension reduction techniques on
the pixel data set before computation of the LAMs as well as
cardinality reduction techniques on the set of potential end-
members, derived from W and M, to find automatic procedures
that match final endmembers against library spectra.
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Appendix

Given any two vectors xx;xg 2 Rn, the expressions given by

tðxx;xgÞ ¼
_n
i¼1

jxxi � xgi j, (23)

yðxx;xgÞ ¼ cos�1 xx � xg

kxxkkxgk
, (24)

where k � k denotes Euclidean norm, define, respectively, the
Chebyshev distance, Eq. (23), and the angle (in radians) between
the two vectors, Eq. (24). Each expression is symmetric in its
arguments for gax and, if g ¼ x, then t ¼ 0 and y ¼ 0. Two vectors
are said to be ‘‘similar’’ if t or y are less than a given tolerance
error. In our application example, to discard correlated potential
endmembers, Eqs. (23) and (24) were computed between every
pair of column vectors of W as well as between columns of M, for
x ¼ 1; . . . ;51 and g ¼ xþ 1; . . . ;52.

Vector grouping based on distance values and calculated angles
is shown in Table 1, where each set of indices indicates strong
correlation between corresponding patterns. In a second step,
representative endmembers were selected from each group based
on additional criteria such as, overall pattern shape, number of local
minima and maxima, and amplitude range. The third and last step
involves a matching process between available library spectra and
representative endmembers from which the set of final end-
members is obtained. As an example, Fig. 6 displays the Chebyshev

distance curves of each final endmember selected from W . Notice

that, tðw2;wj
Þ for j 2 ½1;15	, tðw25;wj

Þ for j 2 ½16;27	, and tðw33;wj
Þ

for j 2 ½28;52	, are all less than 0.4. Similarly, tðm16;mj
Þ for j 2

½2;20	 and tðm27;mj
Þ for j 2 ½21;46	, are also less than 0.4.
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[13] M. Graña, J.L. Jiménez, C. Hernández, Lattice independence, autoassociative
morphological memories and unsupervised segmentation of hyperspectral
images, in: Proceedings of the 10th Joint Conference on Information Sciences,
NC-III, 2007, pp. 1624–1631.

[14] M. Graña, P. Sussner, G.X. Ritter, Associative morphological memories for
endmember determination in spectral unmixing, in: Proceedings of the IEEE,
12th International Conference on Fuzzy Systems, vol. 2, 2003, pp. 1285–1290.
[15] M. Graña, I. Villaverde, J.O. Maldonado, C. Hernández, Two lattice
computing approaches for the unsupervised segmentation of hypers-
pectral images, Neurocomputing (2009), this issue, doi:10.1016/j.neucom.
2008.06.026.

[16] Kh.D. Ikramov, M. Matin far, Computer-algebra implementation of the least
squares method on the nonnegative orthant, J. Math. Sci. 132 (2) (2006)
156–159.

[17] N. Keshava, A survey of spectral unmixing algorithms, Lincoln Lab. J. 14 (1)
(2003) 55–78.

[18] N. Keshava, J.F. Mustard, Spectral unmixing, IEEE Signal Process. Mag. 19 (1)
(2002) 44–57.

[19] C.L. Lawson, R.J. Hanson, Solving Least Squares Problems, Prentice-Hall,
Englewood Cliffs, NJ, 1974.

[20] D.S. Myers, Hyperspectral endmember detection using morphological auto-
associative memories, Master Thesis, University of Florida, Gainesville, FL,
2005.

[21] G.X. Ritter, Lattice algebra & Minimax algebra, in: Image Algebra, Unpublished
Manuscript available via anonymous ftp, CISE Department, University of
Florida, Gainesville, FL, 1999.

[22] G.X. Ritter, P. Gader, Fixed Points of Lattice Transforms and Lattice Associative
Memories, in: P. Hawkes (Ed.), Advances in Imaging and Electron Physics, vol.
144, Academic Press, San Diego, CA, 2006, pp. 165–242.

[23] G.X. Ritter, P. Sussner, Associative memories based on lattice algebra, in:
Proceedings of IEEE, International Conference on Systems, Man, and
Cybernetics, 1997, pp. 3570–3575.

[24] G.X. Ritter, P. Sussner, J.L. Dı́az de León, Morphological associative memories,
IEEE Trans. Neural Networks 9 (2) (1998) 281–293.

[25] G.X. Ritter, G. Urcid, Fast autonomous endmember determination using
lattice algebra, IEEE Trans. Pattern Anal. Mach. Intell., submitted for
publication.

[26] G.X. Ritter, G. Urcid, L. Iancu, Reconstruction of patterns from noisy inputs
using morphological associative memories, J. Math. Imaging Vision 19 (2)
(2003) 95–111.

[27] D.A. Roberts, M. Gardner, R. Church, S. Ustin, G. Sheer, R.O. Green, Mapping
chaparral in the Santa Monica Mountains using multiple endmember spectral
mixture models, Remote Sensing Environ. 65 (3) (1998) 267–279.

[28] R. Selfridge, A small part of lattice theory, ACM SIGAPL APL Quote Quad 35 (3)
(2007) 24–29.

[29] L.A. Skornjakov, Elements of Lattice Theory, Adam Hilger, Bristol, UK,
1977.

[30] P. Sussner, Fixed points of autoassociative morphological memories, in:
Proceedings of the International Joint Conference on Neural Networks, 2000,
pp. 611–616.

[31] P. Sussner, M.E. Valle, Gray-scale morphological associative memories, IEEE
Trans. Neural Networks 17 (3) (2006) 559–570.

[32] G. Urcid, J.C. Valdiviezo, Generation of lattice independent vector sets for
pattern recognition applications, in: Mathematics of Data/Image Pattern
Recognition, Compression, Coding, and Encryption X with Applications,
Proceedings of SPIE, vol. 6700, 2007, pp. 67000C:1–12.

[33] M.E. Winter, Fast autonomous spectral endmember determination in
hyperspectral data, in: Proceedings of the 13th International Conference on
Applied Remote Sensing, vol. 2, 1999, pp. 367–344.

[34] M.E. Winter, An algorithm for fast autonomous spectral endmember
determination in hyperspectral analysis, in: Imaging Spectrometry, Proceed-
ings of SPIE, vol. 3753, 1999, pp. 266–275.

[35] M.E. Winter, Comparison of approaches for determining end-members in
hyperspectral data, in: Proceedings of IEEE, Aerospace Conference, vol. 3,
2000, pp. 305–313.

[36] J.C. Valdiviezo, G. Urcid, Hyperspectral endmember detection based on strong
lattice independence, in Applications of Digital Image Processing XXX,
Proceedings of SPIE, vol. 6696, 2007, 669625:1–12.

[37] G. Vane, R.O. Green, T.G. Chrien, H.T. Enmark, E.G. Hansen, W.M. Porter, The
airborne visible/infrared imaging spectrometer (AVIRIS), Remote Sensing
Environ. 44 (1993) 127–143.
Gerhard X. Ritter received the B.A. (1966) and Ph.D.
(1971) degrees from the University of Wisconsin-
Madison. He is currently Professor Emeritus of Com-
puter Science of the Computer and Information Science
and Engineering Department (CISE), the Director of the
Center for Computer Vision and Visualization, and
Professor Emeritus of Mathematics at the University of
Florida. Dr. Ritter is the Chair of the Society of
Industrial and Applied Mathematics (SIAM) Activity
Group in Imaging Science and of the American
Association of Engineering Societies (AAES) R & D task
Force. He is the Editor-in-Chief of the Journal of

Mathematical Imaging and Vision, and a member of

the Editorial Boards for both the Journal of Electronic Imaging and the Journal of
Pattern Analysis and Applications. Since 1995 he is a Fellow of SPIE and he was the
recipient of the 1998 General Ronald W. Yates Award for Excellence in Technology
Transfer by the Air Force Research Laboratory and the 1989 International
Federation for Information Processing (IFIP) Silver Core Award. He is the author
of two books and more than 90 refereed publications in computer vision,
mathematics, and neural networks. His current research interests include artificial

http://dx.doi.org/10.1016/j.neucom.2008.06.026
http://dx.doi.org/10.1016/j.neucom.2008.06.026


ARTICLE IN PRESS

G.X. Ritter et al. / Neurocomputing 72 (2009) 2101–21102110
neural networks, pattern recognition, and the mathematical foundations of image
processing and computer vision.

Gonzalo Urcid received his B.E. (1982) and M.Sc.
(1985) both from the University of the Americas
and his Ph.D. (1999) in optics from the National
Institute of Astrophysics, Optics, and Electronics
(INAOE), Tonantzintla, Mexico. He is a Research
Scientist in the Optics Department at INAOE since
2003. He holds the appointment of National Research-
er from the Mexican National Council of Science and
Technology (SNI-CONACYT) since 2001. His present
research interests include applied mathematics, artifi-
cial neural networks, and optical-digital image proces-
sing.
Mark S. Schmalz received his Ph.D. (1996) degree from
the University of Florida. He is currently an Associate
Scientist of the Computer and Information Science and
Engineering Department (CISE). His current research
interests are in massively parallel computing, auto-
mated processing and understanding of imagery and
natural language, data compression, and cryptology.
He is also among the CISE faculty affiliated with UF’s
Digital Arts and Sciences program, with research
interests in psychoacoustics and computer-generated
music. He has authored or co-authored over 140
research papers in open conference proceedings and

journals, and currently is authoring two books.


	Autonomous single-pass endmember approximation using lattice auto-associative memories
	Introduction
	Mathematical background
	Linear and affine independence
	Basic concepts from lattice theory

	Lattice auto-associative memories
	Fundamental properties
	Computational procedures

	Endmember determination using LAMs
	Theoretical foundation
	Application example

	Conclusions
	Acknowledgments
	Appendix
	References




