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0.1 General

This report is the extended version of the paper [1]. It includes the material
which did not enter the final version of the paper because of the size limitations,
as well as extended discussion and introduction part.

0.2 Introduction

In optics, two-dimensional cavity is formed by a region of a plane bounded by
a closed curve. Classically, the ray is reflected from the boundary according
to the law of specular reflection, and the trajectory is composed by an infinite
number of straight line segments between reflections. For the wave description,
the Helmholtz equation with appropriate boundary condition is solved. Though
we mostly use optical language here, the situation is mathematically equivalent
to the transition from classical to quantum mechanics for a free movement of a
particle in a closed 2D region of space with a boundary (classical or quantum
billiard)[2].

Billiards are simple, but important mechanical systems which can demon-
strate very complicated behaviour if the billiard boundary is not regular. We
mean by regular shape the one, for which simple exact solution of a billiard
problem exists. Particular cases of regular billiards are rectangular, circular
and elliptic, for which additional integrals of motion can be found and it is pos-
sible to obtain action-angle variables in a closed form. For rectangular billiard,
momentum projections to coordinate axes are conserved (except for changing
sign). For a circular billiard the angular momentum with respect to the circle
center, and for the elliptic case the product of two angular momenta with respect
to the ellipse foci are conserved. The existence of such conserved quantities ac-
cording to rather general theorems of mechanics mean, that the Hamiltonian
of a system can be written as a function of two actions, the motion is periodic
and characterized by two frequencies, and the trajectories in a phase space lie
on invariant tori.

The quantum billiard corresponds to the transition from classical to quan-
tum mechanics, and mathematically it is equivalent to finding a mode structure
of the corresponding cavity. The problem, apart from theoretical interest [2],
has important applications for the calculation of modal structure for laser mi-
crocavities [3, 4], which is notoriously difficult task even with the numerical
methods.

For illustration, let us consider the circular resonator with a unity radius
(Fig.1). The classical trajectory for it is shown by lines. It is seen, that the
distance ρ, or the characteristic angle γ0 is the same after reflection. The tra-
jectory form a caustic at a distance ρ from the centre. If the angle γ0 is such,
that the trajectory is periodic, there is no complete caustic, but it is formed
if we take all periodic trajectories with the same angle γ0 and different initial
points. In terms of invariant tori is means that the torus in question is separated
into an infinite number of trajectories, and not covered completely by a single
trajectory with an irrational winding number.

In a case of circle it is rather easy to establish a correspondence between the
classical description and wave optics. The solution of Helmholtz equation in the
circle is given by the product of sine/cosine function of the angle sin(φ),cos(φ)
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and the Bessel function Jn(an,pr) of distance from center r. For large n, the
Bessel function has a characteristic maximal value, which corresponds to a clas-
sical caustic.

However, even small shape perturbation from a regular case result for trajec-
tories in a very complicated behaviour called Kolmogorov-Arnold-Moser (KAM)
chaos [1,2]. Under smooth small distortion of resonator shape, most trajectories
remain qualitatively similar. However, the trajectories close to periodic ones for
a circle split and finally form a chaotic region in the phase space. For a weak
chaos the trajectories form in a phase space characteristic structures. We are
interested here to investigate the resonator modes, which correspond to such
structures. For this it is reasonable to use a perturbation theory with a shape
distortion as a small parameter.

Perturbation methods to obtain approximations for shapes, which are close
to solvable ones [5, 6, 7] are known, but these methods are effective only when
d ∼ K−2/L, where d is a typical shape distortion (e.g. the distance between
undistorted and distorted boundary ), L is a typical length (e.g. diameter of
a circle), and K is a wavevector of a mode (−K2 is an eigenvalue of Laplace
operator ). Thus, those methods are not efficient for big K. On the other hand,
semiclassical approximations exist, which are valid for big K numbers, but only
for the cases when classical ray trajectories in a resonator are not chaotic or
unstable. In particular, efficient approximations can be obtained for resonator
modes corresponding to classically stable periodic ray trajectories [8].

We combine the two approaches, and develop a perturbation method, which
works for higher modes and nearly regular cavity up to the next perturbation
scale, d ∼ K−1.

The method implementation is based on two observations. First, in a semi-
classical limit of big K the eigenvalue structure for a regular cavity demonstrates
special features, ’arcs’, corresponding to periodic ray trajectories. Second, for
a wide class of smooth shape distortions, the perturbation matrix, limited to
modes within an arc, has simple universal structure, and the resulting problem
can be solved in terms of solutions of Hill equation, and for some particular
cases, of Mathieu equation. The modes, which are thus obtained, include the
Hermite-Gauss modes, the slightly distorted modes of a regular cavity, such as
whispering gallery modes, and modes approximately corresponding to unstable
periodic trajectories, scar modes in particular. Most of them are expressed as
a superposition of many modes of unperturbed cavity with comparable coeffi-
cients, and cannot be considered as a small perturbation of a single mode of
regular cavity.

Establishing the relation between ray and wave description (or, equivalently,
between classical and quantum mechanics in billiard ) for the initial stage of
KAM chaos is an interesting theoretical question. This relation can also be
useful for practical calculations in different types of resonators in optics, mi-
crowave, acoustics etc., since, as we show below, the numerics for resulting
approximations can be easier, than for the full solution.
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Figure 1: The relation between the real part of cylindrical harmonic Eq.(8)
(grayscale ) and ray trajectory (thin lines) in a unit circle. The trajectory is
defined by the angle γ0, or equivalently by the caustic radius ρ. In terms of
large order Bessel functions, cos(γ0) ≈ n/an,p = ρ, since the geometric caustic
corresponds to the place, where argument of Bessel function is approximately
equal to its order.

0.3 Conformal mapping and perturbation oper-
ator

The usual approach to obtain perturbation matrix for slightly deformed res-
onator is based on the Hadamard formula for Green function of a perturbed
domain [6, 5]. For two dimensions, another possible method is conformal map-
ping. Though conformal maps are common for solving the Laplace equation,
their application to Helmholtz equation is not very frequent. Some classic appli-
cations are reviewed in Ref.[9], for recent papers see e.g. [10, 11]. The idea of the
method is that if an analytic function of complex variable, w(z) maps a simple
shape (circle, rectangle, etc.), to a cavity boundary, the solution of Helmholtz
equation in a resonator with complicated boundary is mapped to a solution for
a resonator with a simple form filled with a medium which has effective refrac-
tive index distribution depending on |w′(z)|2. If the distortion of regular shape
is small, perturbation approach can be used to obtain approximations to new
modes in a form of superposition of eigenfunctions of unperturbed problem.

Consider an analytic function w(z) = u(z) + iv(z) of z = x+ iy with values
in a region having a boundary Γ. Consider the real function f(u, v) which is
zero on Γ (Dirichlet boundary condition ) and obeys the Helmholtz equation:

−4u,v f = µf, (1)
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with a Laplace operator 4u,v = ∂2u + ∂2v . If Γ is an image of a regular domain
boundary S upon w(z), then f(x, y) = f(w(z)) is a function on a regular do-
main, which has zero value on a boundary S, and the Eq.(1) in new variables
becomes:

−4x,y f(w(x, y)) = µf |w′(z)|2. (2)

The approximation we are interested in is obtained for a small distortion of a
shape, i.e. function w(z) is

w(z) = z + d(z), (3)

with a small addition |d(z)| � z, |d′(z)| � 1. If we consider eigenfunctions
having eigenvalues close to a big number µ0, such as |µ0 − µ| � µ0, we can
expand the right-hand side of Eq.(2), to the first order in d′ and µ0 − µ, which
gives a self-adjoint Schrödinger type spectral problem on a regular domain:

−4x,y f(x, y)− 2µ0Re[d′(z)]f(x, y) = µf(x, y). (4)

In this case, the unperturbed operator is simply a Laplace operator A0f =
−4 f with known eigenfunctions f0n,p and eigenvalues µ0

n,p. The perturbation
operator P is multiplication by a function: Pf = −2µ0Re[d′(z)]f .

The perturbation theory for the Schrödinger operator is well known in quan-
tum mechanics. According to the Weyl’s theorem, the average distance between
Laplace operator eigenvalues for a 2D domain is 4π/Ω, where Ω = L2 is the do-
main area, and L its characteristic length. From the Eq.(3), the characteristic
displacement of the boundary under perturbation is d, and the characteris-
tic derivative value is d/L. The simple perturbation methods work for per-
turbation strength smaller than a distance between levels, which gives usual
2µ0d/L ∼ 4π/L2 , or d ∼ K−2/L estimation of the Introduction.

The perturbation theory in the above mentioned sense can be built for a
small distortion of any domain, for which Laplace equation eigenfunctions are
known. However, as it is discussed in the next section, simple domains, for which
analytic solutions exist, have special spectral structures, corresponding for a
semiclassical regime to periodic ray trajectories, and in this case perturbation
problem can be approximately solved in special functions for d ∼ K−1.

0.4 Perturbation for regular cavities

The Laplace operator can be regarded as a quantization of Hamiltonian task
of a classical movement of a free particle in a billiard, which has a shape of
the cavity [2]. If the classical Hamiltonian problem is integrable, action-angle
variables exist, and the Hamiltonian is a function of two actions H(I1, I2). For
the semiclassical approximation, energies ( mode eigenvalues) in this case are
obtained by setting I1,2 = q1,2+ 1

4α1,2, where q1,2 are integer mode numbers, and
α1,2 are fixed integers, depending on the properties of the trajectory (Maslov
indices)[12, 13]. These points locally form a square lattice in a plane I1, I2. The
typical case is shown in Fig.1.

Let us fix a line in the lattice, parallel to (m,−l) vector. Consider the
situation when it is tangent to the Hamiltonian level line H(I1, I2) = const,
and m, l are small co-prime integers. Fix local coordinates n1, n2 with the
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Figure 2: A small part of plane of action variables I1, I2. The line H = const is
tangent to a new coordinate axis s1. For this plot m = 3, l = 1.

origin in a lattice point close to the contact point. Now introduce another set
of coordinates in a plane by:

s1 = mn1 − ln2 (5)

s2 = ln1 +mn2. (6)

This transformation is equivalent to a rotation and changing a scale by√
m2 + l2 factor. Both s1 and s2 are integer, but they do not change indepen-

dently. The lattice in new coordinates consists in repeating an elementary unit
with m2 + l2 length in two directions. For lattice points, we obtain rows for all
integer s2. In each row, s1 coordinate changes by m2 + l2 from point to point.
To obtain the relative shift of the points in two consecutive rows, it is necessary
to solve the Diophantine equation.

For big mode numbers q1, q2, the curvature of Hamiltonian level lines be-
comes small, and the energy in new coordinates is expressed to the lowest order
in s1,2 by:

µ(s1, s2) = µ0 + α1(s1 − δH)2 + α2s2, (7)

where the relation α2 � α1 holds. This gives characteristic arcs in dependence
of eigenvalues on the mode number n1. The condition that tangent to a level line
is parallel to a (m,−l) vector is equivalent to that one of Hamiltonian gradient
parallel to (l,m) vector, and this means, that corresponding classical trajectory
is periodic [12]. Illustrations for particular cases are given in following sections
(see Figs.5,7).

Since in the semiclassical region the energy difference between consecutive
arcs is much bigger, than the typical energy difference within a single arc, the
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perturbation, if it is small enough, can be limited to one arc. The energy
difference between arcs scales as

√
µ, and thus the perturbation scale is d ∼ K−1.

If fq1,q2 are eigenfunctions of Laplace operator in a regular domain, we fix
a set of modes with the same s2:

bk(x, y) = fq1+km,q2−kl(x, y). (8)

The Laplace operator limited to this set is diagonal

〈bk| − 4|bk〉 = µ0 + α(k − δ)2, (9)

and δ = δH + δs2 is a phase which depends on s2 value. It can be taken
0 6 δ < 1 by shifting the origin. The perturbation matrix elements between
bk1 , bk2 for semiclassical regime depend to the first approximation on the differ-
ence |k1−k2| only. This is related to the fact, that in a semiclassical regime the
eigenfunctions are represented as rapidly varying cosine functions with slowly
varying amplitude and phase (we consider the examples below). Thus, when
k1, k2 are much smaller, than q1, q2:

〈bk1 |P |bk2〉 ∼ P|k1−k2|. (10)

This gives approximately diagonal-constant symmetric perturbation matrix.
The eigenfunction is

g(x, y) =

∞∑
k=−∞

ψkbk(x, y), (11)

where ψk are components of eigenvecotr for the infinite matrix given by Eqs.(9,10).
Consider a generating function expressed by a Fourier series with the eigenvector
components:

G(ν) = exp(−iδν)

∞∑
k=−∞

ψkexp(ikν). (12)

The action of a matrix on ψk is equivalent to the action on G(ν) of the operator

µ0 − α d2

dν2
+ P (ν), (13)

where

P (ν) = P0 + 2

∞∑
q=1

Pq cos(qν). (14)

is a 2π-periodic function. Together with a boundary condition, that G(ν+2π) =
G(ν) exp(−i2πδ) this gives a spectral problem for the Hill equation, and it is
physically equivalent to Schrödinger equation in periodic 1D potential.

In the simplest case, which is easily realized for square and circle, only
P1 6= 0, and Hill equation is reduced to Mathieu equation:

− d2

dν2
G(ν) + 2d cos(ν)G(ν) = λG(ν), (15)

where d = P1/α, and λ is a rescaled eigenvalue λ = (µ− µ0)/α.
For big |d|, the equation can be studied in WKB approximation. Consider

first δ = 0. Choose −π < ν < π range, and negative d. If d > 0 the solution is
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obtained from the negative d case by taking ν−π instead of ν, and the spectrum
remains unchanged. Then, for a symmetric function:

G(ν) ∼ (λ− 2d cos(ν))−
1
4 cos(

∫ ν

0

√
λ− 2d cos(x′)dx′), (16)

and for antisymmetric one:

G(ν) ∼ (λ− 2d cos(ν))−
1
4 sin(

∫ ν

0

√
λ− 2d cos(x′)dx′), (17)

These equations are valid between classical turning points, i.e when the ex-
pression under the square root is positive. When it is negative, the eigenfunction
exponentially diminishes into classically prohibited region of ν.

The lowest eigenvalue is approximately λ ' −|2d|. For low eigenvalues, the
cosine function around the minimum can be approximated by a parabola. This
gives a quantum oscillator problem, which has a solution in Hermite functions,
and equally spaced eigenvalues. The Fourier transform of the Hermite function
is also the Hermite function, which gives ψk values. If λ � |2d|, the solution
is approximated by slightly perturbed sine/cosine function, and eigenvalue is
proportional to a square of a mode number. Note, that for low eigenvalues
and δ = 0, consequent symmetric and antisymmetric eigenvectors have equally
spaced eigenvalues, but for λ � |2d| pairs are nearly degenerate. The level
λ ' |2d| separates these two regimes. Around this value, the distance between
consequent eigenvalues diminishes. Note also, that the WKB approximation
solution close to turning points behaves as δν−

1
4 if λ < |2d|, but as δν−

1
2 if

λ ∼ |2d|.
The approximate density of modes for eigenvalues around λ can be obtained

using WKB method, and it is expressed in elliptic integrals:

f−(λ) =
1

π
√
|d|

∫ 1

0

ds√
(1− s2)(1− q2−s2)

=
K(q−)

π
√
|d|
, (18)

where q− =
√

(2|d|+ λ)/(4|d|). For the case of λ > 2|d|, the same procedure
gives

f+(λ) =
q+K(q+)

2π
√
|d|

, (19)

with q+ = 1/q−, and an additional factor of 2 reflecting that now it is the
difference between pairs of closely spaced eigenvalues is taken. The distance
between consecutive eigenvalues in function of eigenvalue itself is then given by

∆λ(λ)± = 1/f±(λ). (20)

These equations describe quite well numerical results (Fig.2b).
The behaviour of eigenvalues and eigenvectors ψk is shown in Figures 3 and

4. For these plots, the perturbation matrix of Eqs.(9,10 ) was taken, and its
spectrum and eigenvectors were found by a standard numerical procedure. The
physical meaning of the resonator mode corresponding to the solution is easier
understood for a circular resonator, and it will be considered below.

If δ 6= 0, the general character of spectrum is similar, but eigenvalues are no
more nearly degenerate for λ � 2|d|. The case of a single coefficient Pq when
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Figure 3: Numerically calculated eigenvalues of three-diagonal matrix A with
Ak,k = k2, and Ak,k±1 = d for d = −10000. The index range for calculation is
−500 6 k 6 500. The approximate expressions of Eqs.(18,19) are shown in thin
lines in plot (b).
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Figure 4: Calculated eigenvector components ψk for d = −10000 and differ-
ent eigenvalue number N (see Fig.2a for corresponding eigenvalues). Since the
eigenvectors are symmetric or antisymmetric, only positive k are shown. a) For
N = 4, the eigenvector is approximately the fourth Hermite function b.) For
N = 240 the eigenvector spreads to k ≈ 2

√
d c) For N = 270 the components

for k close to zero become exponentially small. d) For N = 451 the eigenvector
is localized far from zero.
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q 6= 1 is reduced to the investigation of G(ν) over one period of cos(qν), and the
solutions must have appropriate phase shift.

Smooth potentials P (ν), where Pq coefficients rapidly diminish in function
of q will result in qualitatively similar behaviour which can be investigated by
WKB approximation.

However, some distortions of boundary produce potentials which are not
smooth. One case is when the right angle in the rectangle changes, or when the
curvature of a smooth boundary becomes infinite under mapping - the conformal
map then has a singularity. The spectral problem for one arc in this case can still
be meaningful. However, the same point q1, q2 can be included in many arcs,
most of them are characterized by big denominators m, and for approximation
validity it is essential, that interaction within arcs having big m number is weak.
This condition can break for slowly diminishing Pq, and it will be necessary to
consider many arcs within one matrix. Such situation generally corresponds to
developed chaos for ray trajectories, and it is not considered here.

Another problem exists if the trajectories have different topological prop-
erties, as it is observed for the ellipse [13, 14] . In this case, the phase space
is divided into regions, where Maslov indices α1,2 are different. The lattice at
boundary of the regions is not regular in this case, and the matrix of a pertur-
bation that mixes states from both sides of the dividing line in the action space
cannot be constructed with the outlined approach. It still works, however, in
the regions of action plane far enough from such dividing lines.

0.5 Square cavity

For a square, calculations can be done explicitly. Take 0 < x 6 1, 0 < y 6 1.
The Hamiltonian (if mass is 1/2) is H = p2x + p2y, with standard momenta. In
function of two actions it is expressed as [15]:

H(Ix, Iy) = π2(I2x + I2y ), (21)

and the actions are proportional to absolute values of corresponding momenta
Ix,y = |px,y|/π. The level lines are thus circles, the curvature is constant. The
gradient vector is parallel to (|px|, |py|), and the condition for periodic trajectory
is |px|m = |py|l.

The Laplace operator eigenfunctions are given by

fq1,q2(x, y) = 2 sin(πq1x) sin(πq2y), (22)

with q1, q2 = 1, 2... Their eigenvalues for Eq.(1) are:

µ(q1, q2) = π2(q21 + q22). (23)

Choose the origin in a point corresponding to a periodic trajectory: Q1, Q2,
such that Q1m = Q2l. Then q1,2 = Q1,2 + n1,2, and for the rotated coordinate
system, given by Eqs(5,6), the Eq.(23) becomes:

µ(s1, s2) = µ0 + α1(s21 + s22) + α2s2, (24)

with µ0 = π2(Q2
1 + Q2

2), α1 = π2(m2 + l2)−1, and α2 = 2π2(m2 + l2)−1(Q1l +
Q2m). For big mode numbers Q1,2, α2 ∼

√
µ � α1, and by neglecting α1s

2
2
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term in comparison with α2s2 we obtain the form of Eq.( 7). The eigenvalues
Eq.(23) close to π2106 are shown in Fig.4. The arcs for small m, l are marked.

The conformal maps can be chosen as:

w(z) = z + d(z) = z +

∞∑
m=1

cm sin(πmz), (25)

where all cm are real, and |d′(z)| � 1 inside the square. Then the square
distortion under the conformal map is such, that x = 0, x = 1, y = 0 sides
remain the same, but y = 1 side is transformed in a limit of small perturbation
into the curve with equation

y(x) = 1 +

∞∑
m=1

cm cos(πmx) sinh(πm). (26)

If only c1 6= 0, this is equivalent to one half of the ripple billiard [16].
Note, that conformal mapping preserves right angles, otherwise w′(z) = 0, or
w′(z) =∞ in the angle, and this needs a special consideration. If a small smooth
boundary perturbation y(x), which has y′(0) = y′(1) = 0 is given, it can always
be expanded in a series Eq.(9).

The matrix elements of perturbation from the Eq.(4), which correspond to
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only one term in Eq.(25) are then given by the integral over unit square

Pn1,p1;n2,p2 = −2µ0πmcm

∫
cos(πmx) cosh(πmy)fn1,p1(x, y)fn2,p2(x, y)dxdy.

(27)
They are equal to

Pn1,p1;n2,p2 = µ0m2cm(−1)q+1 sinh(πm)(
1

m2 + q2
− 1

m2 + (p1 + p2)2
), (28)

if n1 = n2 ±m, n1,2 > m, and q = p1 − p2. If n1 6= n2 ±m, the matrix element
is zero.

Now, choose the mode which corresponds to a periodic trajectory with short
period, such as n0, p0 are related as n0m = p0l (m, l are small co-prime integers).
Then select a subset of modes bk, along s1 axis, which passes through n0, p0
point. It is given by Eq.(8) with q1 = n0, q2 = p0

This corresponds to considering only one arc in Fig.4. It can be done, while
cm . 1/

√
µ0 ∼ K−1, which means that perturbation is smaller, than a char-

acteristic distance to the next arc. The diagonal matrix elements of Eq.(4),
limited to bk are:

〈bk| − 4|bk〉 = π2(n20 + p20 + k2(m2 + l2)). (29)

If we have only one term in the sum of Eq.(25) cm 6= 0, the only non-zero
off-diagonal elements are:

〈bs|P |bs±1〉 = µ0m2cm(−1)l+1 sinh(πm)(
1

m2 + l2
− 1

m2 + (2p0 − l(2k + 1))2
).

(30)
If p0 � l(2k + 1) this is reduced to

〈bk|P |bk±1〉 = µ0m2cm(−1)l+1 sinh(πm)(
1

m2 + l2
− 1

m2 + 4p20
) +O(

k

p30
). (31)

Thus, the problem is reduced to the solution of Mathieu equation of previous
section. The same procedure, with simple modifications, can be used for a
rectangular cavity 0 < x < Lx, 0 < y < Ly.

0.6 Circular cavity

Consider a unit radius circle, and cylindrical coordinates r, φ, such as x =
r cos(φ) and y = r sin(φ), 0 6 r 6 1, 0 6 φ < 2π.

For a circle, actions are given by [17]:

Iφ = pφ, (32)

Ir = π−1
√
E(

√
1− I2φ/E − (Iφ/

√
E) cos−1(Iφ/

√
E)), (33)

where m = 1/2, and pφ, E are angular momentum and energy, which are con-
served.

The dependence Ir(Iφ) with H = E = const, as expressed by Eq.(33) is

a level line (Fig.7). It is seen, that Ir/
√
E is energy-independent function of
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Figure 6: Level lines for Hamiltonian of a circle are obtained by scaling a line
for energy 1.

Iφ/
√
E , thus all level lines are obtained by simply scaling any of them in

two directions. The curvature does not change sign, and tends to infinity for
Iφ → 1. This corresponds to stability of whispering gallery modes against circle
distortions. The condition for periodic trajectory is that a derivative dIr/dIφ
in Eq.(33) is a rational number, which gives:

cos−1(pφ/
√
E) = πl/m. (34)

The Laplace operator eigenfunctions for a unit disk with a Dirichlet bound-
ary condition are:

fn,p(r, ϕ) = βn,pJn(an,pr) exp(inϕ), (35)

where Jn are Bessel functions, and an,p their zeroes. Normalizing constants βn,p
are calculated with scalar products of Bessel functions by themselves. Corre-
sponding Laplace operator eigenvalues are µ0

n,p = a2n,p.
To obtain conditions for periodic trajectory in terms of Bessel functions, it is

necessary to place in Eq.(34) eigenvalues of corresponding operators, which are
n for angular momentum, and an,p for square root of energy. Thus the periodic
trajectory condition is:

n/an,p ≈ cos(πl/m). (36)

This condition also can be derived directly from well known asymptotic of
large order Bessel function [18]:

Jn(n/ cos γ) ∼ cos(n(tan γ − γ)− π/4)√
1
2nπ tan γ

. (37)

The Bessel function zeroes close to 1000 are shown in Fig.7. The picture
clearly demonstrates arcs similar to those obtained for a case of rectangle. Their
positions agree with a condition of Eq.(36). Note, that in comparison with the
rectangular resonator, the arc direction is inverted. This reflects the fact, that
surfaces H = const have different signs of curvature for two cases. The equations
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Figure 8: Examples of g functions of Eq.(41) in a circle for d = 50,m = 3
and central Bessel function with n0 = 100, an0,p0 ∼ 200 ( p0 = 22, an0,p0 =
199.82150... ). The real part is shown, where it is bigger than a certain thresh-
old. a.) The lowest eigenvalue N = 0 gives Gaussian beam around a stable
periodic trajectory. b.) The N = 3 eigenvalue gives Hermite function profile.
c.) The N = 14 eigenvalue produces a caustic. d.) The N = 18 eigenvalue
corresponds to a condition λ′ ≈ 2d, it gives a scar mode along an unstable peri-
odic trajectory.e.) For N = 23 the solution begins to approximate a cylindrical
harmonic, though the 3-rd order symmetry is still seen.
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for arc parameters α can be obtained either from Hamiltonian, by calculating
curvatures, or directly from the Eq.(37).

The relevant conformal mapping is:

w(z) = z +

∞∑
m=1

cmz
m+1. (38)

The perturbation for one term with real cm is a multiplication by −2µ0(m+
1)cm cos(mφ)rm.

It is easy to see, that to the first order in |cm| the boundary Γ is given by

r(φ) = Re(1 +

N∑
m=1

cm exp(imφ)). (39)

Thus, by performing a Fourier transform one can reconstruct cm coefficients if
the shape of weakly distorted circle is known.

The perturbation matrix for only one term cm in the vicinity of resonance
has the same three diagonal structure, as for the case of a square.

〈fn1,p1|P |fn2,p2〉 =

−2cm(m+ 1)µ0

∫ 1

0

β12Jn1(an1,p1r)Jn2(an2,p2r)r
m+1dr×∫ 2π

0

exp(i(n2− n1)ϕ)cos(mϕ)dϕ, (40)

with β12 = βn1,p1βn2,p2. The angular part of this integral differs from zero only
if n1 = n2 ± m, as it was for the square, but radial part is not expressed in
elementary functions. However, if |p1 − p2| � p1, p2, these integrals do not
depend strongly on p1 + p2, as for the rectangular case. Thus,

gλ(r, φ) =

∞∑
k=−∞

ψλkβn0+km,p0−klJn0+km(an0+km,p0−lkr)exp(i(n0 + km)ϕ).

(41)

0.7 Correspondence to KAM trajectories

Classically resonant KAM chaos regions of the phase space under perturbation
cm develop around resonant trajectories. The analysis of the previous section
shows, that the perturbation produces in resonant regions the characteristic
cylindrical harmonic superpositions of the form Eq.(41).

In a sense of quantum mechanics, ψk means a probability amplitude of having
a cylindrical harmonic with (n+km, p−kl) index, which classically corresponds
to a trajectory with a characteristic angle γ deviated from exactly resonant
value according to ∆cos(γ) ≈ km/an,p , since a values in the arc change slowly
around the maximum. Thus, ψk coefficients describe the angular spectrum of
the corresponding classical trajectory.
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For low ψk eigenvectors we basically have Hermite functions. For small ν
these are smooth and diminish rapidly with |k|. Close to the circle boundary
r ≈ 1, radial Bessel functions can be considered as cosine functions with similar
spatial frequencies, and the principal contribution to the Ψ(r, φ) for r → 1 in
function of φ is a Fourier transform of ψk. Since a Fourier transform of Hermite
function is again a Hermite function, for low eigenvalues we obtain modes local-
ized at a circumference with respect to φ angle. In a classical sense the bundle
of trajectories close to a stable periodic trajectory is obtained. Examples of
such functions for m = 3 are shown in Fig.8, a,b.

For higher eigenvalues still corresponding to the condition λ′ < |2d|, higher
Hermite functions emerge. Close to the boundary they are weakly localized
away from the stable periodic trajectory, and caustics appear, Fig.8c.

Classically, the trajectories in a phase space for λ′ < |2d| correspond to
elliptic trajectories in the phase space of the KAM chaotic region - they are
localized with respect to φ, γ angles. The λ′ ≈ |2d| condition gives typical
angular spectrum to which perturbation spreads :

∆n/an,p ∼ |cm)|1/2sin(γ). (42)

Thus, the perturbed region in the phase space extends to the angular range
∆γ ∼ c1/2 which is a well known result on a KAM chaos.

For λ′ > |2d| , and δ 6= 0 the trajectories which are localized either for
k > 0 or k < 0 are obtained. In the limit of big eigenvalues they correspond to
perturbed single cylindrical harmonics, and demonstrate only weak localization
at a boundary (Fig.8e).

The λ′ ≈ |2d| region is an intermediate between these two types of be-
haviour.The localization there is stronger, than for λ′ < |2d| region - the function
behaves as (∆φ)−1/2 close to the unstable periodic trajectory. For eigenvalues
close to |2d|, scar modes are observed (Fig.(8d)). As we see, in this region the
relative eigenvalue spacing for big d diminishes to zero, thus higher orders of
perturbation theory, as well as corrections to first order operator, which we ne-
glected for this analysis, will most strongly mix unperturbed cavity functions
here. Thus, we are induced to identify these functions as participating in a
classic homoclinic tangle. Note also, that the number of these functions, which
have level separation lower, than some ε scales according to a known result on
the homoclinic tangle extension.

The case of c2 corresponds to the elliptic resonator, for which the exact
solution is known. This exact solution also includes Mathieu equation for a
radial part. Thus, for a single perturbation term cm the resulting structures are
related to those for an elliptical resonator.

0.8 Elliptical cavity

The case of ellipse is more complicated, and we consider it only briefly. Elliptic
coordinates naturally appear within conformal mapping framework. Consider a
function

w = a cosh(z), (43)
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defined on the rectangle 0 < x 6 Lx, 0 < y 6 2π. Real and imaginary parts are:

u = a cosh(x) cos(y) (44)

v = a sinh(x) sin(y), (45)

which gives usual expressions for elliptic coordinates. The Eq.(43) maps the
rectangle onto the inner part of the ellipse, the side x = 0 is projected onto a
cut between foci. The Laplace operator Eq.(2) in these coordinates becomes

−4 f = µ(cosh(2x)− cos(2y))f, (46)

and it is separable, f(x, y) = Fx(x)Fy(y). The equations for angular part Fx(x)
and radial part Fy(y) are Mathieu and modified Mathieu equations,

d2Fy
dy2

+ (κ− 2q cos(2y))Fy = 0 (47)

d2Fx
dx2

− (κ− 2q cosh(2x))Fx = 0 (48)

where µ = 2q, and κ is separation constant. The solution of Mathieu equation
has to be 2π periodic; for a given q this gives a set of possible κ values. The
eigenvalue is fixed with a boundary condition for Fx and continuity across a cut
(see [13, 14] for details).

A simple conformal map can be constructed in a form of Taylor series of
Eq.(38). General theorems ensure that a smooth boundary perturbation pro-
duces a rapidly converging series. However, calculation of perturbation matrix
elements in this case will require 2D integrals over the ellipse.

It is possible reduce the problem of finding an appropriate conformal map-
ping to the maps, which slightly deform a rectangle, ω(z). The ellipse distortion
can be then obtained by applying the transformation of Eq.(43) cosh(ω(z)).
Since x variable is cyclic, terms exp(mz) are involved. The map, that does not
produce a discontinuity in |w′|2 across a cut has a form

ω(z) = z +

∞∑
m=1

cm sinh(mz), (49)

and cm are complex coefficients. Consider, that only cm 6= 0. For real cm,
the x = Lx side is displaced in x - direction according to cm sinh(mLx) cos(my).
For purely imaginary cm = id, the displacement is −d cosh(mLx) sin(my). Note,
that in this case all four sides of the rectangle are distorted, and the cut between
the foci is no more straight. However, the derivative absolute value is continuous
across a cut.

It is seen, that if the boundary displacement in elliptic coordinates in known,
x(y) = Lx + d(y), then coefficients cm can be determined by Fourier transform,
similar to the case of a circle.

Calculation of perturbation matrix elements is then reduced to the estima-
tion of four 1D integrals.

The Hamiltonian for elliptical billiard, action variables, and correspondence
of classical and quantum mechanical solutions are discussed in detail in [13, 14].
The important difference with a circular case is that for elliptical billiard two
types of movement are possible. One type is similar to a movement in a circle:

18



the trajectory do not cross the line between the foci, and the caustic is an ellipse.
For another type, the trajectory passes between the foci after every collision with
a boundary, and the caustic is hyperbolic. In the action plane I1, I2 two regions
are seen, divided by a straight line I2 = ηI1, and the transition across the line
is not continuous. For two regions the curvature of a level line has different
signs, and it tends to infinity when the common boundary is approximated
from either side. On the other hand, for a correct semiclsssical approximation
the square lattice in the vicinity of of a transition line become distorted as well
[14]. Thus, the discussed approximation cannot be built in the vicinity of the
classic trajectories passing close to the foci - special consideration is required
there. These trajectories under perturbation form a homoclinic tangle in a phase
space. If the initial periodic trajectory is far from this region, the Hill equation
potential can be found, though for simple perturbation the matrix includes more
than one diagonal. Numerics demonstrate, that if states far from dividing line
are considered, the matrix elements diminish rapidly with |k1 − k2|, and the
spectrum becomes wider if we approach the dividing line.

0.9 Relation to numerical solution

To illustrate the application of the method, we show here the eigenvalue cal-
culation for the slightly distorted unity circle. We study the arc, which has
a maximal eigenvalue equal to 10624.00 for n = 50, corresponding to m = 3.
The conformal mapping function is w(z) = z + 0.01z4. The numerical calcu-
lation of eigenmodes and eigenvalues for distorted circle is made with a freely
distributed ”FreeFem++” package based on the finite element method, with
a mesh of approximately 200000 triangles. To build the perturbation matrix,
14 circle eigenmodes are taken around the maximal one, their eignvalues are
given by the Bessel function roots. The off-diagonal elements of the Eq.(40) are
estimated at the central eigenvalue. For K ≈ 100, the semiclassical approxima-
tion is not very good, in particular the perturbation matrix coefficient vary 20
percent from one edge of the arc to another. We could not work with higher
K values because of finite element software limitations. However, the sequence
of modes similar to those of the Figure 5 is easily identified, except for a scar
mode Fig.5d, which is not seen because of a small K number. We compare
eigenvalues for 10 higher modes. The first Hermite-Gauss mode (Fig.6a ) has a
calculated eigenvalue 10807± 2, the approximation gives 10804. For the fourth
mode (Fig.6b ) we obtain 10603 and 10609, the sixth mode (Fig.6c) has 10448
and 10451, and the tenth (Fig.6d) has 10322 and 10324 values respectively. For
the rest of modes, the results are similar. The error of the finite element method
was estimated by calculating eigenmodes of the circle. The error is due to a fi-
nite mesh, but making a finer mesh resulted in program instability. It is seen,
that the method gives a reasonable approximation even for the case not very
close to a semiclassical one.

0.10 Discussion and conclusions

The results have close relationship to the initial stages of KAM chaos develop-
ment in slightly distorted regular billiard. The wave structures corresponding
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Figure 9: Numerically calculated eigenmodes in a slightly distorted circle, which
correspond to the breaking of the single arc.

to initial stages of KAM chaos in ray optics are obtained. In fact, the reported
construction seems natural for investigation of classical behaviour of trajecto-
ries, and their characteristic features, such as splitting. We do not consider
these questions here in detail. However, keeping in mind this correspondence is
useful for predicting the character of solutions. The relation to KAM chaos also
makes estimations of validity range for approximations a laborious task.Since
the typical perturbations include to some extent higher harmonics, thus modes
corresponding to trajectories with big periods can become distorted in compli-
cated ways. Higher perturbation terms also become quite involved. The validity
range probably has to be investigated independently for each particular case.

The advantage of the approach is that it gives in a unified way different
types of modes observed in cavities: nearly regular ones, semiclassical modes
around stable trajectories, and scar modes. The last type is especially difficult
for analytic methods. The approach also seems to be potentially useful for
modes corresponding to a classical KAM homoclinic tangle, which is a question
not completely understood now.

The appropriate object to study the modes related to homoclinic tangle is
obtained by a small deformation of an ellipse. There the calculation of modal
structure is made by simultaneously solving Mathieu and modified Mathieu
equations, which is necessary to satisfy the boundary conditions. From this, pa-
rameters κ, q of Eqs.(47,48) are determined. The homoclinic tangle is observed
when κ ≈ 2q. In this case, the behaviour of solutions for big q is not trivial.
The eigenvalues in function of some appropriately chosen quantum number lie
on curves similar to those depicted in Fig.3a, but there exist two branches, one
for symmetrical, and another for anti-symmetrical solutions. The eigenvalue
spacing diminishes around the singular point where κ ≈ 2q, but this dimin-
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ishing is logarithmic, thus very big mode numbers are necessary to adequately
represent the situation in a semiclassical limit. Though the curvature of lines
H(I1, I2) = const close to the singular point tends to infinity, the lattice of
Fig.2 cannot be considered as a rectangular one there. Taking into account
the interplay between level lines and curved lattice, the conditions of Fig.2 in
a critical region become such, that the relative curvature in fact diminishes in
this region to nearly zero for big q values. Thus, one can expect, that higher
resonances, corresponding to big m, l numbers can become excited. For this
it is also necessary that the corresponding perturbation matrix elements are
big enough for m value in question. Though for circle the shape perturbation
by a single low harmonic results in only one non-zero element, the calculation
demonstrates, that for the case of ellipse close to a singular region, a relatively
big number of matrix elements is non-zero. The numerics suggests, that this
number is logarithmically growing with q, but appropriate estimations are still
under investigation.
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