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ABSTRACT

We describe the application of a statistical method to estimate submillimeter galaxy number counts from confusion-
limited observations by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Our method is based
on a maximum likelihood fit to the pixel histogram, sometimes called “P(D),” an approach which has been used
before to probe faint counts, the difference being that here we advocate its use even for sources with relatively high
signal-to-noise ratios. This method has an advantage over standard techniques of source extraction in providing
an unbiased estimate of the counts from the bright end down to flux densities well below the confusion limit. We
specifically analyze BLAST observations of a roughly 10deg? map centered on the Great Observatories Origins
Deep Survey South field. We provide estimates of number counts at the three BLAST wavelengths 250, 350, and
500 um; instead of counting sources in flux bins we estimate the counts at several flux density nodes connected
with power laws. We observe a generally very steep slope for the counts of about —3.7 at 250 um, and —4.5 at
350 and 500 um, over the range ~0.02-0.5 Jy, breaking to a shallower slope below about 0.015Jy at all three
wavelengths. We also describe how to estimate the uncertainties and correlations in this method so that the results
can be used for model-fitting. This method should be well suited for analysis of data from the Herschel satellite.
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1. INTRODUCTION

When the very first surveys are taken in any wavelength band,
counting the number of sources found as a function of source
apparent brightness is an efficient method for learning about
the population of sources uncovered. Typically, this approach
provides clues much more rapidly than the painstaking work of
identifying and studying the sources individually. If the sources
lie nearby on a cosmic scale, one expects the number of sources
per unit solid angle brighter than some limiting flux density S
to vary as N(> S) oc S™/2, the Euclidean limit. Evolution in
the volume density of sources, or their luminosity over time,
causes a departure from the Euclidean slope such that counts
measurements can be used to infer information about the history
of the population. In one of the first quantitative applications of
this technique, Eddington wrote in The Large Scale Structure
of the Universe (1911) that the universe consists of 10'° or 10!
stars surrounded by vast amounts of empty space. Clearly, a large
spatial inhomogeneity also generates non-Euclidean features,
and this was a correct inference given that galaxies had not
yet been discovered. On a cosmic scale, we do not anticipate
discovering such large inhomogeneities, but genuine clustering
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of sources and cosmic variance, where different regions happen
to have different densities, both of which will effect measured
source counts.

At 24 um source counts follow a Euclidean distribution un-
til just near the faintest end of the deepest surveys (Shupe
et al. 2008; Papovich et al. 2004; Rodighiero et al. 2006;
Chary et al. 2004; Marleau et al. 2004), implying a fairly uni-
formly distributed stable population at the bright end. However,
the 850 um selected sources in Submillimeter Common-User
Bolometric Array (SCUBA) surveys follow a very steep broken
power-law distribution (see Coppin et al. 2006; Knudsen et al.
2008; Smail et al. 2002; Scott et al. 2002; Webb et al. 2003;
Borys et al. 2003; and also Austermann et al. 2009a at mil-
limeter wavelengths). At 850 um there is enough of a negative
k-correction that there is little variation in the apparent bright-
ness of a source with a given luminosity at redshifts | < z < 8.
Furthermore, the increasing volume sampled at higher redshifts
enables surveys at this wavelength to efficiently sample large
numbers of distant objects. The contrasting shapes of the counts
distributions at 24 and 850 um imply both that the brightest
sources are rare and that their numbers have decreased over
time (Papovich et al. 2004; for measurements at intermediate


http://dx.doi.org/10.1088/0004-637X/707/2/1750
mailto:patanchon@apc.univ-paris-diderot.fr

No. 2, 2009

wavelengths, see Frayer et al. 2009; Dole et al. 2004). We report
here surveys made with Balloon-borne Large Aperture Submil-
limeter Telescope (BLAST), the first statistically useful surveys
in the crucial spectral range from 200 xm to 600 wm, near the
peak of the cosmic infrared background (CIB, Puget et al. 1996;
Fixsen et al. 1998). These surveys will explore the transition
between the nearby luminous galaxies and the distant starburst
population.

Counting objects in the sky is an endeavor which is probably
as old as counting itself. In astronomy, determining the abun-
dance of objects as a function of apparent brightness is often
the easiest way to describe a population, since detailed spec-
tral information is usually required in order to extract intrinsic
properties of objects. Hence a great deal has been written about
how to estimate “number counts” efficiently. The process in-
cludes carrying out estimates of incompleteness, flux boosting,
and corrections for other sources of bias.

Radio astronomers discovered in the 1950s (Scheuer 1957)
that one could use the statistical properties of observations of the
sky to probe the counts of sources which are too faint to detect in-
dividually (see also Murdoch et al. 1973; Scheuer 1974; Condon
1974; Barcons 1992; Takeuchi & Ishii 2004). The “probability
of deflection” or P(D) distribution is essentially the histogram
of pixel values in a map, and it depends on the underlying source
counts. For simple distributions, particularly power-law counts,
it is relatively easy to estimate the amplitude and slope of the
confused source counts. The conventional approach has been to
count brighter objects directly and to carry out a P(D) analysis
at the faint end. However, we have found that, at least in regimes
where a flux boosting bias is important (Coppin et al. 2005), it is
better to use a histogram-fitting procedure for the full range of
source brightnesses. In other words, if one wants to obtain a ro-
bust estimate of the source counts, it is better to avoid counting
any objects at all, a somewhat counterintuitive result.

This paper specifically examines data from BLAST at 250,
350, and 500 um. A first estimate of the counts at all three
BLAST wavelengths was presented in Devlin et al. (2009).
Here we present the method in much more detail, and perform
a refined analysis including a comprehensive discussion of
uncertainties and a discussion of clustering.

Our early attempts to estimate BLAST source counts relied
on the traditional approach of thresholding the maps in signal-
to-noise ratio (S/N), extracting candidate sources, and then es-
timating corrections for “flux boosting,” reliability, incomplete-
ness, etc. This approach did not yield useful results, even for
S/N > 5 sources. The BLAST data that we examined consist
of a two-tier survey, with a smaller region having much deeper
integration than the bulk of the map area. In practice, we find it
very difficult to match the counts for the range of flux densities
where the two tiers overlap. Application of the method to simu-
lated data sets reveals strong biases in the estimated counts. We
are therefore led to pursue other approaches, motivated addi-
tionally by earlier attempts to study the P(D) statistics of data
from the SCUBA instrument, finding that a careful modeling
of the counts to fit the pixel histogram achieves much more
satisfactory results.

We emphasize that in the S/N regime probed with BLAST,
and future surveys such as those that will be undertaken by the
Herschel satellite, the statistical fitting of the pixel histogram
gives better results than standard techniques of source extraction
over the full flux range.

There have been many previous P(D)-style studies of source
counts (e.g., Franceschini et al. 1989; Wall et al. 1982; Barcons
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& Fabian 1990; Oliver et al. 1997; Maloney et al. 2005),
but typically they were restricted to studying the faint end of
the counts, and using a single power law for the underlying
model. The closest study to our own in the literature is by
Friedmann & Bouchet (2004). Those authors developed a
minimum y 2 approach and applied it to simulations of Infrared
Space Observatory (ISO) data from the FIRBACK survey (Puget
et al. 1999) to fit a double power-law model. In this paper, we
have pursued this approach and have developed a maximum
likelihood method applied to data of significantly higher quality
and quantity. We have uncovered a number of issues related
to application to real data. We have also developed a more
efficient implementation of several steps in the analysis, as well
as techniques to accurately estimate errors. Discussion of these
details is likely to be helpful when applying a similar approach
to even better data sets. Our method accounts for issues related
to realistic instrumental noise and pre-processing of the map.
We provide solutions to deal with inhomogeneous and large-
scale noise in the map, and to correct the effect of optional map
filtering. We also discuss in detail the choice of filter to apply to
the maps for the optimization of source count estimation.

We present the application of the method to multi-power-law
count models using Markov Chains (e.g., Chib & Greenberg
1995) to sample the likelihood and provide an extended dis-
cussion of uncertainties and correlation among parameters. We
discuss how to marginalize over the total background intensity, a
quantity which is not accessible from the data, and examine how
to include prior information on the background in the analysis.

Our paper is organized as follows: we introduce the BLAST
data in Section 2; we present the model of observations and
the main steps of the derivation of the probability function
in Section 3. The maximum likelihood method is developed
in Section 4, and in Section 5 we present the application to
BLAST maps and provide estimates of the counts at 250, 350,
and 500 um. The comparison with other data and extensions of
the method are discussed in Sections 6 and 7.

2. BLAST OBSERVATIONS

BLAST is a stratospheric balloon-borne telescope incorpo-
rating a 1.8 m primary mirror, and operating at an altitude of
approximately 39 km. The focal plane is populated with three
bolometer arrays observing in contiguous bands with central
wavelengths of 250, 350, and 500 wm, essentially a prototype
of the camera of the Spectral and Photometric Imaging Re-
ceiver (SPIRE) for Herschel (Griffin et al. 2007). BLAST had
two successful scientific flights. Here we use data from the
11-day flight carried out in 2006 from the McMurdo Station,
Antarctica. The under-illuminated BLAST primarily produced
nearly diffraction-limited beams with full width at half-maxima
(FWHM) of 36”, 42", and 60", at 250, 350, and 500 pum, re-
spectively. BLAST deep and wide blank-field surveys, hereafter
BGS-Deep and BGS-Wide, were centered on the Great Obser-
vatories Origins Deep Survey South (GOODS-S) field, which is
at the center of the Chandra Deep Field South (CDFS). A second
intermediate depth field near the South Ecliptic Pole was also
surveyed. In addition, BLAST also targeted parts of the Milky
Way (Netterfield et al. 2009) and some nearby galaxies. Several
other observations of low-redshift clusters and high-redshift ra-
dio galaxies were made to sample biased star-forming regions of
the universe.'® Further details of the instrument can be found in
Pascale et al. (2008), and the flight performance and calibration

13 See http://blastexperiment.info for more details.
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for the 2006 flight are provided in Truch et al. (2009). In this
paper, we focus on the BGS-Deep+Wide map, which covers an
area of approximately 10 deg?. The deep part, nested inside the
wide, has an area of 0.8 deg2 and is confusion limited in all three
bands in the sense that the variance of the map at the scale of
the point-spread function is dominated by sources rather than
noise.

The processing of BLAST timestreams includes despiking,
correcting time-varying detector responsivities, and deconvolv-
ing the effects of detector thermal time constants and audio
frequency filtering. The absolute calibration is based on reg-
ular observations of the evolved star VY CMa, which results
in systematic uncertainties common to the three BLAST bands
of approximately 10% (Truch et al. 2009). The calibration un-
certainty propagates directly to our counts estimates, and we
neglect it from here on, since it only affects the comparison
between our results and those of other experiments. Pointing is
reconstructed to an accuracy of <5”. Maps are produced us-
ing SANEPIC, a maximum likelihood method (Patanchon et al.
2008) dealing with low-frequency noise as well as noise correla-
tions between detectors. Because of the modest scanning angle
variations of this particular field, residual correlated noise is still
present at large angular scales after map-making. A relatively
weak high-pass filter is therefore applied to the maps, suppress-
ing signal on scales larger than about 8'. The filter is anisotropic
and stronger in the main cross-scan direction. Filtering has little
impact on point sources and is accounted for in the analysis (see
Section 3.2).

3. MODEL OF THE OBSERVATIONS

In this section, we present the main steps of the computation
of the probability distribution function (PDF) with respect to
models of submillimeter galaxy number counts with typical
observational parameters. Detailed derivations and descriptions
of the statistics of source confusion can be found in several
articles (e.g., Takeuchi et al. 2001, and references therein).'*
Here we give only a brief overview of the statistics of the “P(D)”
histogram.

3.1. The Probability of Deflection

Let us define n(S) to be the differential number counts, i.e.,
the derivative of the cumulative source counts:

dN(>S)

n§)=-——g5—: ey

where N(>S) is the total number of sources per unit solid angle
with flux densities larger than S. Let us assume that we perform
an observation at a random position ry on the sky. A point source
at position r is observed with a flux x = § x f(r — rp), where
f(Ar) is the beam function.'> Then, the mean number density
of sources observed with a flux x is given by the well-known
result (Condon 1974)

R(x)—/n( x ) dr P
- f@r—rg)) f(r—rg)

14 For an introduction to this topic, we recommend the Appendix of Wall et al.
(1982) or Section 2 of Takeuchi et al. (2001); see also Section 9.1 of Trimble
& Aschwanden (2005).

15 In a pixelized map, f(Ar) is basically the result of the convolution of the
experimental beam function with the pixel window function.
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Now let my; be the total number of sources observed with a flux
between x; and x; + Ax, and m;, the expected number of sources
in the same flux bin. Assuming that Ax < x;, we can write

m, = R(xp)Ax. (3)

For this paper we assume that the sources are randomly dis-
tributed over the sky without spatial correlations on scales larger
than a beam size. This assumption is discussed in Section 6.4.
In the observed flux bin k, the probability distribution of my
follows Poisson statistics with mean my:

— (R(xp)Ax)™ o~ ROwAx
mk!

pr(my) 4)

We can also write the characteristic function, i.e., the Fourier
transform of the probability distribution of the Poisson distribu-
tion, as follows:

Pr(t) = exp[R(x)Ax(e'™ — 1] 5)

The total flux, dg, from all the sources in the pixel can be
written as a sum over all the flux bins, i.e.,

ds =) sc=)_ xim, (6)
k=0 k=0

where s is the total flux due to all sources with the observed
flux x; = kAx. We want to obtain the PDF of ds. Given that
the probability distribution of d; is the result of convolution of
the probability distributions of s, then individual characteristic
functions multiply. We can thus obtain from Equations (5) and
(6) the expression for the probability distribution of ds:

p(ds) = F! {exp (foo R(x) e dx
0

- /0 R(x)dx)} (ds). )

Here we have taken the limit of the sum in Equation (6) as an
integral over dx, and w is the variable of the Fourier transform
of p(ds).

For most experiments, and explicitly for BLAST, the mean
value of the flux density is not accessible to observation. The
measured signal, d, is the sum of the total response to the source
flux, dg, an offset w, which we assume is constant for all pixels,
and instrumental and photon noise (which we will hereafter
refer to as simply “noise”). Assuming the noise is Gaussian
with standard deviation o,, the probability distribution of the
observed signal is the convolution of the probability distribution
of pure signal and of noise, which gives

pd) = F! {exp (f R(x) ™ dx
0

2

—/ R(x)dx +iux — =w )}(d), ®)
0 2

where u = — f X R(x)dx for a zero-mean distribution of pixel
values in the map. In general, u is not known and so is a
free parameter to estimate (or marginalize over). Note that we
do not require the instrumental noise to be white. The model
prediction for the probability distribution is valid even in the
case of correlated noise, provided it is described by Gaussian
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Figure 1. Left panel shows two examples of differential number count models at 250 um (solid curves) and the corresponding integrated number counts N(>S) (dot-
dashed curves). The first model is a simple power law of the counts d N /d S = NoS~28 and the second model is a double power law dN /d S [(S/So)! 8 +(S/S())3'5]_1
with the transition flux Sy = 30 mJy. The dotted line corresponds to one source per 250 um BLAST beam area. The right panel shows for the different models the
PDFs of pixel values for noiseless observations with the 250 um BLAST beam. The solid line corresponds to the simple power-law model, the dot-dashed line to the
double power-law model, and the dashed line to the same single power-law model except that for sources between 0.2 and 0.4 Jy the differential counts have been
set to zero (this is of course a very unrealistic model but the curve is informative nonetheless). One can see that at high fluxes the PDFs behave like the differential
counts power laws (see the text). Note also that a very sharp transition in the counts appears a lot smoother in the PDF, even at relatively high flux densities. Even
if no source with 0.3 Jy flux density is present, a significant number of 0.3 Jy beam ™! pixels are expected, due to the probability of landing near bright sources, as
well as the probability of having smaller flux galaxies on top of each other. This also explains the correlations in the estimated number counts parameters described in
Section 5.3.

statistics. In that case, the variance o in the above equation where €y is the effective beam solid angle, defined as
would then be given by the integral of the noise power spectrum.
Figure 1 shows the predicted PDF of noiseless observations Qy = / F@)* dr. (11)
with the 250 yum BLAST beam for two different galaxy number
count models: a typical double power-law model at 250 m One can see that the Fourier transform of the probability
(Borys et al. 2003) and a single power-law model. distribution is analytic in this case. The formalism is described in
.The curves illustrate how sources with different fluxes con- detail in Condon (1974). The resulting distribution is an alpha-
tribute to the PDF. There are three features to note: stable function (see Herranz et al. 2004). This expression may
. . . be a good approximation when the number counts only mildly
1. The very faint sources, for which the average number is deviate from a power law. However, in general, we need an
much larger than one source per beam, induce an almost approach that works for a much wider range of counts models.
Gaussian behavior, as the Poisson distribution tends to be
Gaussian for large numbers. 3.2. Dealing with Map Filtering

2. Sources with fluxes for which there is about one source per
beam have the greatest impact on the profile of the distribu-
tion (the width in particular). They contribute significantly
to much higher fluxes in the histogram than their own flux
because a large fraction of them are superimposed on each

The effect of a spatial filter being applied to the maps can be
modeled entirely by introducing an effective beam which results
from the convolution of the actual beam with the filter kernel.
In most applications, a high-pass filter is applied to the maps
in order to suppress any residual large-scale noise, and this has

other. been done for BLAST; see Section 2. In this case, the kernel is
3. The bright sources contribute mainly to the positive tail a “Mexican hat” shape which suppresses the average value and
of the distribution, but also to the full range of pixel low spatial frequencies, and the resulting effective beam takes
brightnesses, since sources can contribute everywhere in both positive and negative values. Formally, the signal at a given
the beam. At the bright end, the probability distribu- pixel in the filtered map may be decomposed as the difference of
tion varies almost proportionally to the source counts measurements from two distinctregions in the sky: d = d, —d_,
for power-law-type counts. This can easily be checked with d, being the result of the integral from the positive part of
from Equation (7)—if only bright sources are present the effective beam only and d_ from the negative part only (for
then exp[f R(x)e"*dx] >~ 1+ f R(x)e'"*dx, and so which the absolute value is taken).
p(d) o R(d) which is also o n(d) (d # 0) for a power The probability distribution of the measurements (pixels) in
law (see below). the map is then the result of the convolution between the two

. . . . individual probability distributions:
It is interesting to consider the case of a single power-law

number counts model consisting of p(d) = p(d,) * p(—d_), (12)
n(s) = KS™. ) which gives, using Equation (8),

Here the number of sources per “observed” flux x (Equation (2)) pd)=F"" {CXP < / Ri(x)e"™dx + f R_(x)e™"*dx

is also a power law: 5

_ i — 20,2
RGx) = QuKx . (10) /(R+(x) + R_(x))dx +i ux > w )} d). (13)
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Figure 2. Solid curve represents the predicted PDF (integral normalized to
unity) of noiseless observations for BLAST at 500 «m derived from our best-fit
model described in Section 5.2 and using our best estimate of the beam. The
dot-dashed curve represents the predicted PDF taking into account the effect
of high-pass filtering of the map, as done in the analysis. The two curves are
nearly identical for x > 0. The dashed line represents the absolute value of the
difference between the two PDFs which is about 5% for positive x. Filtering
induces a small negative tail to the histogram and affects the high flux part.

Here R, and R_ are computed from relation (2) for the
absolute values of the positive and negative parts of the beam,
respectively. Consequently, the probability distribution contains
a negative tail, which can be understood by realizing that after
high-pass filtering very bright sources induce negative shadows
around their locations in the map. However, this effect is barely
seen in BLAST histograms, since the high-pass filter applied to
the maps is relatively weak.

Figure 2 shows a predicted PDF for noiseless observations
with BLAST at 500 um, with and without high-pass filtering
applied to the maps, as we have done in the analysis (see
Section 2; the filtering applied is weaker for the other two
wavelengths).

The effect of filtering is fully taken into account in the analysis
of all BLAST maps presented in this paper.

In developing the techniques described in this section we have
in mind experiments like BLAST which are “total power” (even
although the “DC level” in a map is unmeasurable). However,
the same formalism can be used to deal with maps resulting
from experiments performing differential measurements, using
a chop, for example. In that case, the effective beam can be
described as a negative side shifted by some angular distance
from an identical positive side. The histogram for a map
made with a single difference “double-beam” pattern will be
(statistically) symmetric between positive and negative fluxes,
and in practice this may lead to further complications in inverting
the PDF.

3.3. Number Counts Parameterization

We have previously described how to obtain the PDF of
pixel values from a given galaxy differential number counts
function assuming that galaxy locations are uncorrelated. For
the analysis of BLAST maps (described in the following section)
we need to do the opposite, i.e., the objective is to obtain the
best estimate of the counts starting from the determination of
the histogram of pixel values, which is a measure of the PDF.
Because the relationship between the counts at a given flux
and the PDF at the same flux is far from straightforward (this
is illustrated in Figure 1 which shows how the PDF changes
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after removing the contribution of galaxies whose fluxes are
within a given flux range), degeneracies are expected between
parameters. It is therefore necessary to model the counts with
a very limited number of free parameters, as we would do in a
deconvolution problem, and to consider the correlations between
these parameters.

We tried different phenomenological models, like single or
double power laws with a break. We finally chose to parame-
terize the differential number counts by a set of amplitudes at
a few predefined fluxes, with the intervals between flux nodes
interpolated with power laws to impose continuity of the counts.
The number and location of the nodes are chosen so that the er-
rors on parameters are neither too small (which would suggest
that more nodes could be added) nor too large, while making
sure that the quality of the overall fit is satisfactory and does
not significantly improve with the addition of more nodes. For
the BGS maps we found that no more than about six amplitude
parameters per wave band can reasonably be estimated.

4. PARAMETER ESTIMATION METHOD

The parameter estimation method developed in this section
is similar to the approach described by Friedmann & Bouchet
(2004). It is based on minimizing the mismatch between the
predicted and measured PDFs, i.e., histograms of the maps, in
order to estimate the number count parameters and also the
noise parameters. The approach is based on maximizing
the likelihood of the data. We denote by 0 the parameters of
the number counts model, which can take any form. Later we
will focus on a specific model using a handful of nodes joined
with power laws.

4.1. Likelihood of the Data

Let us assume that the different measurements in different
pixels of the map are independent. We will discuss this assump-
tion in Section 4.2. The likelihood of the data is the product of
the probabilities of the individual measurements:

L(d|0) = I p(di|0), (14)

where d = {d,, ...dy, ...} groups all the measured flux values
in the different pixels, and p(dy|6) represents the PDF of
individual measurements given by Equation (8). However,
instead of Equation (14), it will be easier to consider the log-
likelihood:
log L(®) = Y _ log (p(di[6)). (15)
k

Assuming that the noise is stationary and that the probability
distribution does not vary much over a pixel flux density bin,
then Equation (15) becomes

log L(0) ~ Zni log (p;(0)) + constant, (16)

where n; is the number of pixels with flux densities in the ith
flux bin interval, e.g., it is the histogram of the data, and p; is
the result of the integral of the PDF in the ith bin, normalized
such that Zi pi = 1; see Section 5.2, where we show how non-
stationarity can be taken into account. Let us define the quantity
® as the negative of the log-likelihood:

D©O) = — Y _nilog(pi(6)) —log(NH)+ Y log(n;!), (17)
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where N is the total number of measurements (i.e., pixels). Now
@ is equivalent to the negative logarithm of a multinomial distri-
bution function (the last two terms in the equation being derived
from the normalization of the distribution) and is the quantity we
will minimize in order to estimate the number counts. We note
the following properties: (n;) = Np;; Var{n;} = Np;(1 — p;);
Cov{n;,n;} = —Np;p;(i # j). If the conditions n; > 1 and
pi < 1 are satisfied for all bins, then the quantity ® becomes
quadratic in n;:

1 ni — Npi(0)\*
o@) ~ (—) VK, (18)
2 Z VNpi®
where the normalization constant K = (N/2)log(27) +

(1/2) Y, log (Np;). Note that this quantity is simply a mea-
sure (l);f the mismatch between the PDF and the histogram of the
data.

In order to estimate the parameters of the model, we minimize
Equation (17) using a simple Markov Chain Monte Carlo
Metropolis Hastings method (MCMCMH), which allows us
to sample the likelihood around its maximum (e.g., Chib &
Greenberg 1995).

4.2. Approximate Likelihood and Error Covariance Prediction

One of the assumptions made for the derivation of the
likelihood in Equation (14) is that observations, i.e., pixel
values in the map, are independent of each other. This is
obviously not actually the case, because the beam correlates
the signal in adjacent pixels for well-sampled maps. So does
any filtering applied to the maps and residual large-scale noise.
However, neglecting this effect does not introduce a bias
in parameter estimation, because correlations in pixels only
correlate measurements of the histogram and do not modify its
expected shape. Nevertheless, neglecting the beam correlations
reduces the performance of the method; another way to think
of this is that sources will cause many neighboring pixels to
be bright, but the information about the spatial distribution of
bright pixels is lost if one only uses the pixel histogram. As we
will describe below, we deal with this by smoothing our maps
with the beam (see Section 5.1) and then using an estimate of
the effective number of independent pixels.

Measurements of the curvature of the log-likelihood, derived
under the assumption of the incorrect correlations, will lead to
an underestimate of parameter errors. This can be corrected,
to a first approximation, by taking for n; in the negative-log-
likelihood expression (Equation (17)) the effective number of
independent measurements in the map in flux bin i, which is
approximately the number of pixels in flux bin i divided by
the beam solid angle, measured in pixels.'” Also, N should be
taken to be the total map area divided by the beam solid angle.
This corresponds to applying to Equation (17) a factor which is
the inverse of the beam area in pixels. We have applied these

16 Friedmann & Bouchet (2004) used a similar quadratic statistic (without the
normalization term K) to fit for source count parameters, but we prefer to use
the actual log-likelihood of the data derived in Equation (17), which gives
proper weights to the tails of the histogram and allows us to define very fine
flux density binning.

17" As described in Section 5.1, each map has been filtered by the beam for
better estimation of parameters. This means that the effective correlation length
is the beamwidth for the noise component and slightly more for the signal
component (larger by V/2). We have chosen to use the beamwidth as the factor,
which should lead to a mild underestimation of the errors (by a factor smaller

than +/2, but this has not been fully quantified with Monte Carlo simulations).
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corrections for the estimation of uncertainties in the following
section.

The error variance and covariance of parameters are obtained
from sampling of the approximate likelihood with MCMCMH
(see Section 4.1). We have also made a set of 60 Monte Carlo
simulations of 250 um maps following the full processing
procedure. This has allowed us to check the validity of the
error variance prediction using our simple likelihood correction.
We find that differences between our error estimations and the
Monte Carlo simulations are less that 40%, but these should
be quantified more accurately with larger sets of Monte Carlo
simulations. Although this has not been checked explicitly, we
expect the likelihood approximation to also be valid for 350
and 500 um data. The likelihood contours between pairs of
parameters are also computed from the output of MCMCMH.

Since we calculate the maximum likelihood estimate of the
model, and assuming that the model holds for some value 6, of
the parameters, it is also possible to obtain an estimate of the
errors by computing the second derivatives of the likelihood.
The asymptotic covariance matrix of the estimates is given by

Cov(@) = ({0 —60)@ —6)")) = J@)~", (19

where 6 are the estimated parameters and J(6p) is the Fisher
information matrix, which is, following Equation (17),

op; ap; 1

. 20
96k 90, p; 20

JE)a =N

In practice, the Fisher matrix is evaluated at the point of

convergence 6. Again, here N is the number of beam areas
in the map.

4.3. Joint Fit of Maps with Different Depths

In order to derive Equation (17), which gives the quantity
which must be minimized, we have made the assumption
that the PDF is the same for all observations (or pixels).
In practice, for BLAST this is not valid because the noise
variance changes across the map. One could always minimize
the full expression in Equation (15), but that would be extremely
time consuming, since one evaluation of the PDF would be
required per observation. On the other hand, neglecting the
non-stationarity of the noise would be sub-optimal since all
pixels would have the same weight independently of their
noise rms. Ignoring unequal weights would also bias the
parameter estimates, since non-stationarity leads to a non-
Gaussian histogram of the noise part, even for Gaussian noise.
The solution we have adopted is to divide the observed maps
into a limited number of zones such that in each zone the
noise variance is approximately constant. We then compute
histograms and the quantity in Equation (17) for each of the
zones. The resulting criterion to minimize is then

D= "¢, (21)
q

with ¢, computed from Equation (17) for the noise variance in
zone q.

4.4. Goodness of Fit

The quality of a particular parameter fit can be measured using
Equation (18) after rebinning the data such that n; > 1 while
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Figure 3. Histograms of the BGS-Deep map (left panel) and BGS-Wide map (right panel) at 250 um, before and after cross-correlation with the beam kernel
(dot-dashed and solid curves, respectively). The original map is computed with 10” pixels, which is slightly less than one third of the pixel size, and the units are Jansky
per resolution element in each map. Dotted curves show the expected histograms for noise only (both filtered and unfiltered). The comparison shows that filtering the
maps with the beam is a much better choice than using the raw 10” pixel map (even in the deep part where the signal to noise is larger), in the sense that the difference
between the measured histogram and the noise variance is enhanced. This is because the signal from sources is less affected by filtering than noise, which has power

at higher frequency (see the text).

satisfying p; < 1. If the model holds, we have the following
relations:
(@) = (N —ng) + K, (22)

where ny is the total number of parameters we estimate and K
is the normalization term in (18), and

Var(®) ~ (N — ny). (23)

These relations can be used to test the compatibility of any given
model with the data.

5. APPLICATION TO BLAST NUMBER COUNTS

We now discuss the estimation of BLAST number counts
using the method described in the previous section. First, we
discuss the data and specific processing steps carried out on the
maps prior to performing the likelihood analysis.

5.1. Data Preparation for P(D) Analysis

For source extraction from noisy data, it is well known that
one should use a matched filter on a well-sampled map. It has
been shown that extraction of submillimeter galaxies at low
S/N levels can be performed efficiently by using one of several
variants of this technique—either thresholding on a beam-
correlated map (e.g., Eales et al. 1999; Borys et al. 2003), or in
the case of a variable background, by using a Wiener filter (e.g.,
Perera et al. 2008) or its approximation via a Mexican hat (e.g.,
Barnard et al. 2004; Chapin et al. 2008). This works because
beam-fitting is mathematically identical to finding maxima in
beam-correlated maps, provided that the noise is white and the
sources are unresolved. The Wiener filter simply suppresses
any additional large-scale correlated noise, corresponding to a
negative ring in the spatial filter.

For P(D) analysis, the problem is very similar. In the low
S/N regime (as in BGS-Wide), the histogram of pixel values
will be dominated by noise, providing that pixels are small
enough to fully sample the beam, which corresponds to 10”
pixels for BLAST. The histogram depends on the chosen pixel
size, which is obviously not satisfactory because then one is
led to either choose between or combine results obtained using
different pixel sizes in order to learn about structure in the map.
Essentially, in a noisy fully sampled map there is information
about faint structure which is encoded as a correlation between

adjacent pixel values and this information is ignored in P (D)
analysis. However, after filtering a well-sampled map with the
beam kernel, the noise contribution to the width of the histogram
is reduced by a factor which is approximately the number of pix-
els per FWHM of the beam,'® whereas the signal contribution is

only reduced by approximately /2, at least for a Gaussian beam.
It then seems clear that in the noise-dominated regime, it is better
to cross-correlate the maps with the beam kernel before P(D)
analysis. Even though the map itself is likely more confused
after this process, the resulting histogram effectively contains
information about sources contributing over roughly a beam area
of neighboring pixels. We have verified that this improvement
is realized in practice, the errors on number count parameters
being reduced by a factor of about 3 at 250 um for the bright
end fluxes, and by a larger factor at longer wavelengths and/or
for fainter fluxes (after beam convolution of 10” pixel maps).

In the opposite regime of source confusion dominating
over the detector and sampling noise, it may be a better
approach to partially deconvolve the map. In the extreme limit
of a noise-free map, one would simply deconvolve to obtain
3-functions and count the point-source strengths. Probably, the
deconvolution criterion should be that confusion noise becomes
of order the instrumental noise. However, we have not carried
out the extensive simulations which would be required to test this
hypothesis. A relatively good choice might be to apply a Wiener
filter to the confused map. Nevertheless, there would appear to
be no generally applicable solution, since one filter might be
optimal for the low flux sources, whereas some different filters
might be better for high flux sources. In practice, these filters
will depend on the counts themselves (perhaps related to €2y
from Equation (11, for example), so ultimately one might be
forced to iterate to find the best solution.

We have chosen to filter the BGS-Deep+Wide maps simply
with the beam kernels at the appropriate wavelengths, even if
these are not strictly speaking the optimal filter for each map.
We reiterate that this choice will not bias our results; it just
means that our error bars are not optimal.

Figure 3 shows the histogram derived from the BGS-Deep
and Wide map at 250 um using 10” pixels, before and after
filtering with the beam kernel. The units of the two maps are
Janskys per beam, such that if there was a source at a given

18 Recall that the area of a Gaussian beam 2702 ~ 1.14 FWHM?.
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Figure 4. Variance map at 250 um. Contours delimit the different variance
zones, except the higher variance one which concerns a small fraction of pixel
spread over the top of the map.

location in the maps, a measure of its flux in Janskys could be
read straight from the pixel at that location. The expected noise
histograms, given the noise variance in each map, are also shown
(also before and after filtering). By comparing these curves, we
can anticipate a large improvement for P(D) analysis in using
the filtered map with the beam kernel, as compared to using
the raw 10” pixel map (which is equivalent to filtering the map
with a 10” square filter), because the width of the histogram is
significantly reduced. The histogram is dominated by noise in
the unfiltered 10” pixel map, and by confusion in the filtered
map. For BGS-Wide, the beam kernel is clearly a very good
filter, since the map is dominated by noise even after filtering.

Because of the large range of noise variance across the BGS
field, we have divided the maps into eight zones such that in
each zone the noise variance can be assumed to be constant,
following the approach described in Section 4.3. The boundaries
were chosen so that variation of the variance in each zone has an
rms of about £10%. Thus, the fluctuations do not significantly
modify the Gaussian shape of the expected noise histograms. In
the end, most of the constraint on the number count parameters
comes from two zones only: the deepest, containing ~ 5%
of the total number of observed pixels; and a second zone,
which covers most of BGS-Wide and contains ~ 80% of the
pixels. Figure 4 shows the variance map at 250 um with our
eight regions superimposed. We can clearly see the two main
variance zones. The other selected zones are, for the most part,
located at the transition between Deep and Wide. We could
have excluded them from our analysis with little effect on the
parameter constraints, but there is no reason not to include
this additional information, provided these regions are treated
correctly.

The variance in the noise per pixel is computed in the
map-making procedure by propagating the information from
estimates of the timestream noise power spectra (see Patanchon
et al. 2008 for details). Some approximations are made in the
calculation; in particular, we implicitly assume that the residual
noise in the final map is white. However, we know that map-
making is not 100% successful in removing large-scale noise in
these data, partly due to the low cross-linking angle of the scans.
Therefore, even after high-pass filtering the map, a small fraction

the deepest region, errors of 10% in the noise variance (which
is larger than we expect) would bias the estimated counts by
only a fraction of 1o. We can confidently fix the noise variance
parameter for the deep part to the predicted value without risk of
biasing count parameters. We have found that the noise variance
measured by P(D) in the wide zone is about 5% larger than the
variance measured in the preprocessing. Differences are larger
in the zones located at the transition between BGS-Deep and
BGS-Wide, but this is expected considering the potential sources
of additional systematics in regions coincident with scanning
accelerations.

We have verified the statistics of noise using jack-knife maps
which were made by computing the difference between two
independent maps from the same region observed at different
period during the flight. We did not find any evidence for
departures from Gaussian instrumental noise when examining
the histogram of the difference map.

To build the histograms of data which are used for the fit, we
use a very fine binning in flux density (<1 mJybeam™') such
that variations of the PDF within bins are completely negligible.
For such small bins, the results are independent of the bin size.
As aresult, in practice a large fraction of high flux bins receive
either O or 1 hit.

5.2. Estimated Number Counts

P (D) analysis is carried out by minimizing the negative log-
likelihood in Equation (17). We first attempt to fit a single power-
law model for the number counts: dN/dS = Ny x (S/So)P.
Best-fit amplitudes and power-law indices for each of BLAST’s
three wavelengths are given in Table 1.

We find that the best-fit single power laws are very steep, the
index S being —3.0 at 250 um, and —3.1 at 350 and 500 pm.
The strong departure from Euclidean number counts (8 =
—2.5) is an indication of strong evolution in the submillimeter
galaxy population; see Pascale et al. (2009) and Marsden et al.
(2009) for quantitative measurements of these effects made
via stacking. The steepening of the counts with wavelength
suggests a significant contribution from high-redshift galaxies
to the confused signal in the maps. However, these results are
somewhat sensitive to the faint end flux cut imposed in the
model, due to the steep slope of the counts.

The need for a break in the slope toward fainter fluxes, so as
not to overproduce the total CIB, shows that the single power-
law model is unrealistic. Moreover, it appears that such a simple
model is not a very good fit to the data, especially at 250 um,
as we will discuss later. Measurement of a break to a flat slope
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Table 1
Best-fit Power-law Number Counts
Parameter 250 um 350 um 500 um
B —3.005+0.022 —-3.1194+0.024 —3.101 £0.024
So (mJy) 7.5 22 1.8
log No (deg=2Jy~!)  6.036 % 0.009 7.383 £0.012 7.269 £ 0.015
Smin (MJy) 0.1 0.05 0.025
Smax (mJy) 1500 550 250

Notes. Fitted models of differential number counts: dN/dS = Ny x (S/ So)?
for the three wavelengths. The log of the amplitude Ny and the index B are
both estimated. The reference flux density Sp is chosen for each wavelength
such that errors on the two parameters are nearly decorrelated. We have limited
the differential counts between Spin and Smax, Which are given in the last two
rows. The high flux limit Spax is set to be slightly larger than the brightest
source observed at each wavelength. The value of Sy, is somewhat arbitrary;
we selected a value which is low enough so that if we divide it by a factor of 2,
the count slope does not change significantly.

at faint fluxes would indicate that the BLAST maps are nearly
deep enough to capture the full intensity of the CIB, and would
presage definitive results from Hershel. Since one would like to
be able to constrain the number counts over different intervals
of source flux, one is led naturally to consider more realistic
models. We have chosen to fit power laws for differential number
counts within predefined flux density bins, as described in
Section 3.3. A number of six distinct power laws are estimated
(a total of seven free parameters) for the differential number
counts at 250 um, and five power laws (six parameters) at each
of 350 and 500 um. The last and first power laws are tied to
the first and last nodes, respectively. Number counts are set
to zero below the first and above the last nodes (they provide
limits for the computation of the PDFs). The choice of flux
density for these extreme nodes is set by requiring them to be
very far from typical values constrained by BLAST (e.g., the
extreme nodes are set to 10~* Jy and 10 Jy at 250 m), such that
results are independent of our particular choice. Best-fit number
counts for the three wavelengths are displayed in Figure 5. The
errors bars shown in the figure are computed from the 68%
confidence intervals on the marginalized distributions of each
parameter separately, the marginal distributions being estimated
by sampling the likelihood with MCMCMH. Median values of
each parameter derived from marginal distributions and 68%
confidence intervals are given in Table 2 (see also Table 3 for
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Figure 5. Best-fit differential number counts for the three BLAST wavelengths.
Quoted error bars are derived from the marginal distribution for each parameter;
because of non-Gaussian behavior of the likelihood around its maximum, the
best-fit model is not necessarily centered on the errors bars. The first and last
power laws (at the faint and bright ends, shown by dotted lines) are 30 upper
limits (corresponding to 99.9% confidence regions for a one-tailed Gaussian).
There appears to be a shallower slope at both ends.
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the results including FIRAS background constraints as a prior as
described in Section 5.4). These are not exactly the parameters
of the best-fit model, due to non-Gaussian likelihoods around
the maximum. Pearson correlation matrices for the parameters
are given in Tables 4-6.

There appears to be a change toward shallower slopes at the
faint ends of the counts at all three wavelengths, and also at the
bright end at 250 wm. This bright-end behavior is consistent
with the expectation that we are entering the Euclidean regime
for ~ Jy sources. At all three wavelengths the counts are much
steeper than Euclidean over most of the range of flux densities
probed. The slope of the counts is close to —3.7 at 250 um
over the flux density range 0.02-0.5Jy and —4.5 for the two
longer BLAST wavelengths in approximately the same range.
This is not compatible with the slope values fitted assuming
single power laws. The break in the slope observed at the faint
end is consistent with the requirement that the background not
be overproduced. Since the intensity made by the counts is
I = [S.(dN/dS)dS then we must have 8> —2as S — 0in
order to have convergence. This is not imposed in our method
since the mean value of the probability distribution is set to 0, so

Table 2
Best-fit Differential Number Counts
250 wm 350 um 500 m

Node Best Fit Marginal Node Best Fit Marginal Node Best Fit Marginal

dy) (og[deg > Jy~']) dy) (og[deg > Jy~']) dy) (log[deg > Jy~'])
1.0 x 107 364  <1028(30) 5.0x107° 5.65 <11.12(B30)  2.5x107° 747 <11.03(30)
0.02 5.65 5.58+0.07 0.015 5.75 5.88*0.1% 0.01 5.85 5.97+.17
0.1 2.45 2,517 0.05 3.17 2.88%0% 0.03 3.81 3.63105¢
0.25 1.49 1414920 0.15 1.29 1.26*052% 0.08 1.85 1.90*04%
0.5 —0.13 —0.107%4} 0.5 -0.29 —0.234935 0.25 —0.06 —0.3570°3
1.2 -0.27 -0.37*%3% 5 -6.80 < -2.19(30) 2.5 -12.56 < —2.27(30)
10 —11.77 < -3.23(30)

Notes. Differential number counts are parameterized by the log of the amplitude at fixed flux density nodes, and filled with connected
power laws. Best-fit parameters are given for the three wavelengths, as well as median values of the marginal probability distribution for
each parameter. Quoted uncertainties are 68% confidence intervals (except for the first parameters for which we give 30 upper limits,
corresponding to 99.9% confidence), derived from the marginal distribution for each parameter. Errors on parameters are highly correlated

(see Tables 4—6 for Pearson correlation coefficients).
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Table 3
Best-fit Differential Number Counts with Background Constraint
250 um 350 um 500 um

Node Best Fit Marginal Node Best Fit Marginal Node Best Fit Marginal

dy) (logldeg2 Jy~']) dy) (log[deg—? Iy~']) dy) (log[deg—> Iy~'])
1.0 x 1074 8.44 <9.28(30) 5.0 x 1073 8.32 < 9.42(30) 2.5 % 1072 8.66 < 9.67(30)
0.02 5.35 5.49*013 0.015 5.67 5.88+013 0.01 5.72 5.95*018
0.1 2.73 2.574918 0.05 3.26 2.8540% 0.03 3.94 3.62+04%
0.25 1.32 141792 0.15 1.19 128932 0.08 1.77 1.8703%
0.5 —0.02 -0.22704 0.5 —0.12 —0.24703% 0.25 0.00 —0.32081
1.2 -0.30 —0.22+030 5 —10.90 < —2.46(30) 2.5 -16.01 < —1.75(30)
10 —21.20 <-3.33(0)

Notes. Same as Table 2, but using background constraints coming from using the FIRAS measurement as a prior in the P(D) analysis. Some of the
error bars increase a little after adding the FIRAS constraint. This is because some parameters are slightly lowered when we add the prior and the

corresponding amplitudes have a larger probability of being very close to zero.

Table 4 Table 6

Pearson Correlation Matrix for the Parameterized d N /d S Model at 250 pm Pearson Correlation Matrix for the Parameterized d N /d S Model at 500 p©m
Node 1074 0.02 0.1 0.25 0.5 1.2 10 Node (Jy) 0.000025 0.01 0.03 0.08 0.25 2.5
1074 1.00 —0.85 044  —0.19 0.08 —0.06 —0.04 0.000025 1.00 —0.82 0.52 —0.34 0.14 —0.03
0.02 —0.89 1.00 —0.77 042 —0.17 0.10 0.03 0.01 —-0.71 1.00 —0.72 0.53 —0.25 0.02
0.1 0.55 —0.80 1.00 —0.67 028 —0.17 0.03 0.03 0.32 —0.82 1.00 —0.69 0.39 —0.03
0.25 —0.25 043 —-0.67 1.00 —0.60 037 —0.07 0.08 —0.15 0.61 —-0.70 1.00 —0.59 0.03
0.5 0.04 —0.10 0.21 —0.54 1.00 —-0.72 0.16 0.25 0.03 -0.33 0.49 0.63 1.00 —0.12
1.2 —0.05 0.06 —0.12 035 —-0.73 1.00 —-0.37 2.5 —0.01 —0.01 0.02 0.02 -0.07 1.00
10 0.02 —0.03 0.07 —0.16 0.21 —0.39 1.00

Notes. Coefficients are computed for BLAST only (upper triangular matrix) and
BLAST + FIRAS background constraints (lower triangular matrix) following

Cij =X, piri/\J X, PPY, p}, where p; and p; are parameter numbers i and _ i i '
J» and r is the realization number. Node flux units are Jansky. "> 108 L 250 =
2
Table 5 g 1
Pearson Correlation Matrix for the Parameterized d N /d S Model at 350 um o 10*L N
<
Node (Jy) 5% 1073 0.015 0.05 0.15 0.5 5 a | |
5% 1073 1.00 —0.88 0.51 —0.17 0.11 —0.04 ; )
0.015 —0.85 .00 —0.75 033 —0.20 0.03 £ 107 7
0.05 0.43 —0.78 1.00 —0.51 0.32 —0.03 3 | |
0.15 —0.16 0.39 —0.52 1.00 —0.70 0.10 =
0.5 0.06 —0.23 0.35 —0.71 1.00 —0.25 *qc_; 10°- -
5 0.02 0.02 —0.05 0.20 —0.28 1.00 ol
Note. Coefficients are computed for BLAST only (upper triangular matrix) and 102 . . .

BLAST + FIRAS background constraints (lower triangular matrix).

we could have found un-physical solutions of § < —2. Figure 6
shows that there is some improvement in the faint end slope
constraint, shown with a dotted line, when we include a prior
on the total background intensity. In addition, as we discuss
in Section 5.4, imposing this prior also reduces parameter
degeneracies.

The gain in the quality of fit going from the single to multi-
power-law model can be evaluated by measuring A®, which is
the difference of the minimized quantity for the two models.
Since the single power-law model is contained within the set of
multi-power-law models, we expect A®/2 ~ 1 for each degree
of freedom removed. We found that A®/2 = 15.5, 8.7, and 8
at 250, 350, and 500 um, respectively, while the difference in
the number of fit parameters is 5 at 250, and 4 at 350 and 500.
The multi-power-law model is therefore a significantly better
representation of the data. We have also checked that adding
more number count parameters (by dividing the counts into

Note. Coefficients are computed for BLAST only (upper triangular matrix) and
BLAST + FIRAS background constraints (lower triangular matrix).

0.01 0.10

Flux [Jy]

Figure 6. Best-fit differential number counts including FIRAS background
priors. Compare with Figure 5 and see Section 5.4 for details

more flux nodes) does not significantly improve the fit. We thus
conclude that the BGS data can constrain ~ 6 parameters.

We compare the predicted histograms (i.e., rescaled PDFs) of
the best-fit multi-power-law model with the actual histograms
of the maps in Figure 7. We separately plot the histograms of
the deep and wide zones and ignore the others here, which
give only weak additional constraints on the parameters. One
can see that there is a very good match of the model to the
data, considering that pixels of the maps are correlated on the
beam scale, i.e., for about 3.5, 4.5, and 6 pixels of 10” size at
250, 350, 500 pm, respectively. The apparent discrepancy in
the histograms of the deep section of the map at fluxes around
0.1Jybeam™"! at 250 yem (around 0.05 Jy beam™" at 500 pem) is
in fact not very significant, because correlations of pixels in the
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Figure 7. Histogram of pixel values for the deep and wide zones (which correspond closely with BGS-Deep and BGS-Wide) compared with prediction from the
best-fit model of the differential counts (dot-dashed line for deep and solid line for wide). The bins in flux density are chosen to be different for the deep and wide
histograms for clarity, and are both much larger than the binning used for parameter fitting. This figure shows the very good fit of the model to the data at all three
wavelengths. The apparent discrepancy at the bright end for the histograms of the deep part is not very significant, because of the large correlations of values between
bins in the histograms. We can see that the deep region, which is confusion limited (the contribution of the noise to the histogram is smaller than the source confusion
contribution), contains almost all the information on faint sources, which are within the noise regime of the wide histogram. At the bright end, the wide part carries
almost all the information about sources above 0.2 Jy at 250 um, and 0.1 Jy at 350 and 500 pm, showing the importance of sky coverage.

map induce correlations in the histogram bins. However, some
of the difference at the bright end of the deep counts may be
real. On average, a significant fraction of the pixel flux at around
0.2 Jy beam™! (say, at 250 um) comes from very bright sources
which are observed at the edge of the beam (250 pm beam has
also significant sidelobes; see Truch et al. (2009), they are taken
into account in this analysis), and it appears that the measured
density of such sources in the deep region is a bit lower than
the density observed in the wide region. This explains why at
the bright end, the measured histograms of the deep sections are
systematically lower than the prediction from the best-fit model,
even at moderate fluxes. This is partly explained through the
historical choice of this region (initially the CDFES) to be devoid
of bright sources (although at other wavelengths and over a
smaller field, making the strength of any bias hard to assess).

5.3. Degeneracies

We find that the errors on the number count parameters
are highly correlated, and the likelihood around the maximum
has a very non-Gaussian behavior for some parameters. The
correlation is negative for two adjacent nodes in the counts.
This is expected, since sources at a given flux contribute to a
large range of pixel fluxes in the map, due to confusion (as
illustrated by Figure 1 showing how the histogram is modified
after removing the contribution of sources of a given flux), and
hence shifting some sources out of one flux bin and into the next

will lead to two histograms with approximately the same shape.
This anticorrelation is stronger for lower flux density nodes.
This is again completely understood—faint sources produce a
nearly Gaussian histogram, with no particular structure allowing
us to distinguish between the number of sources and their flux.

The degree of correlation is evaluated using the Pearson
correlation matrix, with results given in Tables 4-6. However,
some precaution should be taken in using these numbers
because of the locally non-Gaussian likelihood around its
maximum. Some error bars are significantly asymmetric, as
seen in Figure 5, and more elongated on the lower side. This is
due to the fact that number counts can be zero with a probability
which is not entirely negligible in some flux bins in which case
the parameter values, which are the logarithm of amplitudes,
can take very negative values. We have set quite low thresholds
for the faintest node to prevent parameters taking values which
are too low, based on the physical assumption that number
counts should be described by a relatively smooth function.
The lower errors for some parameters are slightly dependent
on these thresholds. This is a complication introduced by the
choice of parameterizing counts with the log of amplitudes, but
this parameterization seems justified considering the power-law
nature of counts.

Parameter correlations can be seen more explicitly in Figure 8,
which shows two-dimensional likelihood contours for pairs of
parameters at 250 um. One can see that none of the contours
are well described by ellipses.
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Figure 8. Likelihood contours for pairs of parameters associated with adjacent nodes at 250 um. The two curves in each panel represent 68% and 95% intervals
estimated from sampling the likelihood with MCMCMH. Parameter units for each graph are log[deg=2 Jy~']. All panels are for P(D) analysis using BLAST data only,
except for the second panel (top right side), which shows the likelihood contours for the first two parameters (i.e., the faint-end nodes) after adding FIRAS background
constraints. Crosses indicate best-fit parameter values. P (D) analysis provides only upper limits for number counts at the first and last nodes. The amplitude of the
counts at 0.5 Jy can be zero with a low but not completely negligible probability.

The degeneracies between parameters are such that number
counts can be estimated only in a very limited number of
bins (of the order of 6 for BLAST). The resolution limit of
the counts strongly increases with the resolution of the maps,
since improved resolution leads to a more direct relationship
between the probability distribution and the number counts.
The SPIRE instrument on Herschel, with twice the resolution of
BLAST, should allow significantly finer binning of the counts
and should greatly improve statistics because of dramatically
extended coverage of the sky.

5.4. Including Constraints from FIRAS

For the three BLAST wavelengths, the lowest flux node can be
infinitely low and still give a good fit. In other words, the BLAST
data are compatible with a model predicting no sources in the
first bin. Nevertheless, BLAST shows without ambiguity that
there is a break toward the faint end for all three wavelengths.
The number of these fainter sources on the sky has a stronger
impact on the total intensity of the background radiation, which
is not directly measurable by BLAST, than on the width of
its distribution. It appears that some of the models which are
compatible with BLAST histograms produce a CIB which is
inconsistent with FIRAS measurements (see Puget et al. 1996
and Fixsen et al. 1998) at these wavelengths.

We have used FIRAS constraints published in Fixsen et al.
(1998) as a prior in the P(D) analysis in order to select against
models which have an unphysically small abundance of faint
sources. Even though the FIRAS measurements have quite large
uncertainties, the additional constraint is helpful in breaking
this degeneracy. BLAST number counts including the FIRAS
constraints are shown in Table 3 and in Figure 6, with the Pearson
correlation matrix given in the lower triangular parts of Tables 4—
6. Estimation of the number counts is improved at the faint end
after adding the FIRAS constraint. The break in the counts at
the faint end is also more clearly detected here than in the
case without priors. As an example, two-dimensional contours
including FIRAS priors are shown for the first two parameters
at 250 pum in Figure 8 (top-right panel).

6. DISCUSSION
6.1. Comparison with Other Data

At 250 um BLAST has provided the only existing images of
the sky, and hence the count estimates are unique. However, it
is possible (although challenging) to obtain data from the best
ground-based facilities operating in the 350 um and 450 um
atmospheric windows. Several studies have been published
using SCUBA; Smail et al. (2002); Borys et al. (2003); Knudsen
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those measurements should in principle lie somewhere between BLAST 350
and 500 um counts.

(A color version of this figure is available in the online journal.)

etal. (2006) or SHARC; Khan et al. (2007); Coppin et al. (2008).
These count estimates are based on a few to a handful of sources,
and both calibration and reliability are issues for interpreting the
data. By flying above the bulk of the atmosphere, BLAST was
able to increase the number of detections (or overall statistics
on the counts) at these wavelengths by about two orders of
magnitude.

BLAST data are sufficient to allow us to determine differential
counts, whereas all published estimates at similar wavelengths
have been cumulative counts, i.e., N(> S). In Figure 9, we
compare our best-fit estimate for the cumulative counts with
the published estimates at 350 um and 450 um. Note that there
is an additional calibration uncertainty when comparing with
other experiments (as well as issues of different wave band
filter profiles). BLAST cumulative counts shown in Figure 9
are computed by integrating the best-fit differential counts, and
error bars are estimated from the dispersion of count amplitudes
at each flux node.

One can see that BLAST provides an accurate measurement
of the counts over a wide range of flux densities. This is due
to an unprecedented S/N and sky coverage delivered at these
wavelengths.

6.2. Comparison with Models

We have plotted BLAST differential source counts obtained
with a constraint from the total intensity of the CIB, which are

Flux(Jy)

Figure 10. BLAST differential source counts in Table 3 at all three wavelengths
are compared to the models of Lagache et al. (2004). The arrows at the right in
each panel denote 99.9% upper limits from the highest flux density nodes listed
in Table 3. The dashed lines at the left connect the lowest node plotted to the
99.9% confidence upper limit for an additional node at approximately 100 uJy,
also listed in Table 3. The overall agreement is quite striking. However, the
model predicts more sources at 250 and 350 um than are observed, and at all
wavelengths the counts fall more steeply with flux than the model predicts.

listed in Table 3 and Figure 10. The curves in the figure are the
models of Lagache et al. (2004), obtained from their Web site,!”
dated 2008 August 5). The models in this regime are largely the
sum of two components, starburst, and quiescent galaxies, with
starbursts dominating in the middle of the figure and quiescent
galaxies forming the bulk of the flatter tail at high flux densities.
The overall agreement is striking given the precision of the data,
especially noting that this is the first data set available at these
wavelengths and the model has not been tuned to fit these new
data. However, the model does overpredict (by a factor ~10) the
number of sources with flux densities around 0.1-0.2 Jy at 250
and 350 um, and at all three wavelengths the measured slope is
steeper than predicted by about half a unit.

6.3. Comparison with Other Methods

Standard techniques to estimate number counts are based on
extracting sources by finding peaks in a beam-correlated map.
The measured flux density of sources must be corrected for
biases like flux boosting caused by applying an S/N threshold

19 http://www.ias.u-psud.fr/irgalaxies/Model/#SourceCounts
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Figure 11. Comparison of Euclidean normalized differential counts with source catalogues at the three BLAST wavelengths. The dashed curves are best-fit differential
counts from the P(D) analysis including FIRAS constraints. The solid curves are differential counts estimated by extracting 40 sources from the BLAST maps and
without applying any bias correction. The shaded region gives 95% intervals for simulated 40 catalogue counts distribution using multiple realizations of the BLAST
maps. These shaded regions show what we should measure in the 40 catalogues if the dashed line is the correct underlying counts model. The negative bias at low
flux densities is due to incompleteness, and the “spike” at around 0.15Jy at 250 um is due to spurious detections and Eddington bias in the BGS-Wide region. The
excellent agreement between the catalogues estimated in BLAST maps (points and solid lines) and simulations (shaded regions) provides a satisfactory crosscheck of
our P(D) analysis approach. Using this method we recover counts which are consistent with the dashed lines.

on noisy data with steeply falling counts, as well as boosting due
to confusion with fainter sources. Derived number counts must
also be corrected for incompleteness and false identifications. In
any highly confused maps as for BLAST, these biases are large
and strongly dependent on the underlying counts. So, although
it possible to account for some of the effects (e.g., Coppin et al.
2005; Austermann et al. 2009b), in the end one has to carry out
extensive simulations, which effectively reproduces the forward
modeling of the pixel histogram which we describe in this paper.
Moreover, counting objects above some rms level does not use
all of the information in the map.

Figure 11 shows the number counts estimated in BLAST
maps by counting objects but without applying any bias cor-
rection, and compares it with counts estimated via the P(D)
analysis. One can see that biases are huge and even bigger than
the counts themselves at flux densities lower than about 0.1—
0.2Jy at all three wavelengths.

One could imagine an iterative approach for which the bias
factor correction would be derived from the debiased number
counts, but one would end up approaching the full P(D)
analysis. The method presented in this paper efficiently provides
unbiased estimates of the counts over the full range in flux
density (note in Figure 11 the good match of the counts with
results from simulation using the best-fit model). It is therefore
highly recommended for confusion-limited observations or
for multi-tier surveys where some of the layers suffer strong

confusion. Nevertheless, it may be that direct source estimation
methods are a little more efficient for the very brightest sources,
for which the probability of overlap is negligible. That is
because this makes complete use of information from all pixels
near the peaks. In practice, this mild advantage for bright
objects is probably of limited use, since for model-fitting one
needs a single approach which spans the full range of source
brightnesses. On the other hand, source extraction and recipes
to correct for biases are still needed for constructing catalogues
and matching to other wave bands. The point is that it is the
pixel information and not the source catalogue which should be
used to estimate the counts.

6.4. Clustering of Sources

In the analysis presented in this paper, we have assumed that
galaxies are randomly and independently distributed over the
sky. Nevertheless, we know that all galaxies are clustered, and in
fact significant correlations have been found in the background
of the BLAST maps (Viero et al. 2009), which are probably due
to clustering on scales larger than the BLAST beam.

The way that the probability distribution is modified depends
strongly on the angular scale being considered. Clustering
on scales much larger than the beam will make the P(D)
distribution wider overall. On the other hand, clustering around
the beam size (and smaller) will distort the distribution in a
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way which depends much more on details of the clustering
model.

The effects can be computed for a given number counts model,
provided that all the n-point statistics of the source distribution
are known. Barcons (1992) computed this for specific toy
models of clustering, while Toffolatti et al. (1998) focused on
modeling of the three-dimensional clustering of the sources.
Takeuchi & Ishii (2004) described how to estimate the effects on
the moments of the P (D) distribution by performing appropriate
integrals over the angular two-point correlation function w(8),
as well as the higher n-point correlations. They show that for
realistic source clustering the effects of w(f) dominate over
those of higher-order correlations, and lead to ~ 10% changes
in the width of the P (D) histograms, together with a somewhat
more extended tail. The reason that the impact of clustering is
not larger is because most of the effect comes from sources
which are considerably fainter than the confusion limit. There
are two consequences of this: these faint sources have arelatively
shallow number counts slope, and the faintest sources are less
strongly clustered than the brighter ones. Simple scaling of the
calculations of Takeuchi & Ishii (2004) suggests that the effects
will be no larger for BLAST than for the other surveys which
they simulate.

We have carried out a determination of the clustering of
BLAST sources in Viero et al. (2009), and fit this to models.
We show in the Appendix how to take a model for P(k),
derived from w(#), and estimate the effect of clustering on
the P(D) distribution. In particular, the effect on the width of
the distribution is relatively easy to estimate, under a set of
fairly reasonable assumptions. We find that the width of the
distribution is increased by 13%, 14%, and 20% at 250, 350,
and 500 um, respectively. After re-convolving the map with
the beam kernel, the effect of clustering on the width of the
distribution becomes more important since the clustering signal
is large scale, and hence the Poisson distribution gets more
reduced by the convolution. In that case, we find that the width
is increased by 28%, 25%, and 30%. These values are low
enough compared with the uncertainties that we are justified in
neglecting the effects of clustering on the counts; in particular, it
seems that the effect is at most of the order of 1o for the fainter
flux density bins. However, for more precise estimates coming
from future data sets, it may be that such clustering effects will
need to be fully considered.

7. CONCLUSION

We provide measurements of differential number counts at
250, 350, and 500 um from the statistical analysis of BLAST
maps using a maximum likelihood method based on one-
point statistics. We show that in the S/N regime of BLAST
and future surveys, this method is better suited than counting
individual sources, even when they are relatively bright. This is
because it naturally allows for the correction of strong biases
due to confusion and flux boosting. This technique also has
the advantage of providing an unbiased estimate of the counts
at flux densities well below the limit at which sources can
be detected individually. The method has been optimized to
deal with inhomogeneous noise across the map and filtering to
suppress large-scale noise.

We measure the counts at a few flux nodes connected by
power laws, covering a wide range of fluxes, and perform
careful analysis of the resulting uncertainties using a Markov
Chain Monte Carlo approach. We observe a very steep slope for
the counts at intermediate flux densities (approximately in the
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interval 0.02-0.5 Jy) of about —3.7 at 250 um, and —4.5 at 350
and 500 pm, indicating strong galaxy evolution. We also detect
a faint-end break at all three wavelengths at about 0.015 Jy.
Additionally, we observe a change toward a shallower slope at
the bright end of the counts, particularly at 250 pum, consistent
with an approach to the Euclidean regime.

The estimates and uncertainties we provide can be used for
fitting to specific models. In addition, the formalism presented
in this paper can also be applied directly to predict the histogram
from parameterized physical models like those derived in
Lagache et al. (2003). Comparison to the models of Lagache
etal. (2004) shows a striking agreement given that the model has
not been tuned to fit these data; however we find fewer sources
than expected by the model at 250 and 350 pm, and the slope of
counts is steeper than expected at all three wavelengths. Perhaps
the contribution of quiescent sources has been overestimated by
the models.

We show that our method provides near optimal results when
applied to a map filtered with the beam kernel. Nevertheless,
in the current approach each map is treated independently, and
consequently some of the information contained in the combined
data is not used. Since the same sources are statistically
detected at the three BLAST wavelengths, but with amplitude
ratios which depend on the intrinsic spectra and redshifts, then
one could use this additional information to constrain more
comprehensive models for the underlying sources. The natural
extension of our method would be the generalization to three-
dimensional histogram fitting of the form P(D;, D,, D3). The
additional cross-band one-point information brings additional
constraints on a combination of redshift evolution of the sources
and spectral energy distribution shapes. Of course, one could
also imagine an even more general fitting procedure which also
uses the two-point statistics of the sort described in Viero et al.
(2009), including the cross-band clustering signals.

This paper provides the details required for developing the
powerful P(D) technique to estimate counts from the much
more extensive data that will come from the SPIRE and PACS
instruments on the Herschel satellite, as well as point sources in
the Planck data.
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of WestGrid computing resources.

APPENDIX
ESTIMATE OF CLUSTERING EFFECT

The expression for the variance of the pixel value distribution
in the presence of clustering is derived in Equation (53) of
Takeuchi & Ishii (2004), and can be written as

2 2, .2
o” =0, +0;. (A1)

Here ag is the variance of pure Poisson fluctuations, and o is
the excess variance due to clustering:

oy = f / S? f(x’’n(S)dSdr (A2)
Q, JS
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o2 = / / / / §150 £ (e1) f(E(SDA(S2)w2
Q, JQ, JS§ IS,
x (r1, r2)d S d S»d*r1d’rs, (A3)

where w,(ry, r2) is the two-dimensional two-point correlation
function for positions r; and rp. Usually, the variance is
evaluated up to a cutoff x. in the observed signal given by
x = §/f(r). Thus the integrals must be expressed in terms of
x1 and x,, and as a consequence the evaluation of the variance
requires the computation of a six-dimensional integral.

In our case, we can compute Equations (A2) and (A3) up to a
cutoff in the source signal S that we choose to be relatively
high (e.g., five times the noise rms). This is a very good
approximation for the computation of the map variance after
extracting very bright sources, since these are easily identified,
and number counts are steep enough that such bright sources do
not contribute widely to the variance. Since the sky is isotropic
and homogeneous, the two-point correlation function depends
only on the angular separation 8 = [r; — r|, and then the
variances can be expressed in Fourier space:

2
0l = ( / Sn(S)dS) / P(k|) f(k)*d’k. (A4)
N

Here P(|k|) is the two-dimensional power spectrum of cluster-
ing and is equivalent to the Fourier transform of w, (@), while
f(K) is the Fourier transform of the beam function f(r). The
excess rms of the P(D) distribution due to clustering (as given
in Section 6.4) can then be computed through the following
expression:

o2 +02
r = P—ZC. (A5)
o,
p
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