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Introduction

It is known from the midst of the nineteenth century by the work of James Clerk Maxwell

and the experimental results on Heinrich Hertz, that light is an electromagnetic wave

[1] [2]. In free space, electromagnetic waves are described by uncoupled wave equations

that are satisfied by the electric and magnetic fields. By considering electromagnetic

fields in free space as time harmonic fields, the wave equation can be simplified to the

Helmholtz equation so that the wavefields can be described by means of their spatial

component. Since the invention of the laser in the 1960s, highly directional wavefields,

namely optical beams, grew in importance from both the theoretical and practical stand-

points [3] [4]. Under the consideration of highly directional wavefields, the Helmholtz

equation can be simplified to the paraxial wave equation. A summary of those parax-

ial beams has been done by Kogelnik and li [5] . A standard method used in order

to obtain solutions from the Helmholtz and the paraxial waves equations consists in

the use of a punctual light source that is moved into a complex position so that the

solution becomes directional [6] [7] [8]. This method possesses the inherent problem

of providing solutions with singularities. In the work of Chavez and Rodriguez [9], it

was found by means of the oblate spheroidal coordinate system and its solutions for

the Helmholtz equation, that solutions describing highly directional beams can be con-

structed so that they behave asymptotically as paraxial Laguerre-Gauss beams, or as

non-paraxial, highly focused waves depending on the value of a particular parameter.

By considering the maximum diffraction angle of a beam as 30 degrees, as described by

Siegman [3], it was obtained a threshold that separates the paraxial and non-paraxial

behavior of the spheroidal waves, setting aside problems related to singularities. Beams

that possesses defined energy distribution as well as defined non trivial wavefront con-

stitution during propagation. Examples of those are the Bessel, Laguerre-Gauss and

Hermite-Gauss beams [10] [11] [3]. Structured beams possess interesting physical prop-

erties. It is known that electromagnetic fields possesses linear and angular momentum,

the angular momentum can either be from the polarization of the field, or from the

spatial distribution. The contribution from the spatial distribution can be described as

the variation of the poynting vector over a helical wavefront. This characteristic is the

1



Introduction 2

orbital angular momentum [12], and has been used for multiple applications as trans-

ferring information [13] and optical manipulation of microparticles [14] [15]. Another

interesting property of some structured beams is the following: if a portion of the beam

is obstructed by an opaque object, after a certain distance of propagation, the damage

is partially “ healed ”. This property is called self-healing. Much work has been done on

this subject [16] [17] [18]. In the case of Bessel beams, it was found by Chavez [19] that

the self-healing can be described by means of interfering conical waves, namely, Hankel

waves, described by the two linearly independent solutions of the Bessel equation [20]

[21]. Furthermore, Hankel waves can be considered as fundamental traveling waves con-

stituting, in superposition, the Bessel beams. In the same spirit, in the work of Jaimes

[22] it was constructed a second solution for the associated Laguerre equation, that can

be used to describe the physical properties of the Laguerre-Gauss beams through the

interference of two Hankel-like, semi-conical waves. However, this approach possesses an

inherent problem: the second solution to the associated Laguerre equation that is used

to construct the Hankel-like waves, turned out to be a function that approaches infin-

ity as the radial distance increases. Therefore, the Hankel-like semi-conical waves are

strictly unbounded functions. Our hypothesis is that this singular behavior is induced

by the paraxial approximation, which applies for distances close to the propagation axis,

and not necessarily away from it.

This work is centered on the oblate spheroidal angular equation and its linearly indepen-

dent solutions. As mentioned before, the asymptotic expansion of the angular compo-

nent of the oblate wavefunction, for large spheroidicity parameters, takes the form of the

Laguerre-Gauss beam [9] [23] [24]. Thus, according to our hypothesis, we will use solu-

tions to the exact Helmholtz equation, namely, the spheroidal wavefunctions, since they

remain finite over the whole space. In order to construct spheroidal waves that behave

asymptotically as the Hankel-like semi-conical waves associated in superposition to the

Laguerre-Gauss beams, in this work a revision on the second solution to the spheroidal

angular equation is done. The standard second solution to the oblate spheroidal angular

equation is not suitable for the construction of Hankel-like spheroidal waves. This work

deals with constructing an alternative second spheroidal angular functions that allows

the construction of the Hankel-like spheroidal waves. Solving this problem will allow

us the exploration of related topics, such as the physical behavior of the spheroidal

beams, the nature of the divergence of the Hankel-like waves associated to Laguerre-

Gauss beams, and the behavior of non-paraxial beams that are useful in areas as the

optical manipulation of microparticles.

From chapter one to chapter four, a brief summary on the background of this work

is presented. Chapter one contains the basic theory of paraxial beams, specifically, the
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Gaussian beam. Chapter two contains the deduction and general properties of Laguerre-

Gauss beams, that is, the solution to the paraxial wave equation in circular cylindrical

coordinates. Chapter three contains a summary on the importance of second solutions

to the differential equations obtained by solving the Helmholtz or the paraxial wave

differential equations with the method of separation of variables, in the context of waves

fulfilling the Sommerfeld radiation condition. This is presented in the case of Hankel

waves for the Helmholtz equation in circular cylindrical coordinates, as they model the

propagation of Bessel beams, being the latter the result on the interference of Hankel

waves. In this chapter, is also presented the case of the Laguerre-Gauss beams, where

a second solution to the associated Laguerre equation is used to construct Hankel like,

semi-conical waves, with which is intended to describe the propagation properties of

the Laguerre-Gauss beams. Also, the aforementioned problem of the second solution

is discussed. Chapter four contains the basic theory of the spheroidal wavefunctions,

the standard method used to compute them, and the connection between the spheroidal

wavefunctions and the Laguerre-Gauss beams. Chapter five describes the methods devel-

oped in this work to approximate an alternative second solution to the spheroidal angular

equation that allows to construct Hankel-like spheroidal waves. Lastly, we present some

concluding remarks and perspectives of this work.



Chapter 1

The Gaussian beam

This chapter contains a brief explanation of the Gaussian beam, its deduction and

properties, along with background required in further chapters.

1.1 The paraxial equation

The Maxwell equation’s play a central role in the theory of electromagnetic fields. These

equations describe the dynamics of the electromagnetic phenomena, and they constitute

a milestone in the development of the physical theories in the nineteenth century, uni-

fying many of the empirical results obtained for more than a century in a single theory.

In vacuum they are expressed as in 1.1

~∇ · ~E = 0,

~∇ · ~B = 0,

~∇× ~E = −∂
~B

∂t
,

~∇× ~B = µ0ε0
∂ ~E

∂t
,

(1.1)

where ~E is the electric field, ~B the magnetic field, ε0 the permittivity of free space, and

µ0 is the permeability of free space. In this case, the speed of light is given by:

c =
1

√
ε0µ0

.

4
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By taking the curl in the curl terms of (1.1), and using some vector identities, it is possible

to obtain a standard wave equation as the behavior describing the electromagnetic fields

[25]

1

c2

∂2 ~E

∂t2
− ~∇2 ~E = 0.

1

c2

∂2 ~B

∂t2
− ~∇2 ~B = 0.

(1.2)

The equations (1.2) are of vector nature, however, these last equations are uncoupled.

The vector nature of the fields is described by the property of polarization [25]. A field

is considered scalar if the variations are only in a direction of polarization, thus, only

one component of (1.2) is considered.

Considering a scalar, monochromatic wave, this is, only one frequency, the resultant

equation is the Helmholtz equation (1.3), and the temporal component of the wave is

given by exp(−iωt), being ω the angular frequency of the wave. The wave equation is

reduced to the Helmholtz equation,

∇2U(~r) + k2U(~r) = 0. (1.3)

The Helmholtz equation describes the spatial propagation of the wave. A case of interest

is that of a highly directional field, that is, a field in which most of the energy and its

variations, are confined in the neighborhood of the propagation axis, usually the z-axis.

This last requirement is known as the paraxial condition, and the solutions receives the

name of beams, and have the following form,

U(~r) = u(~r) exp (ikz). (1.4)

Where U is a solution of the Helmholtz equation and u is a paraxial solution. Physically,

the paraxial condition can be written as (1.5) [26].

λ

∣∣∣∣∂u∂z
∣∣∣∣� |u| . (1.5)

Under the assumptions (1.4) and (1.5), the Helmholtz equation can be simplified to the

paraxial wave equation,
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∇2
tu(~r) + 2ik

∂u(~r)

∂z
= 0, (1.6)

where ∇2
t is the transverse laplacian, given by

∇2
t =

∂2

∂x2
+

∂2

∂y2
.

1.2 Wavefronts and rays

Electromagnetic waves are, in general, complex functions of the space coordinates and

time. It is possible to express a wave in the form 1.7

~E0(~r) = ~e eik0n(~s·~r), (1.7)

where ~s is an unit vector representing the direction of propagation and ~e is a complex

position dependent vector function. If r, the position vector, is much greater than a

wavelength, and away from any source, the field in equation (1.7) can be represented

locally as a plane wave, and ~e can be slowly varying function independent of k0, the

wavenumber. In this region, the wave can be expressed as

~E0(~r) = ~e eik0S(~r), (1.8)

where S(~r) is a scalar function of position, namely the optical path of the wave. This

wave solution is evaluated in the Maxwell equations (1.1) to obtain the equation that

describes S(~r), independent of ~e, valid in the approximation of distances much greater

than λ. This results in the Eikonal Equation [25],

(~∇S(~r))2 = n2, (1.9)

with n =
√
µε. The Eikonal equation (1.9) is the connection between the wave optics

and the ray optics. The surfaces S(~r) = constant are called wave fronts. In this

approximation, the direction of the time averaged Poynting vector, which represents the

energy transfer, is given by

~s =
~∇S
‖~∇S‖

. (1.10)
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The vector ~s represents the direction of energy transfer, and the curves tangential to

these vectors are called rays. These geometric entities will be used in further sections.

Figure 1.1: Wavefronts and rays.

1.3 The plane wave and the spherical wave

Two types of waves represent some of the limits of the asymptotic behavior of wave

propagation. These are the plane waves (1.11) and the spherical waves (1.12).

u = eikz, (1.11)

u =
eikr

‖r‖
. (1.12)

Their properties are opposite: the plane wave is totally directional, that is, the wave

fronts are planes and the rays are straight lines normal to them, thus, the intensity does

not depend on position. The other extreme is the spherical wave, whose wave fronts are

concentric spheres and with radial lines as the rays. This wave has the property of being

non directional, that is, the wave is propagating at any point in space, so the energy

decreases with distance. This is illustrated in fig. (1.3) and (1.2)

The curvature of a surface is given by the inverse of radius of the osculating sphere at

the point. As the wave fronts in a spherical wave are given by concentric spheres, the

curvature decreases with distance. The plane wave, unlike the spherical wave, has null

curvature everywhere, and a radius of curvature infinitely large. Even though both kind

of waves are widely used, and general solutions of the Helmholtz equation are given

in terms of them (like the Huygens principle and the angular spectrum propagation

method)[27], these solutions possess inherent difficulties: The plane wave exists in all

space with infinite energy, and the spherical wave possesses a singularity at ~r = 0. Both

of them are nonphysical in this regard.
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Figure 1.2: Wavefronts and rays of
the plane wave.

Figure 1.3: Wavefronts and rays of
the spherical wave.

1.4 The Gaussian beam

The paraxial wave equation (1.6) describes waves which are confined close to the prop-

agation axis. A special case, is the beam presented in a laser, which has a Gaussian

intensity profile. To obtain this solution, we can propose a solution of the form

u(~r) = A0 exp ik(x2 + y2)/2q(z) exp ip(z), (1.13)

where A0 is a constant, p(z) and q(z) are functions dependent on the propagation dis-

tance. Using (1.13) and (1.6), we obtain

p(z) = q0 + z, (1.14)

q(z) = i log(
q0 + z

q0
), (1.15)

where q0 = q(0). It is convenient to write q(z) in the form

1

q(z)
=

1

R(z)
+

iλ

2πω(z)2
, (1.16)

where, as we will see later, R corresponds to the radius of curvature of the beam, ω(z)

corresponds to the spot size, taken on the intensity, the measurable value, rather than
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on the amplitude, as in some literature [28]. With this definition of q, we have

exp(p(z)) =
1

1− z/R0 + iλz/2πω2
0

, (1.17)

where R0 = R(z = 0) and ω0 = ω(z = 0). By taking the real parts of equations (1.15)

and (1.16), we obtain

1

R(z)
=

Re(q0) + z

|q2
0|+ 2zRe(q0) + z2

, (1.18)

from where it can be seen that R =∞ at some value. By taking R0 =∞, we obtain

1

q0
=

iλ

2πω2
0

. (1.19)

By constructing a new parameter, z0, the Rayleigh range as

z0 =
πω2

0

λ
=
kω2

0

2
, (1.20)

we obtain

R(z) =
z

2z0
+

2z0

z
, (1.21)

ω(z) = ω0

√
1 +

z2

4z2
0

. (1.22)

The Rayleigh range is the distance at which the beam expands
√

2 the minimum size

at the focus. The spot size ω(z) describes the energy distribution in a transverse plane,

it can be seen from equation (1.22) that the spot size takes the geometric form of an

hyperbola. The radius of curvature R(z) describes the behavior of the wavefront as the

beam propagates. By using p(z) of (1.14) we obtain the Gouy phase shift,

φ(z) = arctan
z

2z0
. (1.23)

The Guoy phase shift is a general property of a focusing wave, and can be described

as the extra path a straight light ray has to travel, in comparison to the curved path

defined with the Eikonal equation [29]. In summary, the full Gaussian beam can be

written as

u(x, y, z) =
1√

1 + z2/4z2
0

e−iφ(z)e−(x2+y2)/2ω(z)2ei(x
2+y2)/2ω2

0R(z). (1.24)

The figures through 1.4 to 1.9 illustrate the main components of the Gaussian beam.
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Figure 1.4: Longitudinal inten-
sity.

Figure 1.5: Wavefronts and
rays.

Figure 1.6: Guoy phase shift. Figure 1.7: Intensity on axis.

Figure 1.8: Waist of the Gaus-
sian beam.

Figure 1.9: Curvature of the
Gaussian beam.
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1.5 Properties of the Gaussian beam

The Gaussian beam, being the starting point to study more general beam solutions, has

some interesting properties.

The Gaussian beam (1.24), has a real exponential as a transverse component, given

by e−(x2+y2)/ω(z)2 . This property means that the Gaussian beam transverse profile is

conserved during propagation, the only change is a scale factor given by ω(z).

The radius of curvature, with the inverse shown in figure 1.9 possesses an interesting

property: near the focus the curvature is zero, which means that in this region its phase

structure is approximately the one of a plane wave. This can be seen too in figure 1.5.

The plane z = 0, where the beam is tightest, is called the focal plane, or the beam waist.

Now, to see the form of the Gaussian beam at large distances, let us write the spherical

wave as
eikr

r
=

eik
√
x2+y2+z2√

x2 + y2 + z2
=

eikz
√

1+(x2+y2)/z2

z
√

1 + (x2 + y2)/z2
. (1.25)

Now considering the paraxial region z �
√
x2 + y2, the denominator in equation (1.25)

can be approximated by z, and the exponent can be expanded in powers of z. By taking

only the first terms, we obtain the paraxial approximation of the spherical wave by

eikr

r
≈ 1

z
eikz eik(x2+y2)/2z, (1.26)

Let us write again the amplitude Gaussian beam,

E(~r) = A0e
−iφ(z)e−(x2+y2)/2ω(z)2 eikz√

1 + z2/4z2
0

eik(x2+y2)/2R(z),

with z large enough R(z) ∼ z, w(z) ∼ w0z and exp(iφ(z)) ∼ i, the Gaussian beam,

leaving constants aside, can be written as

E(~r) ∼ 1

z
eikz eik(x2+y2)/2z. (1.27)

Comparing 1.27 and 1.26, they take the same form at large distances. Last results are

summarized as: in short distances a Gaussian beam is closer to a localized plane wave,

whereas at large distance, the Gaussian beam is similar to a spherical wave.

The size of the Gaussian beam is given by ω(z).

ω(z) = ω0

√
1 +

z2

4z2
0

. (1.28)



The Gaussian beam 12

This takes the form of an hyperbola, as illustrated in figure 1.8, which is the main reason

for the use of spheroidal coordinates in the next chapters.

1.6 Natural coordinates for the Gaussian beam

A useful set of coordinates for the Gaussian beam is given by

z′ =
z

z0
,

x′ =
x

w0
,

y′ =
y

w0
.

(1.29)

Under this transformation, the Gaussian beam is expressed as [30] [31]

u(x′, y′, z′) = e−iφ(z′) 1√
1 + z′2/4

ei(x
′2+y′2)/2R(z′) e−(x′2+y′2)/2ω2(z′), (1.30)

where

φ(z′) = arctan(z′/2),

R(z′) =
z′

2
+

2

z′
,

ω(z′) =
√

1 + z′2/4.

(1.31)

Under these coordinates, the Gaussian beam takes an elegant trait, this is,

I(z′ = 2, x′ = 0, y′ = 0) = UU = A2
0/2,

I(z′ = 0, x′ = y′ = 1) = UU = A2
0 e
−1.

(1.32)

These natural units are also useful to compare beams of different size, with a better

insight than in SI units, as in the first definition of the Gaussian beams. In further

chapters, normalized units are used and designated as (x, y, z), unless otherwise stated.



Chapter 2

Laguerre-Gauss beams

This chapter contains a brief explanation on the Laguerre-Gauss (LG) beams, and its

properties.

2.1 The Laguerre-Gauss beams

The Gaussian beam, in natural circular cylindrical coordinates (ρ, φ, z) can be written

as

u(~r) = A0r
−iφ(z) 1√

1 + z2/4
eiρ

2/2R(z) e−ρ
2/2ω2(z), (2.1)

where

ρ =
√
x2 + y2, (2.2)

and R(z), φ(z) and ω(z) are the defined in section 1.6.

To derive the solution in circular cylindrical coordinates, the next ansatz is proposed.

v(~r) = F (ρ/ω(z))G(φ)u(~r) eiα(z). (2.3)

This solution is evaluated in the paraxial wave equation 1.6, which in natural circular

cylindrical coordinates is given by

∂2v

∂ρ2
+

1

ρ

∂v

∂ρ
+

1

ρ2

∂2v

∂φ2
+ 4i

∂v

∂z
= 0. (2.4)

After evaluation, the paraxial equation takes the form

1

F

∂2F

∂ρ2
+

4

Fu

∂u

∂ρ

∂F

∂ρ
+

1

ρF

∂F

∂ρ
+

1

ρ2G

∂2G

∂φ2
+

4i

F

∂F

∂z
− 4

∂α

∂z
= 0. (2.5)

13



Laguerre-Gauss beams 14

With the coordinate transform

ζ = ρ/ω, (2.6)

the paraxial equation is then written as

1

F

∂2F

∂ζ2
+

1

F

(
iω2

R
− 4

)
ζ
∂F

∂ζ
+

1

ζF

∂F

∂ζ
− iω2

R

ζ

F

∂F

∂ζ
+

1

ζ2

1

G

∂2G

∂φ2
− ω2∂α

∂z
= 0. (2.7)

the next step is separating equations for each variable. The first equation comes from

taking the last term of equation (2.7), and set it equal to a constant C, since it is the

only z-dependent term, which gives

α(z) = 2C arctan(z/2). (2.8)

The second to last term in equation (2.7) is the one φ-dependant. The solution to the

associated differential equation, in order to be a physical solution it must be continuous

around a closed path encircling the azimuth axis, that is, the separation constant must

be an integer. By this condition, the azimuth function takes the form

G(φ) = Ame
imφ +Bme

−imφ. (2.9)

Now, equation 2.7 can be written as

d2F

dζ2
+

(
1

ζ
− 2ζ

)
dF

dζ
+

(
C − m2

ζ2

)
= 0. (2.10)

With the coordinate transformation y = ζ2, the last equation takes the form 2.11

y
d2F

dy2
+ (1− y)

dF

dy
+

1

4

(
C − m2

y

)
F = 0. (2.11)

By trying a power expansion solution (Frobenius solution) to equation 2.11, it can be

concluded that an adequate solution can be written as

H(y) = y−m/2F (y). (2.12)

Is to be noted that equation (2.12) possesses a mistake in the exponent in the book

Mathematical Methods for Optical Physics and Engineering [28]. By using equations

(2.11) and (2.12), the differential equation for H is

y
d2H

dy2
+ (m+ 1− y)

dH

dy
+

(
1

4
C − m

2

)
H = 0. (2.13)



Laguerre-Gauss beams 15

the last equation is the associated Laguerre equation, the coefficient (C/4−m/2), must

be an integer in order to obtain a physical solution with finite energy, namely, the radial

index n. Thus, the associated Laguerre equation is given by

y
d2H

dy2
+ (m+ 1− y)

dH

dy
+ nH = 0. (2.14)

Equation 2.14 is very important in this work, and shall be used in further chapters.

Finally, the Laguerre-Gauss beam can be written as

vmn (~r) =

√
2n!

π(n+m)!

(
ρ

ω(z)

)m
Lmn

(
ρ2

ω2(z)

)
eimφ e−iα(z) u(~r), (2.15)

where

α(z) = (2n+m+ 1) arctan(z/2), (2.16)

and the normalization constant is set from∫∫
IR2

vmn (~r)vmn (~r) dr2 = 1. (2.17)

2.2 Properties of the Laguerre-Gauss beam

The Laguerre-Gauss beams possess properties which are different from the Gaussian

beam. These properties are briefly explained in this section.

The Laguerre-Gauss beam, as the Gaussian beam, remains with the same form over

propagation, up to a scaling factor, namely, they are structurally stable on propagation.

Indeed, the squared modulus of the Laguerre-Gauss beam is scaled by ω(z).

Given the Laguerre-Gauss beam structure, the wavefronts have the same behavior of

the Gaussian beam, that is, at the neighborhood of the focal plane the wavefronts are

almost plane, and over large distances the wavefronts take the form of the paraxial

approximation of the spherical wave, as discussed in the previous chapter.

The waist of the Laguerre-Gauss beams is different from the waist of the Gaussian

beam. This is due to the associated Laguerre polynomials that conform the transverse

structure of the beams. As stated in [32], an useful definition of spot size will contain

all the maxima of intensity of the beam within this region. The spot size defined for a

Gaussian beam does not include the last ring of the Laguerre-Gauss beam. Besides, the

diffraction angle of a Gaussian beam is not applicable in general to a Laguerre-Gauss

beam. By considering the square root of the variance of the Laguerre-Gauss beam as

the definition for a spot size, it can be obtained

WL(z) = ω(z)
√

2n+m+ 1. (2.18)
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It is remarkable that the Laguerre-Gauss spot size presents a hyperbolic behavior, just

like a Gaussian beam spot size. The parameter m describes the angular variation of the

beam, and its effect over the beam phase can be observed in figures 2.1 to 2.4 .

Figure 2.1: Intensity of Laguerre-
Gauss beam with n = 1 and m = 1

at the focal plane.

Figure 2.2: Phase of Laguerre-
Gauss beam with n = 1 and m = 1

at the focal plane.

Figure 2.3: Intensity of Laguerre-
Gauss beam with n = 2 and m = 2

at the focal plane.

Figure 2.4: Phase of Laguerre-
Gauss beam with n = 2 and m = 2

at the focal plane.
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In the work of Allen et Al [12] is discussed and proved that for a Laguerre-Gauss beam,

the orbital angular momentum is well defined and proportional to m for the field, and

~m per photon. This can be understood as follows. The phase term induces a helical

wavefront. Since the poynting vector is locally normal to the wavefront, it has an

azimuthal component different from zero for m 6= 0, implying that the beam carries

orbital angular momentum. This property is especially useful in the manipulation of

microparticles, as cells, in instruments named optical tweezers.

The Laguerre beams, as other structured beams and modes, possess an useful property,

that is, if the beam is obstructed by a relatively small object, after some distance, the

beam will heal the damage, thus the Laguerre-Gauss beams are self-healing[33]. This

behavior is, at least, hard to explain by considering the theoretical beam rays from the

beam. Figures 2.5 and 2.6 illustrates this behavior.

Figure 2.5: Self healing of an ob-
structed Laguerre-Gauss beam with

n = 7 and m = 0.

Figure 2.6: Self healing of an ob-
structed Laguerre-Gauss beam with

n = 10 and m = 0.

2.2.1 The asymptotic behavior of the Laguerre-Gaussian beam with

large n

At the focal plane, and dropping the normalization constant, the Laguerre Gauss can

be expressed as

u(z = 0) = (ρ)m Lmn
(
ρ2
)
eimφ e−ρ

2/2. (2.19)

For large n, by using the properties of the associated Laguerre polynomials as a confluent

hypergeometric function [34], the Laguerre function takes the asymptotic form [33]

Lmn (x) ∼ ex/2 (x(n+ (m+ 1)/2))−m/2Jm(2
√
x(n+ (m+ 1)/2)),
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which is equivalent to

e−x/2xm/2Lmn (x) ∼ Jm(2
√
x(n+ (m+ 1)/2)). (2.20)

By comparing 2.19 and 2.20, it can be concluded that for large n the Laguerre-Gaussian

beam takes the form

u(z = 0) ∼ eimφJm
(

2ρ
√

2(n+ (m+ 1)/2)
)
. (2.21)

The result of equation (2.21) relates two important optical fields, the Laguerre-Gauss

beam and the Bessel beam. This permits a peer-comparison between Laguerre-Gauss

and Bessel beams, and concluding that Laguerre-Gauss beams possess better propaga-

tion properties than Bessel beams [33]. The Bessel beams will be discussed in further

chapters.



Chapter 3

The need for second solutions

This chapter contains a brief explanation about the Laguerre second solution, and the

basis for the Hankel-type waves as constituents of the Laguerre-Gauss beams, in analogy

to Bessel beam and the Hankel waves.

3.1 The Bessel beam

3.1.1 Deduction of the Bessel beam

This section contains a brief deduction and explanation of the Bessel beam, and their

constituent Hankel waves [19]. The Helmholtz equation

∇2U(~r) + k2U(~r) = 0, (3.1)

can be written, in circular cylindrical coordinates as

1

ρ
∂ρ(ρ ∂ρ)U(~r) +

1

ρ2
∂φ,φU(~r) + ∂z,zU(~r) + k2U(~r) = 0, (3.2)

where k, the wave vector, is defined as k2 = (2π/λ)2 = k2
r + k2

z . To solve this equation,

the method used is the separation of variables, and the solution U(~r), is proposed as

R(ρ)T (φ)Z(z). With some algebraic manipulations, the Helmholtz equation can be

written as

k2ρ+
ρR′′(ρ)

R(ρ)
+
R′(ρ)

R(ρ)
+
T ′′(φ)

ρT (φ)
+
ρZ ′′(z)

Z(z)
= 0, (3.3)

this equation is readily separable, and the solutions depend on the boundary conditions.

In optics, the solution to equation (3.3) must be finite and continuous everywhere. By

19
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separating the z-dependent term, and setting it equal to −k2
z , the resultant differential

equation for Z(z) is
Z ′′(z)

Z(z)
= −k2

z , (3.4)

and its general solution can be expressed as

Z(z) = c1e
ikzz + c2e

−ikzz. (3.5)

Note that we are taking kz ∈ R in equation (3.3). Taking the T (φ) terms and setting

them equal to −m2, where m must be an integer for T (t) being continuous around a

close loop around the z axis, the resulting differential equation is

T ′′(φ)

T (φ)
= −m2, (3.6)

whose general solution can be written as

T (φ) = c3e
imφ + c4e

−imφ. (3.7)

The remaining differential solution, after substituting the constants, is written as follows

ρ
(
k2
z − k2

)
R(ρ) +

m2R(ρ)

ρ
+ ρR′′(ρ)−R′(ρ) = 0 (3.8)

By writing k2 − k2
z = k2

r , and some algebraic manipulations, the differential equation

can be written as

ρ2R′′(ρ) + ρR′(ρ) +
(
ρ2k2

ρ −m2
)
R(ρ) = 0,

this is a Bessel differential equation, and the general solution can be written in the

following form

R(ρ) = c5Jm(kρρ) + c6Nm(kρρ),

where Jm is the Bessel function of the first kind, and Nm is the Bessel function of

the second kind also known as Neumann function. To obtain the standard solution,

some conditions are taken for the coefficients c1 . . . c6. We are interested in solutions

that describe waves propagating along the z−axis direction, and solutions with only one

orbital angular momentum phase term, thus, c2 = c4 = 0. The Bessel function of the

second kind Nm possesses a singularity at ρ = 0, thus along the z-axis. Commonly,

the physical solution is chosen to avoid this singularity, and thus, c2 is equal to zero.

However in further sections these solutions will be proved to have real physical meaning.

Thus, the standard Bessel beam is

U(ρ, φ, z) = eimφ eikzzJm(kρρ). (3.9)
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3.1.2 Properties of the Bessel beam

The Bessel modes have properties very different compared to the Gaussian beam. This

properties have been studied in many works. In this section we present some of them.

3.1.2.1 The nondiffracting property of the Bessel beam

In the work of Durnin [10], it was pointed out a peculiar property of the Bessel mode,

if ideally, it does not change over propagation in space, this can be expressed as

‖U(ρ, φ, z = 0)‖2 = ‖U(ρ, φ, z > 0)‖2 (3.10)

That is, an ideal Bessel beam is non-diffracting. However, the Bessel function of the

first kind is not a square integrable function. But a real Bessel beam, just like a real

plane wave, cannot have an infinite amount of energy. If we truncate it by using a

circular aperture, the behavior is very different from an ideal Bessel beam. The former,

as it propagates, it undergoes diffraction, remaining non-diffracting only in a delimited

region of space . In figures 3.1 and 3.2 both theoretical and approximate Bessel modes

are illustrated with m=0 and kr = 1/10.

Figure 3.1: Amplitude of theoretical
Bessel beam.

Figure 3.2: Amplitude of actual
Bessel beam.

On the other hand, a very interesting property of Bessel beams is the self-healing. A

relatively small damage to the beam will reconstruct after propagating certain distance.

This property was first noticed by Bouchal et al. [35] and it was explained in terms of

geometrical considerations. This behavior is illustrated in figures 3.3 and 3.4.

Furthermore, Bessel beams, like the Laguerre-Gauss beams, display an angular depen-

dence of exp(imφ), and thus, have a well defined amount of orbital angular momentum.

Although Bessel beams have the advantage of being nondiffracting, they remain that
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Figure 3.3: Self healing of a Bessel
beam with m=0 and kr = 1/10.

Figure 3.4: Self healing of a Bessel
beam with m=0 and kr = 1/15.

way only in a limited region of space. In this sense Laguerre-Gauss beams have a farther

stable propagation than Bessel beams under similar conditions [33].

3.1.3 The Sommerfeld radiation condition

By solving the Helmholtz equation, we obtain a general mathematical solution, and

like it was shown in section 3.1, the physical solution must be chosen by considering

boundary conditions. The latter specify the physical solution unambiguously. We are

interested in free space wave propagation, and it has its own boundary condition, namely,

the Sommerfeld radiation condition [36]. It can be written as :

lim
r→∞

r

(
ikU − ∂U

∂r

)
= 0, (3.11)

where U is a solution for the Helmholtz equation.

The Sommerfeld radiation condition can be understood in the following way: it requires

that the solution behaves as an outgoing wave asymptotically for ρ→∞. In other words,

there cannot be incoming waves from infinity. If applying the Sommerfeld radiation

condition to a plane wave exp(i~k · ~r), it can be seen that a plane wave does not fulfill

the radiation condition, and is not suitable as a physical solution. An interesting case is

the spherical wave. This can be written as exp (ikr)/r or exp (−ikr)/r for an outgoing

(diverging) and incoming (converging) spherical wave, respectively. For the converging

wave:

lim
r→∞

r

(
−ik e

ikr

r
− ∂

∂r

e−ikr

r

)
,

lim
r→∞

e−ikr(1 + 2ikr)

r
6= 0

(3.12)
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while for the outgoing wave:

lim
r→∞

r

(
ik
eikr

r
− ∂

∂r

eikr

r

)
,

lim
r→∞

eikr

r
= 0.

(3.13)

From this, it can be concluded that an incoming spherical wave does not fulfill the Som-

merfeld radiation condition, while the outgoing does. Furthermore, it can be concluded

that a solution to the Helmholtz equation that behaves asymptotically as an outgoing

spherical wave also fulfills the radiation condition.

3.1.4 The Sommerfeld radiation condition and the Bessel beam

As it was discussed in the work of Chavez-Cerda [19] the standard Bessel beams do not

fulfill the radiation condition. This and related results are treated in this section.

To evaluate the radiation condition for the Bessel beam, it is important to study the

asymptotic behavior of the Bessel function for large arguments. For both Bessel functions

of the first and second kind, their asymptotic expansions are:

Jm(x) ∼
√

2

πz
cos
(
x− mπ

2
− π

4

)
Ym(x) ∼

√
2

πz
sin
(
x− mπ

2
− π

4

) (3.14)

Another form to express the solution of the Bessel equation are the Hankel functions,

which in terms on Jm and Nm are defined as:

H(1)
m (x) = Jm(x) + iNm(x)

H(2)
m (x) = Jm(x)− iNm(x)

(3.15)

With their respective asymptotic expansions for large arguments

H(1)
m (x) ∼ (1− i)eix−

iπm
2

√
πx

H(2)
m (x) ∼ (1 + i)e

iπm
2
−ix

√
πx

The radiation condition needs to be evaluated in the radial direction, and for this case

it can be written as
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lim
ρ→∞

√
ρ

(
dH

dρ
− ikrH

)
= 0. (3.16)

By evaluating the radial component of Bessel beams in the equation (3.9)

lim
ρ→∞

√
ρ

(
d

dρ
Jm(krρ)− ikrJm(krρ)

)
,

∼ lim
ρ→∞

√
ρ

(
d

dρ

√
2

π

√
1

ρkr
cos
(
−ρkr +

πm

2
+
π

4

)
− ikr

√
2

π

√
1

ρkr
cos
(
−ρkr +

πm

2
+
π

4

))
,

∼(1− i)kre
1
2
i(πm−2ρkr)

√
π

.

(3.17)

therefore standard Bessel beams also do not fulfill Sommerfeld’s radiation condition.

Additionally the second solution Nm also does not fulfill Sommerfeld’s condition. The

only solution which fulfills the radiation condition is the one of the form

U(ρ, φ, z) = eimφ eikzzH(1)
m (kρρ). (3.18)

Implications of this results are briefly reviewed in next section, and are in accordance

with reference [19].

3.1.5 Properties of the Hankel waves and its relationship with Bessel

beams

Both Hankel waves and spherical waves have similar properties. Hankel waves can be

described as diverging and converging, not from a point source as in the spherical case,

but from the propagation axis, and like in the case of the spherical wave, only the

diverging solution fulfills the radiation condition.

The wavefronts of the wave H
(1)
m (~r) are diverging cones, while the wavefronts of the wave

H
(2)
m (~r) are converging cones. The wavefronts and rays of H

(1)
0 (~r) and H

(2)
0 (~r) are shown

in figures 3.5 and 3.6.

Under the Hankel waves scheme, the properties of truncated Bessel beams of the first

kind are readily explained. Bessel beams are standing waves produced by interference

of the two Hankel waves:
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Figure 3.5: Wavefronts and rays of

H
(1)
0 (~r).

Figure 3.6: Wavefronts and rays of

H
(2)
0 (~r).

U = eimφ eikzzH(1)
m (krρ) + eimφ eikzzH(2)

m (kρρ)

= eimφ eikzz(Jm(krρ) + iNm(krρ)) + eimφ eikzz(Jm(krρ)− iNm(krρ)),

= 2eimφ eikzzJm(krρ)

(3.19)

This also explains the physics of Bessel beams. Bessel beams only exist where its con-

stituent Hankel waves interfere. This can be seen by superposing the Bessel beam and

the rays of the Hankel waves in figures 3.7 and 3.8. In conclusion, even though normally

Figure 3.7: Region of existence of
the Bessel beam and its associated

Hankel rays.

Figure 3.8: Self healing of ob-
structed Bessel beam and its associ-

ated Hankel rays.

solutions as the Bessel function of the second kind and the Hankel functions are usually

discarded and deemed as nonphysical, such solutions may contain and explain physical

phenomena, as in the case of the Hankel waves and the Bessel beams.
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3.2 The second Laguerre solution

In chapter 3 a brief introduction to the standard Laguerre-Gauss beams was presented.

As in the case of Bessel beams, we will explore the possibility of describing Laguerre-

Gauss beams in the traveling wave approach, that is, to write Laguerre-Gauss beams as

the superposition of two counter propagating traveling waves. As we have shown in the

previous chapter, Laguerre polynomials behave asymptotically as the Bessel function of

the first kind. In this section we will obtain a second solution to the associated Laguerre

equation that behaves asymptotically as the Bessel function of the second kind, so that

we can find, in analogy to Hankel waves, what we will call from now on Hankel-Laguerre

traveling waves

3.2.1 First attempt to obtain a second solution for the Laguerre equa-

tion

The associated Laguerre equation is given by 2.14, presented here for convenience,

x
d2H

dx2
+ (m+ 1− x)

dH

dx
+ nH = 0.

From the basic theory of second order differential equation[37], given a first solution

for a second order differential equation, a second linearly independent solution can be

obtained in the following way

y2(x) = y1(x)

∫ x exp (−
∫ x1 P (x2) dx2)

(y1(x1))2
dx1, (3.20)

where P (x) is the coefficient of the first derivative term of the differential equation in

the form y′′(x) + P (x)y′(x) + q(x)y(x) = 0. In particular, for the associated Laguerre

equation, a second solution, denominated as L
m[2]
n ,can be expressed as

Lm[2]
n (x) = C0 L

m
n (x)

∫ x exp (−
∫ x1(m+ 1− x2)/x2 dx2)

(Lmn (x1))2
dx1,

=
1

π
Lmn (x)

∫ x ex1

xm+1
1 (Lmn (x1))2

dx1.

(3.21)

This second solution, as with Laguerre polynomials, does satisfy recurrence relations

L
α[2]
k+1(x) =

(2k + 1 + α− x)L
α[2]
k (x)− (k + α)L

α[2]
k−1(x)

k + 1
,

L
α+1[2]
k−1 (x) =

1

x

(
(k + α)L

α[2]
k−1(x)− kLα[2]

k (x)
)
.

(3.22)
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However, as it will be stressed in the next section, this second solution, in the form in

which it is written, is not suitable to formally study its asymptotically behavior in terms

of the Neumann function Nm.

3.2.2 A formal expansion for the second Laguerre

As mentioned at the beginning of this section, we are looking for a second solution of

the associated Laguerre equation that behaves asymptotically as the Neumann function

so that traveling waves, in the case of Laguerre-Gauss beams, can be defined. The latter

second solution is not written in a suitable form to perform such asymptotic analysis. In

the last chapter, it was presented the asymptotic expansion of the associated Laguerre

polynomials for large values of n, given by:

Lmn (x) ∼ ex/2 (x(n+ (m+ 1)/2))−m/2Jm(2
√
x(n+ (m+ 1)/2)), (3.23)

Then we look for a second solution with an asymptotic expansion of the form

Xm
n (x) ∼ ex/2x−m/2Nm(2

√
x(n+ (m+ 1)/2)) (3.24)

As it was shown in reference [22], this can be obtained by using the confluent hyper-

geometric function and the linearly independent second solution, the Tricomi function

following a procedure similar to the one introduced by Hankel in the definition of the

Neumann function [38]. The associated Laguerre polynomial, expressed in terms of the

confluent hypergeometric takes the form

Lmn (x) =
(m+ 1)n

n!
1F1 (−n,m+ 1, x) . (3.25)

By using the Tricomi function to obtain a second linearly independent solution, we

define, as in reference [22],

Xm
ν (x) =

Γ(ν +m+ 1) 1F1 (−ν,m+ 1, x)−m! cos νπ U(−ν,m+ 1, x)

sin νπ
, (3.26)

where ν is not an integer. However, we are interested in the integer case, then we define,

Xm
n := limν→nX

m
ν , with n integer.As it was proved in [22], Xm

n is a second solution of

the Laguerre equation, that by means of L’Hopital’s rule, it can be expressed as
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Xm
n (x) =

(−1)n

π

∂

∂ν

[
Γ(ν +m+ 1) 1F1 (−ν,m+ 1, x)

]∣∣∣∣
ν=n

−m!

π

∂

∂ν
U (−ν,m+ 1, x)

∣∣∣∣
ν=n

.

By using the definition of the confluent hypergeometric function and the Tricomi function

in last equation, the explicit form of the second solution to the associated Laguerre

equation can be written as

Xm
n (x) =

(−1)nn!m!(n+m)!

π

[ m∑
k=1

(k − 1)!

(n+ k)!(m− k)!
x−k + (−1)n+1

∞∑
k=n+1

(k − n− 1)!

(m+ k)!k!
xk

+

n∑
k=0

(−x)k

(n− k)!(m+ k)!k!
[−Ln(x) + ψ(m+ k + 1) + ψ(k + 1)− ψ(n− k + 1)]

]
,

(3.27)

where ψ is the Digamma function [39]. This solution is singular at x = 0, what clearly

makes it independent of the first solution.

For this solution, to obtain an asymptotic expansion is not a simple task, but in reference

[22] it is proved to have the form

Xm
n (x) ∼ (−1)n+1n!m!Nm/2ex/2x−m/2Nm

(
2
√
x(n+ (m+ 1)/2)

)
. (3.28)

for large n. It is interesting that the second solution in equation (3.21), as shown by

heuristic methods, is proportional to Xm
n (x). Nevertheless for a high order polynomial,

the second solution presented in equation (3.21) presents very low numerical accuracy

at double precision, and the use of equations of recurrence (3.22) possesses an inher-

ent numerical instability which limits its use to low grade and order second solutions.

Therefore, the expansions of the associated Laguerre equation solutions, can be written

as:

n!Nm/2

(n+m)!
e−x/2xm/2Lmn (x) ∼ Jm(2

√
Nx), (3.29)

(−1)n+1

n!m!Nm/2
e−x/2xm/2Xm

n (x) ∼ Nm(2
√
Nx), (3.30)

where N = n + (m + 1)/2. This representation possesses an interesting property, the

left hand side of equation (3.30) has the form of the Laguerre-Gauss beam at the focal
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plane, while the right hand side of equation (3.30) has only the Bessel function Nm.

Examples of those asymptotic expansions are shown in figures 3.9 and 3.10.

Figure 3.9: Asymptotic expansion
(3.29) for n = 30 and m = 0.

Figure 3.10: Asymptotic expansion
(3.30) for n = 30 and m = 0.

3.2.3 The Hankel-Laguerre waves

By adding equation (3.29) and i times equation(3.30) we obtain a solution to the as-

sociated Laguerre equation with the envelope of a Laguerre-Gauss beam, that behaves

asymptotically as the Hankel wave H(1) for large values of n. The phase of the Hankel

Laguerre waves at the focal plane are semiconical within the spot size of the associated

Laguerre-Gauss beam. By increasing the radial index n, the semiconical wavefronts ap-

proximate the wavefront of the Bessel wave. Some examples of the amplitude, phase,

wavefronts and rays of the Hankel-like Laguerre waves are shown in figures 3.11 to 3.14.
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Figure 3.11: Amplitude at the focal

plane of h
0(1,2)
6 (r).

Figure 3.12: Amplitude at the focal

plane of h
0(2)
10 (r).

Figure 3.13: Phase of h
0(1)
10 (z = 0). Figure 3.14: Phase of h

0(2)
10 (z = 0).

Figure 3.15: Wavefronts and rays of

h
0(1)
10 (~r).

Figure 3.16: Wavefronts and rays of

h
0(2)
10 (~r).
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Let us define the Hankel Laguerre waves as

hm(1)
n (~r) =

(
Lmn (2ρ2/ω(z)2) + iXm

n (2ρ2/ω(z)2)
)
u(~r),

hm(2)
n (~r) =

(
Lmn (2ρ2/ω(z)2)− iXm

n (2ρ2/ω(z)2)
)
u(~r),

(3.31)

where u(~r) contain the remaining terms of the Laguerre-Gauss beam. By means of

interference of the Hankel Laguerre waves it is possible to obtain the Laguerre-Gauss

beam as a standing wave

hm(1)
n (~r) + hm(2)

n (~r) =
(
Lmn (2ρ2/ω(z)2) + iXm

n (2ρ2/ω(z)2)
)
u(~r)+(

Lmn (2ρ2/ω(z)2)− iXm
n (2ρ2/ω(z)2)

)
u(~r),

=2Lmn (2ρ2/ω(z)2)u(~r).

(3.32)

Therefore the Hankel Laguerre waves locally behave (asymptotically for large values of

the radial index n) as the traveling Hankel waves. Then we have obtained the traveling

waves that conform in superposition (interference) the Laguerre-Gauss beams. The use

of the Hankel-Laguerre waves to describe the self-healing of obstructed Laguerre-Gauss

beams[40] is shown in figures 3.17 to 3.22.

However, as discussed in reference [22], the second solution diverges, for large values of

x, fast enough so the Hankel Laguerre wave diverges too for ρ → ∞. Although that

divergent behavior is cancelled out in the interference of the Hankel Laguerre waves

(Xm
n is cancelled out in the sum h

m(1)
n + h

m(2)
n ), their asymptotic behavior for large

values of ρ is a problem that must be addressed. Our hypothesis is that the paraxial

approximation induces the singular behavior in the second solutions of the paraxial

wave equation. Therefore, we will study the exact solutions of the Helmholtz equation

that behave asymptotically as Laguerre-Gauss beams, and construct the corresponding

travelling waves. This is the main concern of further chapters.
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Figure 3.17: Laguerre-Gauss beam
with n = 7 and m = 0.

Figure 3.18: Laguerre-Gauss beam
with n = 10 and m = 0.

Figure 3.19: Obstructed Laguerre-
Gauss beam with n = 7 and m = 0.

Figure 3.20: Obstructed Laguerre-
Gauss beam with n = 10 and m = 0.

Figure 3.21: Obstructed Laguerre-
Gauss beam with n = 7 and m =
0 and its associated Hankel-Laguerre

rays.

Figure 3.22: Obstructed Laguerre-
Gauss beam with n = 10 and m =
0 and its associated Hankel-Laguerre

rays.



Chapter 4

Spheroidal functions

This chapter includes a brief introduction to the theory of the spheroidal functions and

the connection between spheroidal wavefunctions and Laguerre-Gaussian beams.

Many problems in physics and mathematics involve the exploitation of the symmetries

of the system under study. This could avoid difficulties, as in the case of solving centre-

symmetrical problems in Cartesian coordinates or by choosing the cylindrical coordinates

in axial-symmetrical systems[41]. In our case of interest, the coordinate system used is

the oblate spheroidal, which is one of the eleven coordinate systems where the Helmholtz

equation is separable [42], and, as stated in previous chapters, the geometrical proper-

ties of the Gaussian and Laguerre-Gauss beams suggest a relation with this coordinate

system.

4.1 The spheroidal coordinate systems

The spheroidal coordinate systems are defined by confocal revolution hyperboloids and

ellipsoids. If the revolution is around the major axis, the coordinate system is called

prolate spheroidal, and if the revolution is done around the minor axis, it is called oblate

spheroidal.

4.1.1 Oblate spheroidal coordinate system

The oblate spheroidal coordinates can be defined by the following transformation, relat-

ing the Cartesian coordinate system

33
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x = f
√

1− η2
√

1 + ξ2 cosφ,

y = f
√

1− η2
√

1 + ξ2 sinφ,

z = fηξ,

(4.1)

where η is the angular coordinate, ranging from [0, 1], ξ is the radial coordinate, ranging

from (−∞,∞), φ is the azimuth coordinate and f is the focal distance. The level

surfaces are oblate ellipsoids for ξ constant and varying η and φ (figure 4.1), one sheet

hyperboloids for η constant and varying ξ and φ (figure 4.3), and semi-planes for φ

constant and varying η and ξ. These surfaces are shown in figure 4.5, where the red

circle shows the focal circle, the blue line the rotation axis, and the orange dot the

coordinate (ξ, η, φ). The oblate spheroidal coordinate system is related to the spherical

system at the limit f → 0.

4.1.2 Prolate spheroidal coordinate system

Among various representations, the prolate spheroidal coordinate system can be defined

by the following transformation, relating the Cartesian coordinate system

x = f
√

1− η2
√
ξ2 − 1 cosφ,

y = f
√

1− η2
√
ξ2 − 1 sinφ,

z = fηξ,

(4.2)

where (x, y, z) correspond to the Cartesian components, η is the angular coordinate

ranging from [−1, 1], ξ corresponds the radial coordinate, ranging from [1,∞), φ is the

usual azimuth coordinate and f is the focal distance of the conic surfaces. The associated

level surfaces corresponds to prolate ellipsoids for ξ constant and varying η and φ (figure

4.2), two sheets hyperboloids for η constant and varying ξ and φ (figure 4.4), and semi-

planes for φ constant and varying η and ξ. These surfaces are shown in figure 4.6 where

the red dots shows the focal points, the blue line the rotation axis, and the orange

dot the coordinate (ξ, η, φ). The prolate spheroidal coordinate system is related to the

spherical coordinates at the limit f → 0.
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Figure 4.1: Oblate spheroid. Figure 4.2: Prolate spheroid.

Figure 4.3: Hyperboloid of one
sheet.

Figure 4.4: Hyperboloid of two
sheets.

Figure 4.5: Constant coordinate
surfaces for oblate coordinates.

Figure 4.6: Constant coordinate
surfaces for prolate coordinates.
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4.2 The Helmholtz equation for spheroidal coordinates

The Helmholtz equation

∇2U(~r) + k2U(~r) = 0, (4.3)

describes the propagation of waves in space. To solve equation (4.3) we need the expres-

sion of the ∇2 operator in the spheroidal coordinates. This can be obtained from the

equation

∇2ψ(q1, q2, q3) =
1

h1h2h3

(
∂

∂q1

(
h2h3

h1

∂ψ

∂q1

)
+

∂

∂q2

(
h1h3

h2

∂ψ

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂ψ

∂q3

))
,

(4.4)

where hi are the scale factors[41]. For the spheroidal coordinates, the scale factors are

given by

hξ = f

√
ξ2 − η2

ξ2 ∓ 1
,

hη = f

√
ξ2 − η2

1− η2
,

hφ = f
√

(ξ2 ∓ 1)(1− η2),

(4.5)

where the upper sign is for the prolate and the lower for the oblate coordinates respec-

tively. Thus, the Helmholtz equation can be written as(
∂

∂ξ

(
(ξ2 ∓ 1)

∂

∂ξ

)
+

∂

∂η

(
(1− η2)

∂

∂η

)
+

ξ2 ∓ η2

(ξ2 ∓ 1)(1− η2)

∂2

∂φ2

)
U + c2(ξ2∓ η2)U = 0,

(4.6)

where U = U(ξ, η, φ) is the wave function, c = fk is the spheroidicity parameter with

f the focal distance and k the wave number, and the upper sign is for prolate coordi-

nates and the lower for the oblate coordinates. By using separation of variables, the

wavefunction can be written as U = R(c; ξ)S(c; η)Φ(φ). The resultant set of equations

is
d

dξ

(
(ξ2 ∓ 1)

dR(c; ξ)

dξ

)
−
(
λmn − c2ξ2 +

m2

ξ2 ∓ 1

)
R(c; ξ) = 0, (4.7)

d

dη

(
(1− η2)

dS(c; η)

dη

)
+

(
λmn − c2η2 − m2

1− η2

)
S(c; η) = 0, (4.8)

d2Φ

dφ2
+m2Φ = 0, (4.9)
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where the upper sign corresponds to the prolate system, while the lower sign to the oblate

system, and λmn is the eigenvalue of the differential equation. The azimuth function, Φ,

is the same of the spherical and circular cylindrical coordinates, so that m must be an

integer to have a continuous solution around the propagation axis.

As it was pointed by Flammer [43], both angular and radial equations of the spheroidal

coordinates can be analyzed from one equation, this is:

d

dz

(
(1− z2)

du

dz

)
+

(
λmn + c2z2 − m

1− z2

)
u = 0. (4.10)

By applying coordinate transforms to (4.10) we recover the originally spheroidal equa-

tions. The transformations are: c → c and z → z for the oblate angular, c → c and

z → iz for the oblate radial, c→ ic and z → z for the prolate angular, and c→ ic and

z → −iz for the prolate radial.

4.3 The spheroidal functions

The spheroidal functions are some of the hardest functions to program, according to

Zhang[44] this is due to the high numerical accuracy required for both the expansion

coefficients and the eigenvalue λmn , as well as to the singularities of the differential

equation, that forces the use of different expansions for different regions. Even though

the angular and radial spheroidal functions are the same over a complex space of their

parameters, in order to have physical solutions, the angular and radial indexes n and m

must be integers, and the arguments must be real or imaginary instead of full complex

arguments. As described earlier, the parameter m must be integer to have continuous

solutions encircling the propagation axis. In order to fulfill the finiteness boundary

condition, that is, the existence of finite solutions at the singularities η → ±1, the

parameter n must be integer. This restricts the eigenvalues λmn to a countable set

indexed as n = 0, 1... [45].

4.3.1 The angular spheroidal functions

The angular spheroidal equation can be written as:

d

dη

(
(1− η2)

dS(c; η)

dη

)
+

(
λmn (c)− c2η2 − m2

1− η2

)
S(c; η) = 0, (4.11)

in the spherical limit, c→ 0, equation (4.11) becomes

d

dη

(
(1− η2)

dS(η)

dη

)
+

(
λmn (0)− m2

1− η2

)
S(η) = 0. (4.12)
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Equation (4.12) is the Legendre differential equation, whose solutions are the Legendre

functions Pmn (η) and Qmn (η), where λmn (0) = n(n + 1). A standard method of solution

for differential equations is to use the limiting solutions as a basis of expansion for the

general solution. For the angular spheroidal differential equation, this basis is conformed

by the first and second Legendre functions that act as limiting solutions. The two

linearly independent solutions to equation (4.11) are the spheroidal angular functions

S
m(1,2)
n (c; η). They can be written in terms of the latter expansions basis as

Sm(1)
n (c; η) =

∞∑
keven=−∞

dnmk (c)Pmn+k(η),

Sm(2)
n (c; η) =

∞∑
keven=−∞

dnmk (c)Qmn+k(η),

(4.13)

where the summations are only over even values of k. These are general solutions,

and were studied for general m and n by Meixner [23]. By evaluating the solutions in

equation (4.11), and using the properties of the Legendre functions, we obtain a three

term recurrence relation

αmnk (c)dmnk+2(c) + (βmnk (c)− λmn (c)) dmnk (c) + γmnk dmnk−2(c) = 0, (4.14)

where

αmnk (c) = −c
2(k +m+ n+ 1)(k +m+ n+ 2)

(2k + 2n+ 3)(2k + 2n+ 5)

βmnk (c) = (n+ k)(n+ k + 1)− c2

2

(
1− 4m2 − 1

(2n+ 2k − 1)(2n+ 2k + 3)

)
γmnk (c) = −c

2(k −m+ n− 1)(k −m+ n)

(2k + 2n− 3)(2k + 2n− 1)

(4.15)

The recurrence relation is the motive for having the sums running only for even values

of k. By means of equation (4.14), we can obtain two formulas for the terms:

dmnk (c)

dmnk+2(c)
=

−αmnk (c)

γmnk (c)
dmnk−2(c)

dmnk (c) + βmnk (c)− λmn (c)
, (4.16)

dmnk (c)

dmnk−2(c)
=

−γmnk (c)

αmnk (c)
dmnk+2(c)

dmnk (c) + βmnk (c)− λmn (c)
. (4.17)

As described in the work of Fallon [24] the ratio dmnk (c)/dmnk−2(c), for k → ±∞ behaves

like −4k2/c2 or −c2/4k2, being dominant or minimal respectively. As discussed and

proved by [23], only minimal solutions are of interest, leading to convergent series, and
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this only occurs for specific values of λmn . To compute the ratios of terms, the ratio

dmnk−2(c)/dmnk (c) is set to zero for a large enough k. This term is then used as a starting

point to calculate the recursion (4.16). The terms are then calculated by multiplication.

The terms for negative k are calculated analogously.

By using this method, the coefficients are calculated up to a multiplicative constant,

that is, the functions are not normalized. There are many normalization schemes for

the angular functions, being the most used the Flammer scheme, in which the values

of the first angular function S
m(1)
n and its derivative at η = 0 are the same as the

Legendre functions P . On the other hand, in the Meixner scheme, the integrals of the

squared modulus of the Legendre function P and the first angular function S
m(1)
n are

set equal. In the Flammer normalization, the angular functions grow exponentially fast

with increasing c. Since we are interested in the asymptotic approximation of large c (as

it will be clear later), the normalization used in this work will be the one of the Meixner

scheme, written as

∞∑
keven=−∞

dnmk (c)2 2

2k + 2n+ 1

(k +m+ n)!

(k −m+ n)!
=

2

2n+ 1

(n+m)!

(n−m)!
. (4.18)

Angular functions of the first kind with different parameters are shown in figures 4.7

and 4.8.

Figure 4.7: Oblate angular func-

tions S
0(1)
0 (c; η).

Figure 4.8: Prolate angular func-

tions S
0(1)
0 (c; η).

When n and m are integer numbers, the expansion of the angular function of the first

kind takes the form:

Sm(1)
n (c; η) =

∞∑
keven=m−n+δ

dnmk (c)Pmn+k(η), (4.19)

where δ = (m+ n) mod 2, due to the fact that the Legendre functions of the first kind

are zero for m > n.
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The expansion and computation of the angular function of the second kind S
m(2)
n pos-

sesses additional details. By using upward recursion, defined in equation (4.16), the

ratios turn out to be zero after αmnk (c) is zero at kcut = −n − m + δ − 2. Since the

terms lower than kcut in expansion (4.13) are functions of the upper terms, all the lower

terms are infinitely small. The Legendre functions of the second kind become divergent

for n < −m and any value of η. However, the product of this diverging functions and

the infinitely small expansion coefficients remains finite[23]. Thus, the expansion can be

written as

Sm(2)
n (c; η) =

−n−m+δ−2∑
keven=∞

d̃k
mn(c)Pm−n−k−1(η) +

∞∑
keven=−n−m+δ

dnmk (c)Qmn+k(η) (4.20)

The terms d̃k
mn(c) are slight different from dnmk (c) terms. The former terms are calcu-

lated by using upward recursion up to the term k = −n − m + δ − 2. The last term

d̃−n−m+δ−2, is calculated as follows

d̃k
mn(c) = −dnmk+2(c)

α̃mnk (c)

βmnk − λmn + γmnk
d̃k−2

mn(c)

d̃kmn(c)

(4.21)

where

α̃mnk (c) =
(−1)δ+1c2

(2m− 2δ − 1)(2m− 2δ + 1)
, (4.22)

and the lower terms are then calculated by direct multiplication. Functions of the sec-

ond kind with different parameters are shown in figures 4.9 and 4.10. As the Legendre

functions of the second kind, the spheroidal angular functions of the second kind pos-

sesses singularities at η = ±1. In both spheroidal coordinate systems, the singularities

are located at the z-axis.

The wronskian is used to evaluate two linearly independent solutions of a second or-

der differential equation. The former is defined as W = y1y
′
2 − y′1y2. For the angular

spheroidal differential equation, the wronskian is defined up to a multiplicative constant.

Thus, the wronskian can be written as

W (Sm(1)
n (c; η), Sm(2)

n (c; η)) ∝ 1

1− η2
. (4.23)

4.3.2 The radial spheroidal functions

The radial spheroidal differential equation

d

dξ

(
(ξ2 − 1)

df(ξ)

dξ

)
−
(
λmn (c)− c2ξ2 +

m2

ξ2 − 1

)
f(ξ) = 0, (4.24)
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Figure 4.9: Oblate angular func-

tions S
0(2)
0 (c; η).

Figure 4.10: Prolate angular func-

tions S
0(2)
0 (c; η).

has two regular singular points at ξ = ∓1. When the two singularities are made coalesce,

by performing transformations in equation (4.24), the resulting differential equation is

the spherical Bessel equation. Thus, like in the case of the angular functions, in the radial

case the appropriated expansion basis is conformed by the spherical Bessel functions

jm(cξ) and ym(cξ). In this basis, the radial functions can be defined as

Rm(1)
n (c; ξ) = (ξ2 − 1)m/2(cξ)−m

∞∑
keven=−∞

amnk jn+k(cξ),

Rm(2)
n (c; ξ) = (ξ2 − 1)m/2(cξ)−m

∞∑
keven=−∞

amnk yn+k(cξ),

(4.25)

where jn(x) =
√
π/2xJn+1/2(x) and yn(x) =

√
π/2xNn+1/2(x), where J and N denote

the Bessel and Neumann functions. Two other radial functions are defined, in analogy

with the Hankel functions.

Rm(3)
n (c; ξ) = Rm(1)

n (c; ξ) + iRm(2)
n (c; ξ),

Rm(4)
n (c; ξ) = Rm(1)

n (c; ξ)− iRm(2)
n (c; ξ).

(4.26)

The standard normalization of the radial functions is defined by matching the asymptotic

expansion for large ξ of the radial functions to the spherical Bessel functions. That is:

Rm(1)
n (c; ξ) ∼ 1

cξ
sin
(
cξ − nπ

2

)
,

Rm(2)
n (c; ξ) ∼ 1

cξ
cos
(
cξ − nπ

2

)
.

(4.27)
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With this normalization, the coefficients of the radial functions are

amnk (c) =
(−1)k/2cm∑∞
−∞ d

−m,n
k (c)

d−m,nk . (4.28)

Some important remarks are needed for the radial function of the second kind. In the

oblate system, ξ is defined for all real numbers. However, the expansion on spherical

Bessel functions of the second kind, is not useful for small arguments, since the increasing

rate of the expansion basis is larger than the expansion coefficients decreasing rate,

resulting in a divergent expansion for arguments close to zero. A standard method to

avoid this problem consists in using the fact that radial and angular functions are the

same functions over a complex space. This allows to calculate the radial function of the

second kind as a function of the angular functions. The radial function of the second

kind can be calculated through

Rm(2)
n (c; z) = κm(2)

n (c)
(z2 − 1)m/2

(−z − 1)m/2(z − 1)m/2

(
π

2

√
−z − 1√
z + 1

Sm(1)
n (z) + Sm(2)

n (z)

)
,

(4.29)

where

κm(2)
n (c) =

22n+1(−1)(1 + n)c−m−n−1

Γ(n+m+ 1)

∑∞
k=0

(−1)kamn2k (c)

k! Γ(−k−n+ 1
2)∑∞

k=0

(−1)kdmn−2k(c)

k! Γ(−k−n+ 3
2)

. (4.30)

κ
m(2)
n (c) is called joining factor. Some radial functions are shown in figures through 4.11

to 4.14.

As in the spheroidal angular functions, the spheroidal radial functions can be evaluated

by using the wronskian, that is

W (Rm(1)
n (c; ξ), Rm(2)

n (c; ξ)) =
1

c(ξ2 − 1)
. (4.31)

4.3.3 The spheroidal eigenvalue

As described in previous sections, the spheroidal functions only converge for the eigen-

values λmn of the spheroidal differential equations. As the eigenvalues appear in the

expansion coefficients, it is very important to have very high accuracy in their com-

putation. There are many methods to do this, for instance, by using eigenvalues of

tridiagonal matrices, to use a zero finding algorithm over a continuous fraction, by using

asymptotic methods for the behavior of the angular differential equation, among others.

In this work, we calculate the eigenvalues of a tridiagonal matrix, being this a direct
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Figure 4.11: Oblate radial functions
R

0(1)
n (−5i; η).

Figure 4.12: Oblate radial functions
R

0(2)
n (−5i; η).

Figure 4.13: Prolate radial func-
tions R

0(1)
n (5; η).

Figure 4.14: Prolate radial func-
tions R

0(2)
n (5; η).

approach. The three terms recurrence relation (4.14), can be considered as an infinite

tridiagonal matrix



• • • 0 0 0 0 0 0

0 • • • 0 0 0 0 0

0 0 γk βk αk 0 0 0 0

0 0 0 γk+2 βk+2 αk+2 0 0 0

0 0 0 0 γk+4 βk+4 αk+4 0 0

0 0 0 0 0 • • • 0

0 0 0 0 0 0 • • •





•
•
d−2

d0

d2

•
•


= λmn (c)



•
•
d−2

d0

d2

•
•


, (4.32)

where the matrix starts at k = −m − n + δ. From the Sturm-Liouville theory, since

n ≥ m ≥ 0 are integers, there exists a countably infinite set of strictly increasing

eigenvalues [46]. This method generates a highly accurate set of eigenvalues.
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4.3.4 The asymptotics of the angular equation for large c

The angular function possesses two asymptotic expansions, the prolate asymptotic ,

c→ −i∞, and the oblate asymptotic, c→∞.

In the prolate limit, by performing the change of coordinates x =
√

2cη, and letting the

angular function take the form S
m(1)
n (c; η) = (1−η2)m/2umn (c;x), the angular spheroidal

equation is written as(
1− x2

−2ic

)
d2umn (c;x)

dx2
−(m+ 1)x

−ic
dumn (c;x)

dx
+

(
λmn (c)−m(m+ 1)

−2ic
− 1

4
x2

)
umn (c;x) = 0.

(4.33)

By taking c→ −i∞, equation (4.33) reduces to

d2umn (c;x)

dx2
+

(
λmn (c)

2c
− 1

4
x2

)
umn (c;x) = 0. (4.34)

Equation (4.34) matches the differential equation for the parabolic cylinder functions

Dr(z) [47], where r = n − m, and thus the eigenvalue takes the asymptotic form of

λmn (c)→ (2n− 2m+ 1)c. Then, the prolate asymptotic can be written as

Sm(1)
n (c; η) ∼ (1− η2)m/2 2−(n−m)/2 e−cη

2/2Hn−m(
√
cη). (4.35)

With the asymptotic expansion, a new basis for the evaluation of the differential equa-

tion can be defined, this produces a five terms recurrence relation, and can also be used

to expand the eigenvalue.

In the oblate limit, the angular functions are compressed towards the lower and upper

limits of its domain, that is, η = ±1. Thus, the expansion can be done for η > 0 and use

parity for the other half of the interval. By using the coordinate transform x = 2c(1−η)

and having the angular function take the form S
m(1)
n (c; η) = (1 − η2)m/2 e−x/2umn (c;x),

the angular equation takes the form[48]

x
(

1− x

4c

) d2umn (c;x)

dx2
+
(

(m+ 1)
(

1− x

2c

)
− x

(
1− x

4c

)) dumn (c;x)

dx

+

((
c2 + λmn (c)−m(m+ 1)

)
4c

− 1

2
(m+ 1)

(
1− x

2c

))
umn (c;x) = 0.

(4.36)

By taking the oblate limit c→∞, equation (4.36) becomes

x
d2

dx2
umn (c;x) + (m+ 1−x)

d

dx
umn (c;x) +

(
c2 − λmn (c) + 2c(m+ 1)

)
4c

umn (c;x) = 0. (4.37)
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Equation (4.37) matches the associated Laguerre equation. The Laguerre polynomial

Lms (x) has s zeros for z > 0. On the other hand, in the domain 0 ≤ η ≤ 1, like the

associated Legendre polynomial Pmn , S
m(1)
n (c; η) has (n−m)/2 zeros for n−m even, and

(n−m−1)/2 zeros for n−m odd. This can also be written as (n−m−δ)/2 zeros, where

δ = (n−m) mod 2. From this considerations, the order of the Laguerre polynomial in

the asymptotic expansion is s = (n−m− δ)/2. Therefore, the asymptotic expansion for

the oblate angular function is

Sm(1)
n (c; η) ∼ (1− η2)m/2 e−c(1−η)Lm(n−m−δ)/2 (2c(1− η)) . (4.38)

In the plane z = 0, the relation between η and ρ can be written as ρ = f
√

1− η2. By

solving this relation for η, expanding in powers and taking the lower terms, equation

(4.38) can be written as

Sm(1)
n (c; η) ∼

(
ρ

f

)m
exp

(
−kρ

2

2f

)
Lm(n−m−δ)/2

(
kρ2

f

)
, (4.39)

which matches the form of the Laguerre-Gauss beam at its waist plane. Furthermore, the

eigenvalue takes the following asymptotic form λmn (c) ∼ c(−c+ 2δ+ 4m−2n+ 2), which

is equal for n −m and n −m + 1 at n −m even. From this asymptotic form, another

basis for the expansion of the angular function can be defined in terms of associated

Laguerre polynomials, with a three term recurrence relation [24].

4.4 The relation between the spheroidal wavefunction and

the Laguerre-Gauss beam

Throughout literature, it can be found several methods that has been used to obtain

non paraxial beams with properties similar to those of the Gaussian beam, Laguerre-

Gauss and Hermite Gauss beams among others. For instance, by using a point source

in a complex position of space, and using the coordinates to obtain properties of the

solution, in the case of spheroidal coordinates, the solution is given in terms of the

associated Legendre functions [49][50][51][52] instead of the spheroidal wavefunctions.

In the work of Rodriguez-Chávez (2004) [9], it is presented a unified theory on the

propagation of paraxial and non-paraxial beams, thorough a connection between the

paraxial Laguerre-Gauss beam and the non-paraxial spheroidal wavefunctions. In this

section, that connection is described briefly. As it was described in previous chapters,

the spot size of a Gaussian beam takes the geometric form of a hyperbola. The latter

is a level curve of the oblate spheroidal angular coordinate system. Using this fact,

a spheroidal coordinate system, defined by the spheroidal parameter c can be defined
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univocally for a Gaussian beam. This relation is shown in figure 4.15. In SI units, the

Figure 4.15: Spheroidal coordinate system and the Gaussian beam.

spot size of a Gaussian beam takes the form:

ω(z) = ω0

√
1 +

z2

z2
0

, (4.40)

which can be written in canonical form as

ω(z)2

ω2
0

− z2

z2
0

= 1. (4.41)

The angle of the asymptote of the hyperbola (4.40) is given by

tan(α) =
ω0

z0
, (4.42)

where ω0 is the waist size and z0 is the Rayleigh length. For an hyperbola, given the

real and imaginary axes, which are ω0 and z0 respectively in equation (4.41), the focal

distance f can be calculated as f2 = ω2
0 + z2

0 . Using this relation and rearranging

equation (4.42) we obtain

f2 =
c2

k2
= ω2

0 csc2(α). (4.43)

By using z0 = kω2
0/2 in equation (4.43) and solving for the waist width

ω0 =

√
2
(√

1 + c2 − 1
)

k
(4.44)

This equation is the bridge that connects the paraxial Gauss beam and the non-paraxial

propagation theory, relating a spheroidal coordinate system to a paraxial beam. It
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remains to define a threshold for the paraxial and non-paraxial behavior. According

to Siegman[3], the maximum diffraction angle for the paraxial beam approximation is

approximately 30◦ or π/6 radians. By using equation (4.43) and tan(α) = ω0/z0 =

2/kω0, an expression relating the angle of divergence at ω0 and the elliptic parameter c

is obtained

c =
2

tan(α) sin(α)
. (4.45)

By using the maximum diffraction angle α = π/6 we obtain c ∼ 7. This is an important

result, for c < 7 it is expected a non-paraxial, highly diverging wavefield, where the limit

c = 0 corresponds to a spherical wave. On the other hand, for c � 7 it is expected a

highly paraxial wave.

4.4.1 The spheroidal beam

We are interested in a wavefield that, for large values of c, behaves asymptotically as a

Laguerre-Gaussian beam. As it was shown in section 4.3.4, the angular function of the

first kind S
m(1)
n , is the one that presents the desired behavior. For the radial function,

we are interested in a solution which has the form of an outgoing wave in order to satisfy

the Sommerfeld radiation condition. From equation (4.27), the asymptotic behavior of

R
m(3)
n (c; ξ) for large c,takes the form

Rm(3)
n (ξ) ∼ 1

cξ
exp

(
i
(
cξ − nπ

2

))
, (4.46)

which satisfies the radiation condition. Then, the spheroidal beam takes the form

ψm(1)
n (c; ξ, η, φ) = Sm(1)

n (c; η)Rm(3)
n (c; ξ) eimφ. (4.47)

The angular function S
m(1)
n describes the transverse profile of the wavefunction, on the

other hand, the radial function R
m(3)
n describes the characteristics through propagation,

that is, the Guoy phase shift, the wavefront and the intensity change over propagation.

4.4.2 Comparison for the spheroidal beam and the Gaussian beam

We are interested in the behavior of the spheroidal beams in the regimes defined by

the equation (4.45) at the maximum diffraction angle, that is, the non-paraxial and

the paraxial regimes, in comparison with the Gauss beam. In order to do so, a brief

analysis on the properties of the spheroidal coordinates is useful. The level surfaces of

the variable η are one sheet hyperboloids, which away from the focal plane z = 0 are

approximately cones, this is due to the relation of the spheroidal coordinate systems
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and the spherical coordinate system, that is, for the angular η coordinate, away from

the focal plane, η ∼ sin(θ), where θ is the polar angle of the spherical coordinates. This

relation is illustrated in figure 4.16. From that behavior, the transverse profile during

propagation and the transverse profile at the focal plane are related up to a scaling factor.

The level surfaces of the radial coordinate ξ are oblate ellipsoids with focal distance f .

Away from the origin, the ellipsoids take the form of spheres with a radius of r ∼ fξ.

This is illustrated in figure 4.17. From that, and away from the origin, the wavefronts

described by the radial functions are almost spherical. The behavior described earlier for

the angular and radial coordinates describe the behavior of the spheroidal beams. The

Gauss beam, though not directly from the coordinates, also follows a similar behavior,

that is, the transverse profile during propagation and the profile at the focal plane

z = 0 are related by a scaling factor, and the wavefront of the Gauss beam, follows the

paraxial approximation of the spherical wavefront. In the next figures, a comparison of

the properties of the spheroidal and Gaussian beams are illustrated over the different

regimes: non paraxial, the threshold and approximately paraxial.
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Figure 4.16: ξ-level surfaces and
spherical radial r-level surfaces.

Figure 4.17: η-level surfaces and
spherical polar angle θ-level surfaces.

Figure 4.18: Transverse intensity of
Gaussian and spheroidal beams.

Figure 4.19: Longitudinal intensity
of Gaussian and spheroidal beams.

Figure 4.20: Phase shift of Gaussian
and spheroidal beams.
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Figure 4.21: Spheroidal coordinate system and Laguerre-Gauss beam.

4.5 Paraxiality threshold for the spheroidal beams

An important result from previous sections is equation (4.45), which represents a thresh-

old that separates the paraxial and non-paraxial behavior for the spheroidal beam with

indices n = m = 0. This threshold is important as it allows to compare the Gaussian

and the spheroidal beams. Given that the spheroidal beams behave asymptotically, for

large values of the spheroidicity parameter c, as the Laguerre-Gauss beams, a general

paraxiality threshold is needed for higher values of n,m. This can be obtained by using

the spot size of the Laguerre-Gauss beams and its hyperbolic behavior as well as the

properties of the spheroidal coordinates.

The spot size of the Laguerre-Gauss beam, WL(z) =
√

2n+m+ 1ω(z), is illustrated in

figure 4.21. It can be written in the canonical form of a hyperbola:

W 2
L(z)

W 2
L(0)

− z2

z2
0

= 1. (4.48)

where WL(0) =
√

2n+m+ 1ω0 is the waist size of the Laguerre-Gauss beam and z0 is

the Rayleigh length. Analogously to the previous section, the general relation for the

divergence angle and the spheroidal parameter takes the form

c =
2(2n+m+ 1)

tan(θ) sin(θ)
, (4.49)

which, using the maximum diffraction angle θ of a paraxial beam, θ ∼ π/6, can be

written as

c = 4
√

3(2n+m+ 1) ≈ 7(2n+m+ 1). (4.50)

In the next table some values for c are calculated, where the indices are the associated

Laguerre-Gauss beam indices.
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Threshold values for multiple indices

m \ n 0 1 2 3 4 5 6 7 8 9 10

0 7 21 35 48 62 76 90 104 118 132 145

1 14 28 42 55 69 83 97 111 125 139 152

2 21 35 48 62 76 90 104 118 132 145 159

3 28 42 55 69 83 97 111 125 139 152 166

4 35 48 62 76 90 104 118 132 145 159 173

5 42 55 69 83 97 111 125 139 152 166 180

6 48 62 76 90 104 118 132 145 159 173 187

7 55 69 83 97 111 125 139 152 166 180 194

8 62 76 90 104 118 132 145 159 173 187 201

9 69 83 97 111 125 139 152 166 180 194 208

10 76 90 104 118 132 145 159 173 187 201 215

The threshold value obtained for the Gaussian beam with m = 0 and n = 0 is in

accordance with reference [9].

By solving equation (4.50) for the angle θ, and using the divergence angle of the hyper-

bola (4.48), we obtain the relation of the spheroidal coordinates and the Laguerre-Gauss

beam,

ω0 =

√
2
√√

c2 + (2n+m+ 1)2 − (2n+m+ 1)

k
. (4.51)

With equation (4.51) an univocal relation is defined for the Laguerre-Gauss and the

spheroidal beams. These results will be used in the next chapter.



Chapter 5

An alternative second solution for

the spheroidal equation

As covered in previous chapters, second solutions to differential equations describing the

transverse profile of structured wavefields are important in the theory of propagation of

beams, as they may contain physical meaning, and can explain phenomena such as the

self healing [19] [20] [22]. In the case of the spheroidal functions, there has been few

studies on the angular function of the second kind, aside from being used as a mean

to calculate the radial function of the second kind. This chapter describes a method to

obtain a second solution that behaves asymptotically as the Laguerre function of the

second kind Xm
n described in chapter 3.

In this chapter n and m denote the radial and azimuthal indices of the Laguerre-Gauss

beam respectively, while m and s the spheroidal indexes, where s = m + 2n − δ, and

δ = (s−m) mod 2.

5.1 The spheroidal angular function of the second kind

The spheroidal angular function of the first kind behaves asymptotically as an associated

Laguerrre polynomial, times a Gaussian envelope for large values of c, as it was obtained

in equation (4.39). We are interested in a second solution to the angular equation that

behaves asymptotically as the Laguerre function of the second kind Xm
n times the same

Gaussian envelope of the previous case. In figures 5.1 and 5.2 it is shown the behavior

of the angular functions of the first and second kind as the spheroidicity parameter c

increases.

52
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Figure 5.1: Angular functions

S
m(1)
s (−18i, ρ) and S

m(2)
s (−18i, ρ).

Figure 5.2: Angular functions

S
m(1)
s (−50i, ρ) and S

m(2)
s (−50i, ρ).

The amplitude of the angular functions in figures 5.1 and 5.2 is normalized for visual-

ization purposes. This is due to the fact that the Angular function of the second kind

grows exponentially fast in comparison with the angular function of the first kind, so

that with large enough spheroidicity parameter c, S
m(2)
s might present numerical over-

flow, that is, numbers that are not representable in double-precision arithmetic. It can

also be observed numerically that as the spheroidicity parameter increases, the zeros of

the angular functions of the second kind gets closer to the zeros of the angular function

of the first kind. This may be due to the fact that the Pms (η) elements in the expansion

of the angular functions of the second kind (4.20) get closer to the ones of S
m(1)
s and

grow faster than the Qms (η) elements, for increasing c. At first glance we could use the

angular functions of the first and second kind to build Hankel like functions of the form

Fm(1)
s (c; η) = Sm(1)

s (c; η) + iSm(2)
s (c; η),

Fm(2)
s (c; η) = Sm(1)

s (c; η)− iSm(2)
s (c; η).

(5.1)

Those angular functions in equation (5.1) do not provide a smooth envelope for S
m(1)
s

and S
m(2)
s even after normalization, like in the case of Hankel and Hankel-Laguerre

functions nor do they present the expected asymptotic behavior for a Hankel function.

This is shown in figures 5.3 to 5.6 for F
m(1)
s (c; η).
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Figure 5.3: |F 0(1)
10 (c; η)| for increasing
c.

Figure 5.4: F
0(1)
10 (c; η) phase for in-

creasing c.

Figure 5.5: |F 0(1)
20 (c; η)| for increasing
c.

Figure 5.6: F
0(1)
20 (c; η) phase for in-

creasing c.

Furthermore, as it was shown in the previous chapter, we look for a second solution to

the angular equation that behaves asymptotically as the associated Laguerre function

of the second kind Xm
n . In the work of Fallon [53] it is shown that the angular function

of the second kind S
m(2)
s behaves asymptotically as the angular function of the first

kind S
m(1)
s (for large and fixed values of c and η respectively), with the radial index s

displaced to s+1 or s−1 depending on whether s−m is even or odd, respectively. Thus,

the first and the second angular functions are not a suitable set to build a Hankel like

angular function. On the other hand, the eigenvalue of the oblate spheroidal differential

equations is equal for s and s+ 1 or s− 1, that is, the eigenvalue is degenerate, forcing

the angular function of the second kind to behave asymptotically as the angular function

of the first kind [53].
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5.2 Building an alternative second angular function

From the last section, it can be concluded that by increasing the spheroidicity parameter

c, the angular function of the second kind S
m(2))
s behaves asymptotically as the angular

function of the first kind S
m(1))
s for fixed values of η.

Much work has been done on the spheroidal functions, and many basis for expansions

have been proposed and used as shown in reference [44]. Nevertheless, not much work has

been done to investigate asymptotic representations of either S
m(2)
s or any other linearly

independent solution to S
m(1)
s , so we have to implement a numerical procedure to obtain

a suitable second solution to the angular equation. Defining an angular function of the

second kind is a complicated task from both theoretical and numerical standpoint. In

this work, our numerical approach is to use the properties of the associated Laguerre

equation solutions as starting points to approximate the new angular function.

We will build an alternative second angular function, namely SXm
s , by considering it as

a linear combination of S
m(1)
s and S

m(2)
s , that is

SXm
s (c; η) = c1S

m(1)
s (c; η) + c2S

m(2)
s (c; η). (5.2)

From the deduction of equation (4.39), it is clear that to obtain a good approximation

of the coefficients of equation (5.2), we have to use the region around the propagation

axis (ρ ∼ 0), where the angular function of the first kind is closer to the Laguerre-Gauss

beam transverse profile, and SXm
s (c; η) is expected to be closer to the second solution

Xm
n sector of the Hankel-Laguerre waves described in equation (3.31).

The first step in every attempt to obtain SXm
s (c; η) is to normalize S

m(1)
s (c; η) in accor-

dance to the Laguerre-Gauss beam. This last, in SI units, implies

Rm(3)
s (c; ξ = 0) = 1, (5.3)

and

Sm(1)
s (c; η0) = Sm(1)

s

(
c;

√
1−

(
ρ2

0

f2

))
,

=

√
2n!

π(n+m)!

(√
2ρ0

ω0

)m
Lmn

[
2ρ2

0

ω2
0

]
e−ρ

2
0/ω

2
0

(5.4)

where ρ0 is the position of the maximum of the amplitude closest to the propagation

axis, η0 its corresponding angular coordinate and ω0 is defined through equation (4.51).

The azimuth dependent terms are set aside by taking θ = 0, as well as the z dependent

terms by working in the plane z = 0.
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As a starting point, we want that SXm
s (c; η) approximate to the Second Laguerre solu-

tion Xm
n , defined in the section 3.2, at the neighborhood of the propagation axis.

The first proposed method is to use two random points in the neighborhood of ρ ∼ 0

and use equation (5.2) to solve for c1 and c2. This is a poor approximation, and the

results depend on c, as well as on the initial points.

This approximation can be improved by using the least squares method. The latter to

minimize the difference of the Laguerre function of the second kind Xm
n and SXm

s (c; η)

by variations over c1 and c2. This can be written as

min

(
kmax∑
k=1

(
XLmn (ρk)− (c1S

m(1)
s (ρk) + c2S

m(2)
s (ρk))

)2
)
, (5.5)

where k is an index counting over the discrete points where the functions are sampled

and ρK is its corresponding position, XLmn is the Laguerre function of the second kind,

S
m(1,2)
s are the standard angular solutions in the same conditions of equation (5.4). This

method provides an approximation to the second solution which is bad for low values of c,

but steadily improving with increasing c. Nevertheless, this method is computationally

expensive, as it may require more than one optimization depending on the initial values

of c1 and c2. Besides, given that the least squares method uses the first derivative

criterion, a possible solution can turn out to be a saddle point for the variables (c1, c2).

This is specially problematic for high radial and angular indices n and m, where this

method is inefficient.

In order to improve the approximation of SXm
s (c; η), and avoid the least squares method

problems, a geometric approach is used instead. The latter consists in using the relative

position of the zeros of the solutions to the associated Laguerre equation, to obtain the

position of the first zeros of the spheroidal functions, this can be expressed as

ZLG
ZXL

=
ZS1

ZSX
, (5.6)

where the Z terms are the position of the first zero, shown in figure 5.7. By using the

relation (5.6) we obtain the position of the first zero of SXm
n (c; η). This can be written

as

ZSX = ZXL
ZS1

ZLG
. (5.7)

For convenience, equation (5.2) can be written as

SXm
s (c; η) = c2

(
Sm(1)
s (c; η) + c1S

m(2)
s (c; η)

)
, (5.8)
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Figure 5.7: Zero points in the
paraxial solutions

Figure 5.8: Normalization
points in paraxial solutions

where c1 defines the position of the zero at (5.7) and c2 the normalization. By using

equations (5.7) and (5.8), c1 is obtained as

c1 = −S
m(1)
s (c;ZSX)

S
m(2)
s (c;ZSX)

. (5.9)

If we use a normalization different to the one defined through (5.3) and (5.4), the nor-

malization of SXm
s (c; η) can be obtained from

MLG

MXL
=

MS1

MSX
, (5.10)

where the M terms represent the amplitude of the first maxima of the Laguerre and

spheroidal functions as illustrated in figure 5.8.

Otherwise, by using the normalization defined in (5.3) and (5.4), equation (5.10) reduces

to

MXL = MSX . (5.11)

By using equation (5.8) and (5.11), we obtain c2 as

c2 =
MXL

S
m(1)
s (c; ρMXL

) + c1S
m(2)
s (c; ρMXL

)
, (5.12)

where ρMXL
is the position of the maximum MXL. This method to obtain c1 and c2 is

computationally friendly, and also does not possess the least squared method problems

described earlier. It is computationally cheap, in most cases it produces a function very

close to the Laguerre function of the second kind, and it is specially well suited for large

s and m indices. This method does not set aside the first method, which is used in the

lower indexes s and m, case in which the second method can not be applied.

It is worth noting that both methods described above, produce a solution to the spheroidal
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angular differential equation, as they are built over linear combinations of the standard

solutions. This can be verified numerically by using numerical derivatives to evalu-

ate both the ordinary differential equation and the wronskian relation of the angular

spheroidal functions. Examples of SXm
s (c; η) and numerical tests are shown in the next

figures.

Figures 5.9 to 5.14 and figures 5.21 to 5.26 show angular functions SXm
s for s = 20 and

s = 10 with m = 0, with increasing spheroidal parameter c, respectively in comparison

with their angular function of the first kind S
m(1)
s and associated paraxial solution XLmn ,

whereas figures 5.15 to 5.20 and figures 5.27 to 5.32 show their respective numerical tests.
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Figure 5.9: Comparison of

S
0(1)
20 (5; η) and SX0

20(5; η).
Figure 5.10: Comparison of

SX0
20(5; ρ) and XL0

10(ρ).

Figure 5.11: Comparison of

S
0(1)
20 (25; η) and SX0

20(25; η).
Figure 5.12: Comparison of

SX0
20(25; ρ) and XL0

10(ρ).

Figure 5.13: Comparison of

S
0(1)
20 (50; η) and SX0

20(50; η).
Figure 5.14: Comparison of

SX0
20(50; ρ) and XL0

10(ρ).
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Figure 5.15: Ode test for
SX0

20(5; η).
Figure 5.16: Wronskian test for

SX0
20(5; η).

Figure 5.17: Ode test for
SX0

20(25; η).
Figure 5.18: Wronskian test for

SX0
20(25; η).

Figure 5.19: Ode test for
SX0

20(50; η).
Figure 5.20: Wronskian test for

SX0
20(50; η).
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Figure 5.21: Comparison of

S
0(1)
10 (5; η) and SX0

10(5; η).
Figure 5.22: Comparison of

SX0
10(5; ρ) and XL0

5(ρ).

Figure 5.23: Comparison of

S
0(1)
10 (20; η) and SX0

10(20; η).
Figure 5.24: Comparison of

SX0
10(20; ρ) and XL0

5(ρ).

Figure 5.25: Comparison of

S
0(1)
10 (33; η) and SX0

10(33; η).
Figure 5.26: Comparison of

SX0
10(33; ρ) and XL0

5(ρ).
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Figure 5.27: Ode test for
SX0

10(5; η).
Figure 5.28: Wronskian test for

SX0
10(5; η).

Figure 5.29: Ode test for
SX0

10(20; η).
Figure 5.30: Wronskian test for

SX0
10(20; η).

Figure 5.31: Ode test for
SX0

10(33; η).
Figure 5.32: Wronskian test for

SX0
10(33; η).
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5.3 Limits of the angular expansions

By using the methods described in the previous section, at the threshold of the values

calculated via equation (4.50), we face a problem inherent to the angular functions,

namely, as the spheroidicity parameter c increases, S
m(2)
s (c; η) grows exponentially com-

pared to S
m(1)
s (c; η), so that the coefficients c1 and c2 suffer the same problem. In order

to illustrate this, a logarithmic plot of the coefficients c1(c) and c2(c) is shown in figures

5.33 and 5.34.

Figure 5.33: Normalization coeffi-
cients behavior with s = 10,m = 0.

Figure 5.34: Normalization coeffi-
cients behavior with s = 20,m = 0.

In the best case, by working with double-precision arithmetic, we obtain the angular

functions with fourteen decimal places, and as Figures 5.33 to 5.34 suggest, we do not

have enough significant digits to obtain SXm
s (c; η) for values close to the threshold de-

fined by equation (4.50) for most cases. This is also the reason for the choice of the

spheroidal parameter c in figures 5.20 and 5.32, as these are approximately the maxi-

mum values with acceptable numerical error in the ODE test for their respective indices.

That is not the only problem. By increasing the spheroidicity parameter c, the radial

function of the second kind R
m(2)
s becomes unstable for small values of the product cξ,

even using equation (4.29). Both problems can be solved by using a numerical approach

to obtain both spheroidal functions of the second kind. The problem of the radial func-

tion can be solved by using the fourth order Runge-Kutta method. We have found

numerically that a suitable starting point for this method is cξ ∼ 30 with initial values

R
m(2)
s (c; 30) and R

m(2)′
s (c; 30).

From the theory of second order ordinary differential equations [54] the general solution

has the form y = c1y1 + c2y2 with y1 and y2 linearly independent solutions of the differ-

ential equation. In order to obtain a particular solution, initial or boundary conditions

are required. As we are interested in a solution to the spheroidal angular differential

equation that behaves closer to SXm
s than to S

m(1)
s , we use the Laguerre function of

the second kind Xm
n as reference in the neighborhood of ρ ∼ 0 (η ∼ 1). With that, the
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initial conditions can be written as

η0 = 1− 10−12,

y(η0) = 2
m+1

2

√
n!

π(m+ n)!

(
f
√

1− η2
0

ω2
0

)m
Xm
n

(
2f2

(
1− η2

0

)
ω2

0

)
exp

(
−
f2
(
1− η2

0

)
ω2

0

)
,

y′(η0) = 2
m+1

2

√
n!

π(m+ n)!

d

dη

(
f
√

1− η2

ω2
0

)m
Xm
n

(
2f2

(
1− η2

)
ω2

0

)
exp

(
−
f2
(
1− η2

)
ω2

0

)∣∣∣∣
η→η0

.

(5.13)

The solution of the spheroidal angular differential equation with the initial conditions

(5.13), namely SNm
s , can be obtained by using standard numerical methods. For the

Matlab software, the best results are obtained by using the solvers ode45 and ode113.

According to the Matlab description, ode45 and ode113 are solvers for non-stiff dif-

ferential equations (equations where the step of the calculation is inaccurate for the

variations of the solution [55]). ode113 is described as “a variable-step, variable-order

(VSVO) Adams-Bashforth-Moulton PECE solver of orders 1 to 13 ”, on the other hand,

ode45 is described as “based on an explicit Runge-Kutta (4,5) formula”. ode45 has the

best results if the domain is defined with a small step vector (in the order of δη ∼ 10−6),

otherwise, ode113 is more effective.

The angular function of the first kind S
m(1)
s and the numeric solution SNm

s described

above conform a new basis in order to obtain SXm
s using the methods described previ-

ously. The numeric angular function SNm
s is linearly independent of the angular function

of the first kind S
m(1)
s because the initial condition (5.13) describes, approximately, a

singularity which S
m(1)
s does not possess. Figures 5.35 to 5.40 show the angular functions

of the first kind S
m(1)
s and the resulting second kind SXm

s .
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Figure 5.35: Angular functions

S
0(1)
0 (7, η) and SX0

0 (7, η).

Figure 5.36: Angular functions

S
0(1)
0 (14, η) and SX0

0 (14, η).

Figure 5.37: Angular functions

S
0(1)
6 (48, η) and SX0

6 (48, η).

Figure 5.38: Angular functions

S
0(1)
6 (96, η) and SX0

6 (96, η).

Figure 5.39: Angular functions

S
0(1)
20 (145, η) and SX0

20(145, η).

Figure 5.40: Angular functions

S
0(1)
20 (200, η) and SX0

20(200, η).
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5.4 The second angular spheroidal solution and its relation

with the second Laguerre function

By using the methods developed in previous sections, we are now able to obtain the

angular function SXm
s up to c ∼ 300. From section 4.3.4 we know that the asymptotic

expansion for large c of the oblate spheroidal angular function of the first kind is

Sm(1)
s (c; η) ∼

(
ρ

f

)m
exp

(
−kρ

2

2f

)
Lms

(
kρ2

f

)
. (5.14)

We expect that the asymptotic expansion of the angular function of the second kind

SXm
s takes the form

SXm
s (c; η) ∼

(
ρ

f

)m
exp

(
−kρ

2

2f

)
Xm
n

(
kρ2

f

)
, (5.15)

We will compare the angular function SXm
s and the second Laguerre function Xm

n , at

the focal plane z = 0. In this plane, the asymptotic expansion (5.15) is valid only inside

the focal disk, that is, a circle with radius f . The border of this disk corresponds to the

level curve associated to η = 0, and the value of the angular functions at this border is

finite, as there is no singularity in the spheroidal angular differential equation defined

at η = 0. Nonetheless, the amplitude of the angular function of the second kind SXm
s

at η = 0 increases exponentially for increasing values of c. In figures 5.41 and 5.42 the

behavior of the angular function of the second kind is shown, with the horizontal axis

in units of focal distance f in order to compare the increasing value in the border of the

angular function of the second kind SXm
s . It can be seen that even at small spheroidicity

parameters c, small increases of c yield large increases in the value of SXm
s at the border

of the focal disk.

Figure 5.41: Behavior SX0
10(c, ρ)

for increasing c.
Figure 5.42: Behavior SX0

20(c, ρ)
for increasing c.
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The Angular function SXm
s behaves asymptotically as the second solution of the paraxial

wave equation in circular cylindrical coordinates, which involves the second Laguerre

function Xm
n , with increasing c, as verified by numerical inspection of the asymptotic

expansion (5.15). This is illustrated in figures 5.43 and 5.44, where the horizontal axis is

in units of the spot size of the associated Laguerre-Gauss beam, ωL = ω0

√
2n+m+ 1,

for comparison.

Figure 5.43: Behavior SX0
6 (c, ρ) at

increasing c.
Figure 5.44: Behavior SX200(c, ρ)

at increasing c.

The spheroidal beam, which is an exact solution to the Helmholtz equation, can be

written as

ψm(1)
s (c; η) = Sm(1)

s (c; η)Rm(3)
s (c; ξ) eimφ. (5.16)

In analogy to the spheroidal beam (5.16), which was described in the previous chapter,

we construct another solution using SXm
s , which from now on we will call angular

function of the third kind,

ψm(2)
s (c; η) = SXm

s (c; η)Rm(3)
s (c; ξ) eimφ. (5.17)

The spheroidal function ψ
m(2)
s (c; η) solves one of the critical problems in the treatment

of Hankel-like solutions to the paraxial wave equation in circular cylindrical coordinates

which involves the second Laguerre Function Xm
n , in the following sense: the paraxial

Hankel-like solutions approach infinity as ρ → ∞. In the focal plane, as described

earlier, the angular function varies only inside the focal disk, where the radial function

of the third kind R
m(3)
s (c; ξ) is constant; outside this region, the angular function is

constant, and the radial function is monotonically decreasing. In consequence, the full

wavefunction ψ
m(2)
s (c; η) does not approach infinity as ρ → ∞, regardless of how large

the angular function might be at the border of the focal disk. Like in the spheroidal

beam ψ
m(1)
s (c; η) case, the radial function of the third kind R

m(3)
s (c; ξ) describes the

phase wavefronts, the Guoy phase shift, the direction of the rays from the Eikonal and
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the change in the intensity due to propagation, while the angular function describes the

transverse profile of the beam. In analogy to the Hankel and the Hankel-Laguerre waves

described in chapter 3, we use the spheroidal wavefunctions ψ
m(1)
s (c; η) and ψ

m(2)
s (c; η)

to build Hankel-like spheroidal waves in the form

Hm(1)
s = ψm(1)

s (c; η) + iψm(2)
s (c; η),

Hm(2)
s = ψm(1)

s (c; η)− iψm(2)
s (c; η).

(5.18)

Also, the spheroidal beam ψ
m(1)
s (c; η) can be obtained by interference of the Hankel-like

waves. That is

Hm(1)
s +Hm(2)

s = ψm(1)
s (c; η) + iψm(2)

s (c; η)

+ ψm(1)
s (c; η)− iψm(2)

s (c; η),

=2ψm(1)
s (c; η).

(5.19)

The phase of the Hankel-like spheroidal functions H
m(1)
s and H

m(2)
s varies in function

of the value of the spheroidicity parameter c. For values of c smaller than the paraxial

threshold defined in equation (4.50), the phase takes a conical shape. By increasing the

value of the spheroidicity parameter c, the phase becomes localized cones around the

propagation axis, resembling the phase structure of the Hankel-Laguerre waves, as it

is expected from the asymptotic expansions discussed in this chapter. Further studies

are required in order to describe the properties of the Hankel-like spheroidal waves and

their physical behavior. In the next figures, some examples of the Hankel-like spheroidal

waves are shown. In Figures 5.45 to 5.50 Hankel like spheroidal functions H
m(1)
s (c, ρ) are

compared with Hankel-Laguerre functions XLmn (ρ). On the other hand, figures 5.51 to

5.56 show the behavior of the spheroidal functions H
m(1)
s (c, ρ) with increasing spheroidal

parameter c, as the intensity at the border of the focal disk increases but the spheroidal

functions remains monotonically decreasing for →∞.
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Figure 5.45: Amplitude of

H
0(1)
0 (c, ρ) and XL0

0(ρ).
Figure 5.46: Phase of H

0(1)
0 (c, ρ)

and XL0
0(ρ).

Figure 5.47: Amplitude of

H
0(1)
6 (c, ρ) and XL0

3(ρ).
Figure 5.48: Phase of H

0(1)
6 (c, ρ)

and XL0
3(ρ).

Figure 5.49: Amplitude of

H
0(1)
20 (c, ρ) and XL0

10(ρ).
Figure 5.50: Phase of H

0(1)
20 (c, ρ)

and XL0
10(ρ).
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Figure 5.51: Behavior of H
0(1)
6 (c, ρ)

intensity with increasing c.
Figure 5.52: Behavior of H

0(1)
6 (c, ρ)

phase with increasing c.

Figure 5.53: Behavior of H
0(1)
10 (c, ρ)

intensity with increasing c.
Figure 5.54: Behavior of H

0(1)
10 (c, ρ)

phase with increasing c.

Figure 5.55: Behavior of H
0(1)
20 (c, ρ)

intensity with increasing c.
Figure 5.56: Behavior of H

0(1)
20 (c, ρ)

phase with increasing c.
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The present work has been addressed to investigate a second solution to the angular

equation of the oblate spheroidal coordinates SXm
s , that behaves asymptotically as the

second Laguerre function Xm
n described in the work of Jaimes-Nájera [22] in the following

sense:

SXm
s (c; η) ∼

(
ρ

f

)m
exp

(
−kρ

2

2f

)
Xm
n

(
kρ2

f

)
.

With this, we have obtained a complete set of solutions to the above mentioned equa-

tion, that also behaves asymptotically as the Bessel functions of the first and second kind

[22], that is, Hankel-like solutions to the angular spheroidal equation. This solution is

achieved through a linear combination of the linearly independent standard angular so-

lutions S
m(1)
s and S

m(2)
s . Given that S

m(1)
s is the only angular spheroidal function whose

asymptotic behavior has been studied in the literature, SXm
s has been studied through

numerical procedures, since its formal study is out of the scope of this work. However,

we have developed a systematic procedure to find numerically the SXm
s function. The

latter consists in the use of geometric relations between the solutions of the associated

Laguerre and angular spheroidal equations. Following the work of Rodriguez-Morales

[9], in which is presented the unification of the paraxial and non-paraxial beam propaga-

tion theories, a threshold was obtained that delimits the paraxial and the non-paraxial

behavior of high order spheroidal beams. Using that threshold it was found that the

expansion of the angular function of the second kind S
m(2)
s described in the literature, is

inadequate to solve the aforementioned linear system. This problem is solved by the use

of a second solution obtained from the numerical resolution of the spheroidal angular

differential equation, whose initial values are those described by the Laguerre function

of the second kind Xm
n in the neighborhood of the singularity at zero radial distance.

With this alternative second solution, a new set of linearly independent solutions, along

with S
m(1)
s , is obtained so that the systematic procedure above mentioned and described

in this work can be applied to obtain SXm
s . In this way, the angular function SXm

s can

be obtained even for high values of the parameters where the traditional expansions are

71
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inadequate. Furthermore, as stressed in chapter 3, the Hankel-Laguerre waves are not

bounded functions of the radial coordinate, due to the divergent behavior of the Laguerre

function of the second kind Xm
n . Our hypothesis is that this unbounded behavior is due

to the paraxial approximation, since the latter applies very well for short but not for

long radial distances. In this respect, the spheroidal angular function described in this

work can be used to write solutions to the exact Helmholtz equation that firstly, behave

asymptotically as the Hankel-Laguerre waves, and secondly, are bounded functions of

the radial coordinate, in spite of growing when approaching the paraxial regime (large

spheroidicity parameter c) since it is delimited by a spheroidal radial function that is

strictly decreasing away from the propagation axis. By obtaining the second angular

solution described, bounded Hankel-like spheroidal waves can be constructed, analogous

to those described in the work of Jaimes-Nájera [22]. The analysis of the properties of

those waves requires further studies. However, as part of the perspectives of this work,

let us discuss briefly the potential application of our results in describing fundamental

traveling spheroidal waves.

Perspectives for future work

As described earlier, Hankel-like spheroidal can be constructed with the spheroidal an-

gular functions of the first kind S
m(1)
s and the linearly independent spheroidal angular

function SXm
s described in this work. In analogy to Hankel waves, it is expected that

these Hankel-like spheroidal waves describe the propagation properties of the spheroidal

beam such as the self-healing. Although the problem of unbounded Hankel-Laguerre

waves was overcome, in first instance by proposing the bounded Hankel-like spheroidal

waves, there is work left to do. For instance, the first problem to solve is to elucidate

the rapid growth of the spheroidal function SXm
s towards the edge of the focal disk

discussed in the previous chapter. As any real wave, a spheroidal wave cannot extend

infinitely in any direction. Experimentally, one of the most efficient methods to obtain

structured beams is by means of a spatial light modulator and diffractive elements[56].

This imposes inherent limits to the spatial bandwidth and extent of the generated beam.

As described in the work of Andrews [32], a suitable spot size of a beam is a region that

contains all the maxima and minima of the beam. This concept can be used in the

case of the spheroidal beams, since they behave asymptotically as the Laguerre-Gauss

beams. The spot contains most energy of the spheroidal beams, and as in the case of

the Laguerre-Gauss beams, it is a suitable region to truncate in order to generate an

experimental beam. A thorough study of the consequences of truncating the Hankel-like

spheroidal waves, and the physical behavior described by them, are beyond the scope of

work of this thesis and are considered as the future perspectives of this work. However,
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let us take as first step the truncation of the Hankel-like spheroidal waves (5.18) at the

spot size of the associated spheroidal beams. This truncation may not greatly affect

the phase structure of the Hankel-like spheroidal waves as shown in figures 5.57 and

5.58, where the units are given in terms of the Laguerre waist wL and radians, since, for

Figure 5.57: Phase of Spheroidal

waves H
0(1)
14 (c, z = 0).

Figure 5.58: Phase of Spheroidal

waves H
0(1)
20 (c, z = 0).

spheroidicity parameters c approximately or greater than the paraxial threshold (4.50),

the phase of the Hankel-like waves is almost plane outside the spot disk, and the direc-

tion of energy transfer described by the Eikonal rays indicates that the energy outside

the spot disk does not interferes with the interior in both Hankel-like spheroidal waves.

This is illustrated in figures 5.59 and 5.60, where the red line represents a ray in the

neighborhood of the spot disk.

Figure 5.59: Wavefronts and rays of

the spheroidal wave H
0(1)
20 (200, r).

Figure 5.60: Wavefronts and rays of

the spheroidal wave H
0(2)
20 (200, r).

The propagation of such truncated waves is shown in figures 5.61 to 5.64 along with the
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Hankel-Laguerre waves truncated in the same way, for comparison purposes.

Figure 5.61: Simulation of Hankel-
Laguerre wave h

0(1)
10 (r).

Figure 5.62: Simulation of Hankel-
Laguerre wave h

0(2)
10 (r).

Figure 5.63: Simulation of Hankel-
like spheroidal wave H

0(1)
20 (r).

Figure 5.64: Simulation of Hankel-
like spheroidal wave H

0(2)
20 (r).

At first glance, they behave according to their Hankel-like nature, that is H
m(1)
s behaves

as a diverging wave and H
m(2)
s as a converging one towards the propagation axis.

Finally we present the propagation of an off-axis obstructed spheroidal beam. In order

to test if the Hankel-like spheroidal waves do carry physical information, we calculate

trajectories normal to the wavefronts of both Hankel-like spheroidal waves. As shown

in figures 5.65 to 5.70, at first glance, the truncated Hankel-like spheroidal waves seem

to predict the behavior of the shadows of the obstructed spheroidal beam.
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Figure 5.65: Simulation of
obstructed ψ

0(1)
20 at z = 0

Figure 5.66: Simulation of
obstructed ψ

0(1)
20 at z = 0.1 z0

Figure 5.67: Simulation of
obstructed ψ

0(1)
20 at z = 0.2 z0

Figure 5.68: Simulation of
obstructed ψ

0(1)
20 at z = 0.3 z0

Figure 5.69: Simulation of
obstructed ψ

0(1)
20 at z = 0.4 z0

Figure 5.70: Simulation of
obstructed ψ

0(1)
20 at z = z0
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Nevertheless, as mentioned before a thorough study of the physics of the Hankel-like

spheroidal waves as well as their seemingly necessary truncation, are the perspectives of

this work.
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