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ABSTRACT

A new approximate method for calculating the opacity of the atomic lines in the computation of stellar model
atmospheres is presented. Transforming the sums in the equation of the opacity of the lines into integrals and
considering the Kramers equation for the oscillator strengths for level transitions in the hydrogenic atoms as
a continuous function of frequency, we can apply the mean value theorem for integrals in order to describe the
variation of the global opacity of the lines of all the chemical elements. The high-lying levels in nonhydrogenic atoms
as well as their hydrogen-like transitions can also benefit from this method. For the case of stellar atmospheres not
in local thermodynamic equilibrium, we can apply our method directly. The compact analytic expressions obtained
are easy to use. The application of the method to the hydrogen lines shows the classical line-blanketing effects.
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1. INTRODUCTION

The emergent energy spectra of stars show a great number
of atomic and molecular spectral lines superposed on a con-
tinuum background. One of the objectives of modeling stellar
atmospheres is to reproduce the variation of the continuum as
well as that of the spectral lines through the construction of
numerical models. Another objective is to obtain the structure
and physical characteristics of the stellar atmosphere, i.e., the
model atmosphere. This work is principally addressed to the
latter objective. For this objective, the models constructed un-
til now generally include few explicit lines with their correct
frequency and depth variation in the atmosphere, and most of
the lines are only represented approximately. The former are
generally the most important lines or resonance lines and the
latter are the so-called secondary lines. Due to problems with
computational capacity and the prohibitive computing time, ap-
proximate procedures are necessary for treating all the lines. The
secondary, and sometimes all, the lines are taken into account
using approximate statistical methods as are the means of cal-
culating the opacity using procedures such as the Picket-Fence,
the opacity distribution function (ODF), the opacity sampling
(OS) method, and their generalizations. Alternative procedures
must be found for calculating the opacities of the lines using
the basic concepts of atomic quantum physics applied to the
bound–bound transitions in order to find approximate nonstatis-
tical methods for introducing the effects of the secondary lines.

In this work we propose a method for calculating the contribu-
tion of the secondary lines to the opacity in a deterministically
approximate way that is nonstatistical and from the Kramers
formula corrected by Gaunt for the oscillator strengths for hy-
drogenic atoms with the objective of producing realistic stellar
atmospheric models efficiently and expeditiously. These results
permit us to maintain a globally controlled vision of the calcula-
tions and to record when and how the inclusion of certain lines
or groups of lines would affect the structure of the atmosphere as
well as the emergent spectrum; this is because we can systemat-
ically select what elements and states of ionization enter into the
calculations, make a systematic analysis of the numerical pro-
cedures, and select the results to compare with the observations.
The physical structure of the models calculated in this form is

more reliable and can be used for the calculation of the emergent
spectra of stars and can fulfill observational needs that include,
for example, the ultraviolet emergent flux of stars, the identifi-
cation of spectral lines for stellar classification in order to obtain
theoretical color indices for all types of stars, and for studies of
stellar populations and galactic structure, among others.

The procedures used until now require, among other things,
the construction of tables of the opacities of the lines for cer-
tain particular physical conditions of the atmospheric structure
and then to interpolate the values in those tables when they are
required for the calculation of the atmosphere under consid-
eration, like in the ODF (Kurucz 1979). Others require many
frequencies for defining the intervals necessary to cover the
complete spectrum with the intention of obtaining a good ap-
proximation of the opacity of the lines, as for the OS model
(Peytremann 1974). As these procedures are statistical in na-
ture, they lose the direct information of the behavior of the lines
or groups of lines in the calculation of the structure of the stellar
atmosphere and of its emitted spectrum.

In what follows, Section 2 presents a revision of the methods
used to introduce the opacities of the lines in stellar atmospheres.
The basic physical processes are introduced in Section 3 as well
as a brief description of the statistical methods. The assumptions
and mathematical development to find the opacity of the lines in
local (LTE) and nonlocal thermodynamic equilibrium (NLTE)
in an analytic form are presented in Sections 4.1 and 4.2,
respectively. Section 5 describes the procedures for applying
our formulation in the evaluation of the line opacity with an
example using hydrogen. Some results that show the effects of
the inclusion of the three first series of hydrogen plus their
respective pseudo-continua are shown in Section 6. Finally,
Section 7 presents our conclusions.

2. BACKGROUND

The first stellar atmosphere models were the so-called gray
models, which assumed that the opacity did not vary with
frequency. Later, only the effects of the continuum processes
were included due to the inherent difficulty of the numerical
calculation with manual calculating machines and with low-
capacity computers. From the construction of the first stellar
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atmosphere models (Stromgren 1940), the inclusion of the lines
in the calculation of stellar atmosphere models has been a
fundamental problem for reproducing the emergent spectra of
the stars. The effects that the lines produce in the structure of
the calculated atmosphere using only the continuum opacities
and in the emergent spectrum are called Line Blanketing (Milne
1928). The effects of the inclusion of the lines in an approximate
form were carried out by Chandrasekhar (1936) using the
Picket-Fence Method and refined by Munch (1948) and Labs
(1951). A series of stellar atmosphere models was obtained
using the ODF method (Strom & Kurucz 1965; Kurucz 1979).
The ODF and the OS methods are now normally used to
calculate stellar atmospheres of all types in LTE as well as
those in NLTE. The fundamental idea of the ODF method is
to sample the dependencies of the line opacities on frequency
in order to form a monotonic function of the opacity with
respect to frequency. Then this function is represented by a
small number of frequencies in the model calculation. The
main idea of the OS method is to statistically sample the real
opacities of the lines averaged using very many frequencies
within narrow bins to form again a monotonic function of the
opacity. In the more recent methods for NLTE, the main idea
is to group together several states close enough in energy to
form a so-called “superlevel.” Considering that the individual
levels forming a superlevel are in Boltzmann equilibrium with
each other (Anderson 1989; Hauschildt 1993; Hubeny & Lanz
1995), the transitions between individual superlevels, called
“superlines”, are treated by means of the ODF or the OS.

Our objective is to develop a method for calculating the opac-
ity of the spectral lines in stellar atmosphere models using the
fundamental principles of the interaction of the radiation field
with atoms and molecules in gaseous media in LTE as well as in
NLTE. The lines are produced when the radiation absorbed by
the particles that compose the gaseous media causes a transition
between bound levels taking energy away from the background
or continuum radiation. The lines are characterized by their in-
tensities, its form or frequency profiles, and their central position
in frequencies. These characteristics are obtained from atomic
and molecular physics using quantum mechanics. The form of
the lines reveals the interactions of the atoms with the thermal
medium that surrounds them. The intensities of the lines are
expressed through the oscillator strengths for the transitions be-
tween bound states. These oscillator strengths were obtained in
an analytically closed form for the hydrogenic atoms using a
semiclassic treatment by Kramers and corrected by Gaunt mul-
tiplying by a factor called the Gaunt factor that depends on the
principal quantum numbers of the levels that participate in the
transition and that reproduces the more elaborate calculations
of quantum mechanics. Using the expression of the oscillator
strength of Kramers–Gaunt we develop the mathematical pro-
cedure for obtaining the opacity of the lines in an approximately
closed analytical form.

3. BASIC CONCEPTS

The frequency variation of the opacity in stellar atmospheres
plays a very important role in understanding the structure
and emergent energy spectra of stars. The opacity of the
continuum must be considered because it introduces the coarse
characteristics of the energy distribution in the calculated
emergent spectrum; for more refined work, of course, one
must include the effect of the lines. The effect of the lines
in stellar atmospheres is the superposition of the intensities
of the lines onto the continuum. Therefore, the lines change

the physical structure of the atmosphere and the emergent
spectrum compared to those obtained with only the continuum
opacity. The opacity contains the contributions of all the possible
processes produced by the interaction of the radiation with the
material that composes the atmosphere, such as the bound–
bound processes (the spectral lines), the bound–free and free–
free processes of all the chemical species plus the scattering
processes that form the continuum. The absorption coefficient
for the transition from level i, lower in energy, to the higher level
j considering all the levels, in LTE, for the frequency ν of the
radiation is obtained from (Mihalas 1978)

χ (ν) =
∑

i

∑
j>i

n∗
i αij (ν)

(
1 − e− hν

kT

)
. (1)

The term in parentheses is the correction for stimulated or
induced emission. In Equation (1), αij is the effective cross-
section for the transition, n∗

i are the populations of level i
(number of atoms per unit volume), where the asterisk means
that they are populations in LTE, T is the temperature of the
medium considered, h is the Planck constant, and k is the
Boltzmann constant. In addition to the continuum opacities,
the opacity of the stellar material contains the contributions of
thousands to millions of atomic and molecular spectral lines
that make the problem difficult to solve numerically. The most
natural method to introduce the lines into the calculation of
the atmospheric structure is the so-called direct procedure. The
lines are included explicitly, along with sufficient frequencies
in order to describe the profiles of all the lines considered.
Hence, the variations in frequency and in geometric depth are
included in the real absorption coefficient of the lines. This
direct treatment is prohibitive in terms of computer time and
therefore one must employ alternative methods that include,
at least approximately, the contribution of the lines to the
opacity, such as the direct and the harmonic mean opacities,
the Picket-Fence, and the so-called statistical methods. The first
two represent the line opacity in a frequency interval only by
a single number. The other methods (statistical) use a small
number of parameters to describe this opacity in the interval of
frequencies given. Among the statistical methods one finds the
Picket-Fence (Chandrasekhar 1936; Munch 1948; Labs 1951),
the ODF (Strom & Kurucz 1965; Kurucz et al. 1974; Kurucz
1979), and the OS (Peytremann 1974; Sneden et al. 1976).
The direct mean, the harmonic mean, and the Picket-Fence
are now only of historical interest. The comparisons between
some of the methods, their advantages, and disadvantages have
been presented in different papers (Carbon 1974, 1979, 1984).
There are a number of generalizations of the last two methods
for different types of problems, including NLTE problems as
mentioned above.

In the normal modeling of stellar atmospheres, very often
some of the statistical methods are used for all the lines gener-
ating a false continuum that is superposed over the true contin-
uum, producing a blurred representation of the general opacity.
With the model thus obtained the spectrum is generated using
only the equation of radiative transport, considering the many
more frequencies that represent all the possible lines that are
allowed by the computational capacity. Other models consider
some important lines with the direct method and all the others
with one of the statistical methods to generate the model. The
calculation of the model defines the structural characteristics of
the atmosphere using all the necessary physics and equations
that describe the radiative transport, the state of the gas, the ma-
terial opacity, and energy conservation. These equations form a
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nonlinear, nonlocal system of equations difficult to solve numer-
ically, thus restricting the number of frequencies and therefore
the number of explicit lines included in the calculation. On
the other hand, one must account for the spatial variation of
the most intense lines up toward the most external regions of
the atmosphere far beyond the region of its formation. For ex-
ample, the Lyman lines play an important role in determining
the temperature structure in stars of the solar type and cooler.
Therefore, one must calculate the models considering the most
external layers of the atmospheres, corresponding to a Rosse-
land mean of τR = 10−14. So when one does not consider the
most important lines explicitly in the calculation, one will pro-
duce an incorrect variation of the temperature and a wrong flux
in the ultraviolet (Crivellari et al. 2007). Therefore, approximate
methods must include the effects of the secondary lines.

4. MATHEMATICAL METHOD

4.1. LTE Case

Taking only the contribution of the lines to the absorption
coefficient, and disregarding the stimulated emission for the
sake of simplicity, Equation (1) is represented as

χl(ν) =
∑

i

∑
j>i

n∗
i αij (ν). (2)

Dividing the sum into two parts results in the following
formula:

χl(ν) =
∑

i

⎡
⎣u−1∑

j>i

n∗
i αij (ν) +

∞∑
j=u

n∗
i αij (ν)

⎤
⎦ , (3)

where the first sum takes into account the few lines that will
be treated explicitly and directly. The second sum considers the
lines from the level u up to infinity or to a maximum level in
the atom that could exist due to the interaction with other atoms
in the gas (Cardona et al. 2005 and references therein). The
second summation in Equation (3) is the basic expression for
the development of our procedure:

χl =
∑

i

n∗
i

∞∑
j=u

αij (ν). (4)

The effective cross-section for the transition is given by

αij (ν) = πe2

mc
fijφi(ν), (5)

where fij is the oscillator strength, and φij (ν) is the normalized
absorption profile of the line, c is the speed of light, e is the
charge and m the mass of the electron. Using the classic result
of Kramers (1923) for the hydrogenic atoms together with the
quantum correction of Gaunt (1935), and the developments of
Menzel & Pekeris (1935), we have the following expression for
the oscillator strength of the transition in absorption between
levels i and j:

fij = 32

3
√

3π

gij(
1
i2 − 1

j 2

)3
i5j 3

, (6)

where gij is the Gaunt factor. Substituting Equations (5) and (6)
into Equation (4) we have

χl = πe2

mc

32

3
√

3π

∑
i

n∗
i

∞∑
j=u

gijφij (ν)(
1
i2 − 1

j 2

)3
i5j 3

. (7)

The profiles are normalized; therefore∫ ∞

−∞
φij (ν) = 1. (8)

When the levels are close enough to each other to effectively
form a continuum, we can approximate the sum of Equation (7)
by an integral producing

χl = C
∑

i

n∗
i

i5

∫ ∞

u

gijφij (ν)dy(
1
i2 − 1

y2

)3
y3

, (9)

where

C = e2

mc

32

3
√

3
. (10)

To obtain analytic expressions we use the mean value theorem
of calculus for integrals resulting in

χl = C
∑

i

n∗
i

i5
ḡij φ̄ij (ν)

∫ ∞

u

dy(
1
i2 − 1

y2

)3
y3

, (11)

where ḡij and φ̄ij (ν) are evaluated in the closed interval (u,∞).
We can take the Gaunt factor and the profile with the value
for the transition from level i to level u; that is, ḡij = giu and
φ̄ij (ν) = φiu. Expression (11) must be divided into the frequency
intervals that cover the summed lines, wherein the absorption
coefficient is constant within each interval. The value within
each interval does not reflect the real variation that would oc-
cur within that interval. Therefore, an expression must be found
that accounts for the variation of the lines’ absorption coeffi-
cient and that simultaneously reproduces the integrated value of
Equation (11). That expression is found by transforming
Equation (7) from a discreet function into a continuous func-
tion of frequency with a Gaunt factor and profile like that in
Equation (11), but with a different starting value, u, for each
spectral series; that is, Lyman, Balmer, Paschen, etc., in the hy-
drogen atom. We will use the value of the Gaunt factor and line
profile for the transition (i → u). Expressing the frequencies as
functions of the principal quantum numbers of the transition for
the hydrogenic atoms, we have the Balmer equation

ν = RZ2

(
1

i2
− 1

j 2

)
, (12)

where R is the Rydberg frequency and Z is the atomic number
of the hydrogenic atom. Substituting into Equation (11) and
integrating, we obtain

χl = C
∑

i

n∗
i giuφiu

i2
x3

(
1 − 1

x

) 3
2

, (13)

where we have defined

x = RZ2

i2ν
. (14)

Equation (13) is a continuous function reproducing a pseudo-
continuum running from the frequencies of the first to last
lines in the summation, or from the first line to the bound–free
continuum of the series. Equation (13) must now be divided
into the frequency interval of width Δνi . Equation (13) when
integrated over the interval of frequencies mentioned above
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reproduces the value of Equation (11). This Equation (13) must
be substituted into Equation (3) to obtain the opacity of all the
lines of the given chemical element, yielding

χl(ν) =
∑

i

n∗
i

⎡
⎣u−1∑

j>i

αij (ν) + C
giuφiu

i2
x3

(
1 − 1

x

) 3
2

Δνi

⎤
⎦ , (15)

an equation for each hydrogenic chemical species that is
included in the calculation of the stellar atmosphere. This
equation must be multiplied by the stimulated emission factor to
obtain the absorption coefficient for the hydrogenic atoms. For
the profile φiu we take the intensity of the whole line. Therefore,
by (8) it is equal to one. Equation (15) for the hydrogenic ions
is our main result.

For the case of atoms different from the hydrogenic ones,
we can generalize our results for transitions to very high levels
in the atom, because the higher and higher levels more and
more closely resemble the levels of the hydrogenic atoms as
the continuum is approached (Sobelman 1992). For this case,
one must deal with the nonhydrogenic behavior of the atoms
using effective charge as well as effective quantum number
of the lower level of the transition, because the lowest levels
are those that less resemble hydrogenic behavior. Accordingly,
Equation (13) becomes

χl = C
∑

i

n∗
i giuφiu

i2
eff

x3

(
1 − 1

x

) 3
2

, (16)

and then Equation (14) becomes

x = RZ2
eff

ieff
2ν

. (17)

The effective quantum number is obtained from the tables
of experimental energy levels of the atoms (NIST 2007) and is
represented by

iteff = Z

√
Ry

Ei

, (18)

where Ei is the energy of the level with respect to the continuum
in Rydbergs (Ry) obtained from the tables. The effective charge
is obtained considering that the electron making the transition is
in a field produced by the screened atomic nucleus by the inner
or core electrons. For very high levels, we can take into account
the screening using as the effective charge Zeff = J + 1, where
J is the state ionization of the chemical element with J = 0 for
neutral atoms, J = 1 for atoms once ionized, etc. Substituting
Equation (16) into Equation (3), we find

χl(ν) =
∑

i

n∗
i

⎡
⎣u−1∑

j>i

αij (ν) + C
giuφiu

i2
teff

x3

(
1 − 1

x

) 3
2

Δνi

⎤
⎦ . (19)

This equation must be multiplied by the stimulated emission
correction factor as before to obtain the absorption coefficient
for the nonhydrogenic atoms.

4.2. NLTE Case

For stellar atmospheres where the conditions of NLTE prevail,
we can generalize our results using the absorption coefficient
for the lines (Mihalas 1978), instead of Equation (2), as

χl(ν) =
∑

i

∑
j>i

(
ni − gi

gj

nj

)
αij (ν), (20)

where now we have the populations of the upper levels j of the
transition, the statistical weights of the levels gi and gj of the
states i and j respectively, and the NLTE populations. We can
deal with the first term in the same form as we have done before
for the similar case in LTE. We will study the the second term
dividing the sum of Equation (20) into two parts, as follows:

∑
i

gi

⎡
⎣u−1∑

j>i

nj

gj

αij (ν) +
∞∑

j=u

nj

gj

αij (ν)

⎤
⎦ . (21)

The first sum is over the first few inferior levels and as we
previously said its evaluation is explicit. We can treat the second
term just as we did when we used the mean value theorem for
integrals. If we want to integrate using this theorem we would
have to use a value within the interval of integration for all the
variables that are taken out of the integral, then we can take the
lower limit of integration directly to evaluate the populations,
the Gaunt factors, and profiles in what follows. As an alternative
to integrating, we are going to use the Kramers–Gaunt function
directly as we did before for the case in LTE. Starting from the
second sum within the square brackets of Equation (21) and
substituting the formula for the oscillator strengths, we obtain

∞∑
j=u

nj

gj

αj (ν) = C

∞∑
j=u

nj

gj

gijφij (ν)(
1
i2 − 1

j 2

)3
i5j 3

. (22)

As for the hydrogenic atoms the statistical weights are given
by gj = 2j 2, and for the nonhydrogenic ones we can consider
that the very high levels behave hydrogenically permitting the
hydrogenic approximation gj = mjkj

2 (Fischel & Sparks
1971). The mjk is the structure factor that accounts for the
structure of the levels of the atom under study. For example,
for neutral He mjHe = 4. Now we have from Equation (22)

∞∑
j=u

nj

gj

αij (ν) = Cnumuk

giu

φiu

∞∑
j=u

1(
1
i2 − 1

j 2

)3
i7j 3

, (23)

where we have taken the populations evaluated in the first level
of the sum as well as the profiles and Gaunt factor, as mentioned
before. Following the method used for LTE, we convert the sum
to a continuous function with frequency as a variable,

∞∑
j=u

nj

gj

αij (ν) = C
nu

muk

giuφiu

i4
x3

(
1 − 1

x

) 3
2

. (24)

This expression when integrated over the given frequency in-
terval must reproduce the value of Equation (21). Substituting
into Equations (15) or (19), depending on whether it is hydro-
genic or not, but in NLTE, and Equation (24) into Equation (20)
and simplifying results in

χl(ν) =
∑

i

⎡
⎣u−1∑

j>i

(
ni − gi

gj

nj

)
αij (ν) + C

(
ni − gi

gu

nu

)

× giuφiu

i2
x3

(
1 − 1

x

) 3
2

Δνi

⎤
⎦ , (25)

where one must consider the values of x given by Equations (15)
and (18), the values of the statistical weights gu = 2u2 and
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gu = muku
2 as well as the lower quantum numbers i and ieff for

the hydrogenic and the nonhydrogenic ions, respectively. We
have divided the last term of Equation (25) by the interval of
frequencies Δνi that covers the included lines of the respective
series. This is the result for the case of an NLTE atmosphere.

5. APPLICATION OF THE METHOD

Now we show how to use the equations of our method taking
hydrogen as an example, because it is simpler and shows all
the peculiarities of the procedure; it has well known physical
properties and is the most abundant in stellar atmospheres.
Apparently, it is simple in structure but difficult to calculate up to
the most external regions of the atmospheres. The methods that
use the Feautrier techniques for solving the transfer equation
cannot handle this problem. Hydrogen has groups of spectral
lines that converge to a common continuum. Each group of
lines is called a spectral series. The first series is called the
Lyman series that for absorption begins in the lowest or ground
level with i = 1, the second is the Balmer series with i = 2,
followed by Paschen, Brackett, and Pfund with i = 3, 4, and 5,
respectively. The initial frequency of the relevant interval in
Equation (13) comes from Equation (12), where

νi = R

(
1

i2
− 1

u2

)
, (26)

with u as the lowest level from where all the lines are added
together. The final frequency is given by the ionization frequency
of level i, that is,

νf = R

i2
. (27)

When the atoms are known to have a maximum level nmax,

Equation (27) is instead

νf = R

(
1

i2
− 1

n2
max

)
. (28)

The relevant interval of computation is given by

Δνu = R

(
1

u2
− 1

n2
max

)
, (29)

where the maximum number nmax can be equal to infinity,
when it happens that the atom is isolated. In hydrogen if two
consecutive lines of the same series are separated by a distance
(in frequency) equal to the distance between their centers they
are not resolved. From Equation (12)

νJK+1 − νJK = RJ 2

[
1

K2
− 1

J 2

]
, (30)

for high lines of each series, K2 � J 2, then

νJK+1 − νJK = RJ 2 2

K2
. (31)

The lines are not resolved for a critical value of K = Kc.
Also

νJK+1 − νJK = 2σ, (32)

where σ is the Doppler HFWHM of the lines. Therefore, from
Equations (31) and (32), we obtain

K3
c = J 2 R

σ
. (33)

For the Balmer series, for example, with J = 2, for the line
that corresponds to K = 10, we have νJK = 7.895×1014 Hz,
R = 8.218 × 1014 Hz, and R − νJK = 3.23 × 1013 Hz,
giving σ � 3.23 × 1012 Hz ∼ 9 × 10−3R. That may be the
line width for the corresponding line. Practically, due to other
broadening effects like microturbulence, one can set u = 7.

For hydrogen with u = 7, we have Δνu = 6.7118 × 1013 Hz
and the initial frequencies for each series are 3.22098 × 1015,
7.55131×1014, and 2.98319×1014 Hz, for the Lyman, Balmer,
and Paschen series, respectively. The final frequencies are given
by the previous numbers for the initial frequencies and applying
the above given frequency intervals to them. All these values
can also be taken from the tables of levels for hydrogen and for
all the hydrogenic atoms to be included in the calculation.

For the nonhydrogenic atoms we follow the same procedure
used for hydrogen: for each series we choose u = 7 for cal-
culating Equation (16). Because we are using the expression
obtained above where we have applied the hydrogenic approxi-
mations, the levels above this value are very close to the levels
of the respective hydrogenic atoms. The lowest terms of lower
angular momentum are farther away from the hydrogenic be-
havior (Sobelman 1992). Therefore, one must use an effective
quantum number that accounts for that physical situation. The
behavior of the higher levels with respect to the hydrogenic ones
is taken into account using effective charge and, in addition, the
quasihydrogenic structure factor, which considers the weighted
sum of the statistical weights of the levels to form this factor.
The alkali atoms have four series of levels where one must apply
our formulation to each of them. The helium and the alkaline
atoms have four series for the singlets and four series for the
triplets; the equations developed here apply to each of the four
series. For other atoms and ions, their Grotrian diagrams (NIST
2007) and their tables of energy levels must be consulted in
order to define to which series the equations would apply. For
all the series, one must find the initial and final frequencies that
define the pseudo-continuum that will be included in the calcu-
lation of the atmosphere. One can also take all the levels of the
nonhydrogenic atoms as if they were hydrogenic, degenerate
in energy, and therefore the spectroscopic terms are reduced,
thereby decreasing the number of series to calculate. For the
case of atmospheres in NLTE, we must follow the same proce-
dure, that is, find the initial and final frequencies, and therefore
the interval where Equation (25) will be evaluated.

6. RESULTS

To show the application of the method for the hydrogen
lines, we have calculated plane–parallel models in hydrostatic,
radiative–convective equilibrium and LTE for the temperatures
Teff = 5 × 103, 104, and 2 × 104 K with the logarithm of
gravity log g = 4.5 and solar abundance of the elements. The
models contain the continua and discontinuities of the principal
chemical elements and their ions (Cardona et al. 2002). To
include the effects of the Lyman lines, we have calculated
the models up to the optical depths 10−14, 10−12, and 10−10

for the different temperatures given above. The models were
calculated using the Integral Implicit Method (IIM; Simonneau
& Crivellari 1993), and considering the procedures described
in different papers (Crivellari et al. 1994, 2003, 2004). Figure 1
shows the calculated emergent flux of the models where five
Lyman, four Balmer and three Paschen lines can be seen plus the
pseudo-continua for those series (equivalent to millions of lines).
The Paschen lines are barely visible on the scale of this figure.
Figure 1 shows the lines that are calculated individually with
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Figure 1. Calculated emergent fluxes for three models with temperatures of 5 × 103, 104, and 2 × 104 K; with log g = 4.5. From left to right the lines and
pseudo-continua of Lyman, Balmer, and Paschen are shown.

the direct method plus the pseudo-continuum for each series
generated by our method and all of them superposed on the true
general continuum. This result shows the real input to the model,
the number of explicit lines that in our case are 12 hydrogen lines
and the continua. The structure obtained using the nonlinear,
nonlocal system of equations of stellar atmospheres for hundreds
of frequencies, the model of the atmosphere, can be used by
anyone to calculate the spectrum using the transfer equation
for millions of frequencies. The flux obtained in the model
calculation defines the real continuum of the emergent energy
distribution, very important in photometry.

This analysis is based on the validity of the Kramers–Gaunt
function for the hydrogenic atoms and mainly to transitions to
higher levels in the atoms. Therefore, for those atoms and ions
the most important approximation is converting the sum over
all the transitions above the level u to a continuous function
of frequency using the equation of Kramers–Gaunt. We have
used the integrated profile of the first line included in the given
pseudo-continuum. Each line is spread out to form its part of
a pseudo-continuum. Therefore, there are no longer any levels,
and we can integrate up to maximum level for each atom or ion
that we include. Hence, what we have done is valid for all the
hydrogenic atoms and ions when one uses the approximations
introduced for the transitions to the high-lying level in the atoms.
From numerical experiments for nonhydrogenic atoms over
transitions to the quasihydrogenic higher levels of the atoms,
we have found that the Kramers–Gaunt equation produces fair
results in comparison with the values reported in the literature
for the oscillator strengths as well as from other sources (Cowan
1981; Sobelman 1992); therefore, we can apply this equation
in our procedure. The equations obtained can be applied to all
types of atoms and ions. For atoms different from the hydrogenic
atoms, effective quantum numbers of the spectroscopic terms of
lower angular momentum and lower in energy as well as the
effective charge sensed by the valence electron must be used.

For the case of atoms that are in NLTE, for the hydrogenic
atoms the expressions derived above are applied directly and
for nonhydrogenic atoms the statistical weights can be obtained
from the hydrogenic approximation using the structure factor.
The results are simple and easy to apply, and they are reasonable
given that an exact expression for the oscillator strengths is used
that is valid for transitions to high levels in the atoms. The results
are not trivial because they show the behavior that each single
line would have within the relevant frequency range. In addition,
we have to remark that the opacities of the lines in our approach
directly contain all the physical information at each depth in the
atmosphere through the atomic populations, which is missing
in other methods. There are no similarities with the previous
methods for calculating the opacities of the lines because this
is not an average opacity, nor is it a statistical method. The
main difference is that our results show the variation that the
pseudo-continuum would have within the frequency range of
the calculations following the real variation of the individual
lines over the whole atmosphere. If one uses other values for u,
the only thing that changes is the length of the pseudo-continua
and therefore the distribution of the flux.

It is difficult to compare the applications of our procedures
with other methods because in general the calculations of the
structure are carried out to optical depths greater than 10−7

where the effects of the lines of Lyman begin to appear in
stars of the solar type and cooler, thereby ignoring the great
changes in the structure of the atmosphere and of the emergent
ultraviolet flux (Crivellari et al. 2007). The hotter models are
calculated to the same optical depths as above ignoring the
effects of the lines of Lyman also. We have made a comparison
between models with and without the inclusion of the secondary
lines of hydrogen for a temperature of 104 K and log g = 4.5
and solar abundance. Figure 2 shows the calculated flux. The
continuous line is the model calculated with our approximations
and the dotted line is the model without the secondary lines. The
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Figure 2. Calculated emergent fluxes for models with (continuous line) and without (dotted line) the effects of the secondary lines of our procedure for the effective
temperature 104 K; with log g = 4.5. From left to right the pseudo-continuum and lines of Lyman are shown.

main change is in the Lyman jump at the left of Figure 2. We can
see the slope of the Lyman pseudo-continuum that our method
produces. The effects are important because the Lyman jump
is decreased more than eight times and the pseudo-continuum
is decreased even more compared with a model without the
secondary lines. The energy taken away is distributed over all
frequencies and also the flux is increased over all the frequency
range of the calculation by the back-warming effect produced
by the blocking effect of the secondary lines, the so-called line-
blanketing effects of the lines. If one integrates over all the
frequencies the increase in energy is really great. The hydrogen
jumps are very important for the classification of stars and can
be measured with any photometric system. For example, the U
filter is centered in the Balmer jump in the UBV photometric
system. All the models calculated by the groups mentioned
above include the secondary lines using any of the methods
exposed before and our results show that they are very important
in the calculation of the model atmospheres.

The synthetic emergent spectra calculated from statistical
methods that use millions of lines do not show the real
continuum of the models for the case at hand. Further, the
comparison with the direct spectroscopic observations of the
stars is very difficult because all the lines of all the ele-
ments are visible in the spectra, thereby rendering it very dif-
ficult to define a continuum for comparison with the current
work.

Our method can also be used to treat all the lines as secondary
when the computational constraints are a serious issue. Doing
this requires the oscillator strength given in the tables for the
first line. Strictly speaking, setting u = 1 violates the main
assumption that the upper levels are hydrogenic and roughly
form a continuum to apply the equations. Hence we would
produce a blurred continuum different from that produced by
the statistical methods, because our procedure accounts for the
intensities and frequencies in each atomic series.

7. CONCLUSIONS

We present a method for introducing the effects of the
opacities of the lines into the calculation of stellar atmosphere
models in an analytically approximate way. The method uses
the behavior of the oscillator strengths of the bound–bound
transitions between the atomic levels. This was carried out
using the Kramers–Gaunt formula for the oscillator strengths
for the hydrogenic atoms. Supposing that we can transform the
sum that represents the opacities of the lines into a continuous
function of frequency, we obtain an analytical expression for the
contribution of the lines to the general opacity. The equations
thus obtained are functions of frequency and are an extension of
the equation of Kramers–Gaunt that was originally developed
for discreet transitions. For the hydrogenic atoms this is the main
assumption of our method. For the other atoms, this assumption
is accompanied by the possibility that we can use the Kramers–
Gaunt function for nonhydrogenic atoms considering that the
oscillator strengths for the atomic transitions to the higher levels
are similar enough to the values obtained from the published
tables of oscillator strengths. Also in these developments, we
have considered as an example the use of the mean value
theorem of calculus for integrals for evaluating the quantities
that are taken out of the integral; this has allowed us to
evaluate the populations, statistical weights, the profiles, and
the structure factor for the first level of the sum of the opacities
of the lines. These results are important for stellar atmosphere
calculations because they reflect the behavior of atmospheres
and the emergent spectrum with the inclusion of the lines
directly.
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