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Abstract 
 
Multi-core fibers (MCFs), through the technique of space-division multiplexing 

(SDM), are the new type of fibers that promise to overcome the critical 

transmission capacity barriers and boost the capability of optical fiber 

communication (OFC) systems. However, when a MCF is considered as a 

medium for SDM transmission, the linear coupling between the MCF cores is 

a key feature to be considered and analyzed. The fundamental effects of the 

linear coupling on the nonlinear mechanisms of light-matter interaction that 

happen when an optical signal propagates through the MCF cores are still 

unexamined. This feature is actually the most important problem in MCFs, 

which promise high technological developments in OFC systems.  

 

In this thesis, we revisit and extend the single-core fiber (SCF) 

fundamentals and limits (the guided modes characteristics, nonlinear phase 

shift, nonlinear phase noise, self-phase modulation (SPM), and the size 

effects of the fiber cores) to a nonlinear directional fiber coupler (NLDFC), as 

the simplest MCF, described as a collection of two coupled SCFs. We present 

the results of a theoretical study of the effect of linear coupling on the 

nonlinear phase shift and frequency spectrum of an initial unchirped optical 
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pulse propagating through a NLDFC, including the situation when the 

incoming signal is noisy. We focus on a NLDFC, which is the simplest, but 

most important, setup of MCFs to obtain physical insight of the effect of 

linear coupling on the phenomenon of SPM and nonlinear phase noise. For 

our purposes, the analysis of the elementary switching process in a NLDFC 

was suffice to obtain considerable and comprehensive results. 

 

 We demonstrate spectral narrowing in the propagation of an initial 

unchirped optical pulse through a NLDFC. Our results show that the linear 

coupling between both NLDFC cores induces that spectral narrowing. The 

amount of narrowing of the pulse spectra depend on the peak power of the 

input optical pulse. We also demonstrate that the linear coupling reduces the 

nonlinear phase noise of an optical signal when the first maximum transfer of 

optical power is carried out between both NLDFC cores. This is so because 

the maximum nonlinear phase shift is reduced when that first coherent 

interaction between both NLDFC cores results in an exchange of energy for 

the first time. We describe these results as an overcoming of the linear 

coupling on SPM effect. In addition, we show that exist a power-dependent 

critical coupling coefficient that plays a crucial role in the design of a NLDFC. 
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Chapter 1 

 

Introduction 
 
 

The field of optical fiber communication (OFC) is concerned with using light 

and optical fibers for the transmission of information over long distances at 

high bandwidths1 - 2. Nowadays, long distances refer to thousand kilometers 

and high bandwidths refers to terabit per second (Tb/s) capacities3. However, 

due to modern communication services, it is necessary to improve the data 

transport capacity and the reach of OFC systems to solve the continuous 

increase of data traffic4. In other words, it is required to improve the bit rate-

distance product, BL, where B is the bit rate and L is the repeater spacing. 

One way to achieve this is through the improvement of several optical fiber 

technologies as low-loss optical components, low-noise optical amplifiers, 

advanced optical fibers, and advanced modulation formats3. Another way is 

                                                 
1 G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010). 
2 L. N. Binh, Digital Optical Communications (CRC Press, 2009). 
3 P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE, 94, 952-985 (2006).  
4 R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” 

J. Lightwave Technol. 28(4), 662–701 (2010).  
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through the improvement of our understanding of the behavior of light in 

optical fiber technologies to optimize the engineering of OFC systems and get 

the maximum data rates for a given regeneration-free transmission distance 

(distance where an optical signal is not detected and retransmitted along the 

propagation path)3.  

 

The state of the art of OFC systems has advanced dramatically during 

the last 45 years since the advent of low-loss optical fibers, predicted by K. C. 

Kao and G. A. Hockham in 19665 and later demonstrated by researchers at 

the Corning Glass Company in 19706, and the demonstration of the GaAs 

semiconductor laser operating continuously at room temperature7. Over the 

period of 1970 to 2015, there have been several generations of OFC systems. 

Each generation has brought fundamental changes in research that have 

helped to improve the systems performance further1.  

 

Current OFC systems can use light pulses to carry information from one 

place to another1 - 3. Intensity, phase, carrier frequency and polarization are 

the physical attributes of optical pulses that can be used to carry information. 

The optical pulses used for this task have high carrier frequencies, in the 

range of terahertz (THz), in the visible or near-infrared region of the 

electromagnetic spectrum. Such optical pulses are generated and modulated 

by optical transmitters at the input end of an OFC link. An optical receiver 

                                                 
1

G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010). 
2

L. N. Binh, Digital Optical Communications (CRC Press, 2009). 
3

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE, 94, 952-985 (2006). 
5 K. C. Kao and G. A. Hockham, “Dielectric-fibre Surface waveguides for optical frequencies,” Proc. IEE 113, 1151-

1158 (1966). 
6 F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides," Appl. Phys. Lett. 17, 

423-425 (1970). 
7 I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski “Junction lasers which operate continuously at room 

temperature,” Appl. Phys. Lett. 17, 109-111 (1970). 
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converts the light pulses received at the output end in electric signals for its 

corresponding process to obtain the information encoded2 , 8. 

 

Three basic types of digital modulation techniques have been widely 

used in OFC systems: Amplitude Shift Keying (ASK), Frequency Shift Keying 

(FSK) and Phase Shift Keying (PSK) in which the amplitude, frequency or 

phase of the optical carrier wave are manipulated to represent information2. 

However, the progress in optical modulation formats has brought additional 

secondary data modulation formats derived from the basic types of data 

modulation formats1 - 4. For example, binary PSK (BPSK), quadrature PSK 

(QPSK) and 8PSK in which the phase of the optical carrier takes two, four, 

and eight values to represent information. In addition, a hybrid modulation 

technique named quadrature amplitude modulation (QAM) can be created 

with the combination of the ASK and PSK optical modulation formats, in 

which the phase and amplitude of the carrier are changed simultaneously2. 

Nowadays, before schemes of optical modulation and the technique of dense 

wavelength-division multiplexing (DWDM), which permits the propagation of 

many carrier waves through an only one optical fiber link 8 , have become the 

key ingredients in the design of high data rate OFC systems.  

 

For long time ASK data modulation format has been used in OFC 

systems1. However, in recent years there has been growing interest in 

advanced optical modulation formats to build flexible and cost-effective high-

                                                 
1

G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010). 
2

L. N. Binh, Digital Optical Communications (CRC Press, 2009). 
3

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE, 94, 952-985 (2006). 
4

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber  

networks,” J. Lightwave Technol. 28(4), 662–701 (2010). 
8 M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave 

networks,” Proc. IEEE, 85(8), 1274-1307 (1997). 
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capacity OFC systems3. In particular, schemes that transmit information by 

modulating the phase of the optical carrier wave have had intense interest9, 

where the data modulation formats like binary and quaternary differential 

PSK (DBPSK/DQPSK) have been the focus of the research community10 - 11. 

This is so because these advanced modulation schemes have greater receiver 

sensitivity and increased spectral efficiency8 , 12. Increasing spectral efficiency 

is often the most economical means to increase DWDM systems capacity12. 

Receiver sensitivity refers to the lowest level, of the parameter that is used to 

carry information, at which the receiver can detect a signal and demodulate 

data. Spectral efficiency refers to the data rate that can be transmitted over a 

given bandwidth. However, the performance of OFC systems that use phase 

modulation formats varies according to the linear and nonlinear impairments 

in optical fibers: optical fiber losses, amplified spontaneous emission (ASE) 

noise, chromatic dispersion, and optical fiber nonlinearities.  

 

Losses in optical fibers are result of the material absorption and 

scattering1. In this sense, the power of optical signals is reduced during their 

propagation along optical fibers. Therefore, losses in optical fibers limit the 

reach of OFC systems. To compensate losses in optical fibers, OFC systems 

use inline optical amplifiers13. However, the process of optical amplification 

introduces ASE noise in the transmitted optical signal field (noise in the 

                                                 
1  G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010). 
3  P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE, 94, 952-985 (2006). 
8

 M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave 

networks,” Proc. IEEE, 85(8), 1274-1307 (1997). 
9

  A. Demir, “Nonlinear phase noise in optical-fiber-communication systems,” J. Lightw. Technol., 25(8), 2002–2032 
(2007). 

10  J.-K. Rhee, D. Chowdhury, K. S. Cheng, and U. Gliese, “DPSK 32 ×10 Gb/s transmission modeling on 5 × 90 km 
terrestrial system,” IEEE Photon. Technol. Lett. 12(12), 1627–1629 (2000). 

11  C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE 
J. Sel. Topics Quantum Electron. 10(2), 281–293 (2004). 

12  J. A. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” 
IEEE Journal of Selected Topics in Quantum Electronics 10(2), 259-272 (2004).  

13   E. Desuvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994). 
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amplitude) .9  The field amplitude fluctuations caused by the noise are 

translated into phase fluctuations, nonlinear phase noise, because of the 

optical fiber nonlinearity. Specifically, the optical fiber nonlinearity refers to 

the phenomenon of self-phase modulation (SPM), which originates from the 

variation of the refractive index of the guided medium dependent on the 

launched power. The nonlinear phase noise is detrimental in OFC systems 

based on BPSK or QPSK, in which the information is encoded in the optical 

phase, leading to bit errors in transmission systems. In addition, SPM induces 

spectral broadening of the optical pulses propagating through the optical 

fiber, leading to distortions in OFC systems that use DWDM. 

 

 

1.1    Motivation 

 

While single-core fiber (SCF) networks are gradually approaching their 

theoretical capacity limits4, new types of fibers such as multi-core fibers 

(MCFs) have been the focus of worldwide research to overcome critical 

transmission capacity barriers and boost the capability of the OFC systems14. 

This is so because their signal-carrying capacity is many times greater than 

that of traditional SCFs and because their multiple core distribution allows 

working at higher intensities but still within the limits of low intensity SCF. In 

MCFs, a number of cores is introduced at different positions, in a preselected 

array, in the fiber cross-section and within a single cladding. In the most 

typical case, each core accommodates a single guided mode, depending on 

                                                 
4  R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber 

networks,” J. Lightwave Technol. 28(4), 662–701 (2010). 
9

  A. Demir, “Nonlinear phase noise in optical-fiber-communication systems,” J. Lightw. Technol., 25(8), 2002–2032 

(2007). 
14  T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing optical communications with 

brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 (2012). 
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the size of the MCF cores and some other design parameters, but may be a 

number of guided modes. MCFs have attracted attention for enhancing the 

capacity of OFC systems through space-division multiplexing (SDM)15, and 

several experiments have demonstrated high-speed data transmission over 

MCFs at rates that approach a petabit per second (Pb/s)16. When we consider 

a MCF as a medium for SDM transmission, the linear coupling between cores 

is a key feature to be considered17. 

 

Essential to SCF-OFC systems is the use of optical amplification that 

however introduces noise in the transmitted optical signal field. The field 

amplitude fluctuations caused by the noise are translated into phase 

fluctuations, nonlinear phase noise, because of the SCF nonlinearity. The 

nonlinear phase noise is detrimental in SCF-OFC systems based on DPSK or 

QPSK in which the information is encoded in the optical phase, leading to bit 

errors in transmission systems. Therefore, it is expected that this limitation is 

extended to MCFs described as a collection of coupled SCFs. One of our 

purpose in this thesis is to study how the linear coupling affects the nonlinear 

phase noise in the simplest MCF coupler case, a nonlinear directional fiber 

coupler (NLDFC), instead of using MCFs that are more complex. 

 

The NLDFC is one of the most exciting components in lightwave 

technology. Jensen first proposed it in 198218. It consists of two parallel 

optical fiber cores placed in close proximity. These optical fiber cores, which 

                                                 
15  D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 

354–362 (2013). 
16  A. Sano, H. Takara, et. al, “409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 

km using propagation-direction interleaving,” Opt. Express 21(14), 16777–16783 (2013). 
17 K. Nakajima, Y. Goto, T. Matsui, and S. Tomita, “Multi-core fiber technologies for extremely advanced 

transmission,” in Proceedings of IEEE Opto-Electronics and Communications Conference (IEEE, 2011), pp. 248-
249. 

18  S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580-1583 (1982). 
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form two input and two output ports, utilize the coherent interaction based 

on evanescent waves to transfer optical power from one optical fiber core to 

another under suitable condition19. The NLDFC consist generally of two 

regimes: the linear and nonlinear regime. In the linear regime, where the 

optical power is low or/and there is modal overlap between the adjacent 

NLDFC cores, neighboring NLDFC cores exchange optical power periodically. 

In the nonlinear regime, where the optical power is high or/and there is no 

modal overlap between the adjacent NLDFC cores, the nonlinear effects in 

each NLDFC core reduce the power exchange between the adjacent NLDFC 

cores, retaining most optical power in only one NLDFC core.  

 

In particular, the simplest MCF coupler, the NLDFC, plays a quite 

important role in OFC systems, where it may be conveniently used in the 

switching of light beams20  21. An optical pulse propagating in a NLDFC can 

accumulate significant amount of phase, the nonlinear phase shift, via SPM. 

The role of the nonlinear phase shift in OFC systems is quite important for 

information transmission. Added directly to the signal phase, the nonlinear 

phase shift is intensity-dependent because of the optical fibers Kerr 

nonlinearity. The key factor associated with the nonlinear phase shift is 

related with the chirping and spectral changes, spectral broadening of optical 

pulses that can degrade the performance of NLDFC-based lightwave systems. 

The SPM-induced spectral change is a consequence of the nonlinear phase 

shift time dependence, which temporal variation is identical to that of the 

pulse intensity. Nevertheless, useful devices such as all-optical modulators, 

switches, splitters, logic gates, and so on can be developed based on the 

                                                 
19  G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008). 
20  C. Pare and M. Florjanczyk, “Approximate model of soliton dynamics in all-optical couplers,” Phys. Rev. A 41, 

6287-6295 (1990). 
21  Y. Wang and J. Liu, “All-fiber logical devices based on the nonlinear directional coupler,” IEEE Phot. Technol. 

Lett. 11, 72-74 (1999). 
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NLDFC, in which such nonlinear phase shift plays a critical role. Therefore, 

the study of nonlinear phase shift and spectral broadening in NLDFC is quite 

important. 

 

In general, optical switching consists in enabling signals, which 

propagate in a NLDFC, to be selectively switch from one fiber core to another 

under suitable conditions. However, when an optical pulse propagates in a 

NLDFC, each portion of the optical pulse is selectively switch because the 

performance of the switching depends on the optical power of the signal, i.e., 

low-power portions of the optical pulse are switched and high-power portions 

are retained22. This feature of power discrimination has recently attracted 

considerable attention for mode-locked fiber laser applications23. However, in 

order to fully characterize the performance of optical pulses in NLDFCs and 

obtain an accurate physical insight of the switching process, the theory of 

optical switching requires to be improved. 

 

In summary, the single-core fiber fundamentals and limits as the guided 

modes characteristics, nonlinear phase noise, self-phase modulation, 

supercontinuum generation, and the size effects of the fiber cores need to be 

revisited and extended to a NLDFC, as the simplest MCF coupler, described as 

a collection of two coupled SCFs. In this sense, a NLDFC can be used to study 

the impact of the linear coupling on the nonlinear mechanisms as SPM and 

nonlinear phase shift, including the situation when the incoming signal is 

noisy. Considering the simpler setup of a NLDFC can give more fundamental 

information and physical insight about the effect of the linear coupling on the 

                                                 
22  E. Nazemosadat and A. Mafi, “Saturable absorption in multicore fiber couplers,” J. Opt. Soc. Am. B 30 2787–

2790 (2013). 
23  H. G. Winful and D. T. Walton, “Passive mode locking through nonlinear coupling in a dual-core fiber laser,” Opt. 

Lett. 17, 1688–1690 (1992). 
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nonlinear mechanisms as self-phase modulation and nonlinear phase noise 

instead of using MCFs that are more complex. In addition, the consequences 

of the nano-dimensions of the NLDFC cores on the propagation of optical 

pulses can be analyzed by using the vectorial nature of the guided modes.  

 

 

1.2    Thesis Contribution 

 

This thesis deals with the analysis of the nonlinear phase noise in NLDFCs 

and a novel optical nonlinearity compensation technique to partially mitigate 

SPM in OFC systems. In general, in this thesis the SCF fundamentals and 

limits as the guided modes characteristics, nonlinear phase noise, SPM, 

supercontinuum generation, and the size effects of the fiber cores are 

revisited and extended to a NLDFC, as the simplest MCF coupler, described as 

a collection of two coupled SCFs. In this sense, a NLDFC is used to study the 

impact of the linear coupling on the nonlinear mechanisms as SPM and 

nonlinear phase shift, including the situation when the incoming signal is 

noisy. We show that the simpler setup of a NLDFC gives more fundamental 

information and physical insight about the effect of the linear coupling on the 

nonlinear mechanisms as SPM and nonlinear phase noise instead of using 

more complex MCFs. 

 

 

1.3   Thesis outline 

 

In chapter 2, we introduce the important concepts of SCFs that are used to 

understand and clarify the thesis objective. The purpose of this chapter is to 

build a conceptual structure that allows to tie together all the key ideas. In 
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chapter 3, we derive the coupled-mode propagation equations that govern 

the evolution of the complex envelope of optical pulses along NLDFCs. Here 

we consider the condition of a single-input excitation for the NLDFCs. In 

chapter 4, we derive an exact analytical expression for the nonlinear phase 

shift of an optical pulse propagating in a dispersionless NLDFC. In chapter 5, 

we analyze the effect of the linear coupling on the nonlinear phase noise in 

NLDFCs, when a single-input excitation is considered to perform optical 

switching. In chapter 6, we study the effect of the linear coupling on SPM of 

an optical pulse propagating through a NLDFC. We analyze the effect of the 

linear coupling on the shape and spectrum of initially unchirped optical pulses 

propagating in a dispersionless NLDFC. Finally, we give the conclusions in 

chapter 7.  

 

 

References 

 

[1]    G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010). 

[2]    L. N. Binh, Digital Optical Communications (CRC Press, 2009). 

[3]   P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE, 

94, 952-985 (2006). 

[4]   R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits 

of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010). 

[5]  K. C. Kao and G. A. Hockham, “Dielectric-fibre Surface waveguides for optical 

frequencies,” Proc. IEE 113, 1151-1158 (1966). 

[6]  F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical 

waveguides," Appl. Phys. Lett. 17, 423-425 (1970). 

[7]   I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski “Junction lasers which operate 

continuously at room temperature,” Appl. Phys. Lett. 17, 109-111 (1970). 



PhD THESIS. NÉSTOR LOZANO CRISÓSTOMO                                                                                11 

CHAPTER 1. INTRODUCTION 

[8]   M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical 

Components for WDM Lightwave Networks,” Proceedings of the IEEE, 85(8), 1274-

1307 (1997). 

[9]  Demir, “Nonlinear phase noise in optical-fiber-communication systems,” J. Lightw. 

Technol., 25(8), 2002–2032 (2007). 

[10]  J.-K. Rhee, D. Chowdhury, K. S. Cheng, and U. Gliese, “DPSK 32 ×10 Gb/s 

transmission modeling on 5 × 90 km terrestrial system,” IEEE Photon. Technol. Lett. 

12(12), 1627–1629 (2000). 

[11]  C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency 

optical transmissions,” IEEE J. Sel. Topics Quantum Electron. 10(2), 281–293 (2004). 

[12] J. A. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques 

for DWDM systems,” IEEE Journal of Selected Topics in Quantum Electronics 10(2), 

259-272 (2004). 

[13]  E. Desuvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994). 

[14]  T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, “Enhancing 

optical communications with brand new fibers,” IEEE Commun. Mag. 50(2), S31–S42 

(2012). 

[15]  D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical 

fibers,” Nat. Photonics 7(5), 354–362 (2013). 

[16]  A. Sano, H. Takara, et. al, “409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional 

MCF transmission over 450 km using propagation-direction interleaving,” Opt. Express 

21(14), 16777–16783 (2013). 

[17]  K. Nakajima, Y. Goto, T. Matsui, and S. Tomita, “Multi-core fiber technologies for 

extremely advanced transmission,” in Proceedings of IEEE Opto-Electronics and 

Communications Conference (IEEE, 2011), pp. 248-249. 

[18]  S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 

1580-1583 (1982).  

[19]  G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008). 

[20] C. Pare and M. Florjanczyk, “Approximate model of soliton dynamics in all-optical 

couplers,” Phys. Rev. A 41, 6287-6295 (1990). 

[21] Y. Wang and J. Liu, “All-fiber logical devices based on the nonlinear directional 

coupler,” IEEE Phot. Technol. Lett. 11, 72-74 (1999). 



PhD THESIS. NÉSTOR LOZANO CRISÓSTOMO                                                                                12 

CHAPTER 1. INTRODUCTION 

[22]  E. Nazemosadat and A. Mafi, “Saturable absorption in multicore fiber couplers,” J. Opt. 

Soc. Am. B 30 2787–2790 (2013). 

[23]  H. G. Winful and D. T. Walton, “Passive mode locking through nonlinear coupling in a 

dual-core fiber laser,” Opt. Lett. 17, 1688–1690 (1992). 

 

 



 

 

 

 

 

 

 

Chapter 2 

 

Literature Background 
 
Abstract 

 

In this chapter, we introduce the important concepts that are used to 

understand and clarify the thesis objective. In general, the purpose of this 

section is to build a conceptual structure that allows to tie together all the key 

ideas. First in Section 2.1, we give a general overview of the essential of SCFs 

in OFC systems. In Section 2.2, we describe the characteristics of the SCFs. 

In addition, the single-mode condition is specified. In Section 2.3, we 

emphasize the importance of the attenuation losses of SCFs. In Section 2.4, 

we describe the function of erbium-doped fiber amplifiers (EDFAs) as the 

components used to compensate the attenuation losses of SCFs. Section 2.5 

gives the analysis of the consequence of using EDFAs in OFC systems; the 

ASE noise. The important concepts of the nonlinear phenomena as optical 

Kerr effect, SPM, nonlinear phase shift, and the spectral broadening of optical 

pulses propagating in SCFs are introduced in Section 2.6. Finally, the concept 
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of nonlinear phase noise as a consequence of the phenomenon of SPM and 

ASE noise is analyzed in Section 2.7.  

  

 

2.1    Introduction 

 

Modern OFC systems generally use step-index SCFs, which are characterized 

by a uniform refractive index within the core and a sharp decrease in the 

refractive index at the core-cladding interface. In general, a SCF works as a 

light pipe in which light beams propagate through the core by the 

phenomenon of total internal reflection, i.e., by a succession of total internal 

reflections at the boundary between the core and the cladding following a 

zigzag path. In this sense, a SCF offers, through its cylindrical core of high 

refractive index, a spatial confinement of light beams over long propagation 

distances. 

 

 

2.2    Single-Core Optical Fiber Characteristics 

 

A SCF consist of a cylindrical core of pure silica glass surrounded by a 

cladding layer whose refractive index 2n  is slightly lower than the refractive 

index of the core 1n . In general, exist two types of SCFs: 1) single-mode and 

2) multimode. The difference between both SCFs is the number of guided 

modes supported by each one. A single-mode SCF only support one-guide 

mode, while a multimode SCF support many guided modes. A guide mode in 

a SCF corresponds geometrically to one path, among the possible paths, in 

which an optical beam can propagate through the optical fiber (see Fig. 

2.1b). More formally, a guide mode corresponds to a solution of the wave 
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equation that is derived from Maxwell’s equations and subject to boundary 

conditions imposed by the SCF1 - 2.  

 

 

 

Fig. 2.1 a) Cross section and refractive index profile for step-index SCFs. b) Light 

confinement through total internal reflection in step-index SCFs. 

 

An optical pulse propagating along a SCF is defined by an electric field 

vector E and a magnetic field vector H. Each field can be broken down into 

three components. These components are xE ,  yE ,  zE ,  xH ,  yH ,  and zH ,  

where z is the component of the field that is in the direction of propagation. 

Guided modes typically are referred to using the notation xyHE  (if zH > zE ), or 

xyEH  (if zE > zH ), where x and y are both integers. For the case x=0, the 

guided modes are referred to as transverse-electric (TE), in which case zE =0, 

or transverse-magnetic (TM), in which case zH =03 - 4. 

                                                 
1 G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010). 
2 A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 

2006). 
3  G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
4 M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical Components for WDM Lightwave 

Networks,” Proceedings of the IEEE, 85(8), 1274-1307 (1997). 
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Two important parameters physically characterize a SCF. The relative 

core-cladding index difference 1 2 1Δ =(n -n ) n  and the so-called V parameter 

defined as V= a 2 2 1/2

0 1 1k (n - n ) ,  where 0k =2π λ ,  a  is the core radius, and λ  

is the carrier wavelength of light 3 . The value of V defines the number of 

guided modes supported by a SCF (see Fig. 2.2). In this sense, the number 

of guided modes supported by a SCF at a given wavelength depends on its 

design parameters, namely the core radius and refractive index of the core 

and cladding. Therefore, a larger core radius or high operating frequency 

allows a greater number of guided modes to propagate through a SCF. 

 

 

Fig. 2.2 Effective index of refraction for the lowest lying guide modes in a SCF versus the 

parameter V (bottom axis) and core radius (top axis)5. 

 

 

2.2.1    Single-mode condition of single-core fibers  

 

A SCF support only the 11HE  guided mode, also referred as the fundamental 

mode, when V<2.405
3 . This condition is obtained in part by reducing the 

                                                 
3

 G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
5  J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolston, and L. A. Orozco, “Rayleigh scattering in an optical 

nanofiber as a probe of higher-order mode propagation,” Optica 2, 416-423 (2015). 
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core to a sufficiently small diameter such that the SCF only captures one 

guide mode. One result of this condition is a high confinement of light into 

very small spatial dimensions.  

 

In general, the transverse distribution F(x,y)  of the fundamental guide 

mode 11HE  over the x-y plane, can be approximated by a Gaussian 

distribution of the form3  

2 2 2F(x,y)=exp[-(x + y ) w ],                             (2.1) 

 

where w is the mode width parameter related with the parameter V by 3  

 

a  -3/2 -6w 0.65+1.619V +2.879V .                        (2.2) 

 

 

2.3    Single-Core Fiber Losses 

 

The development and innovation for both the SCF and laser are very 

important for the increase in the capacity of OFC systems. Nowadays, most of 

the commercially available SCFs have losses below 0.2 dB/km in the 1.55 μm  

wavelength region6. In this sense, light pulses can be transmitted through 

SCFs for a long distance without optical amplification. However, when the 

length of an OFC link exceeds a certain value, in the range of 20–100 km 

depending on the operating wavelength, it becomes necessary to compensate 

the SCF losses at the end of the optical SCF link because the signal pulses 

become too weak to be detected reliably1.   

                                                 
1

 G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010). 
3

 G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
6   K.-P. Ho, Phase-Modulated Optical Communication Systems, (Springer, 2005). 
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Fig. 2.3 Measured attenuation in silica fibers (purple line) and theoretical limits (red line) 

given by Rayleigh scattering in the short-wavelength region, and by molecular vibrations 

(infrared absorption) in the infrared spectral region7.   

 

 

The attenuation loss parameter for optical fibers α  in units of dB/km is 

given by the following relation 

 

 
 
 

out
dB km

in

10 P
α =- log ,

L P
                                (2.3) 

 

where L is the length of the optical fiber, inP  is the launched optical power, 

and outP  is the output power given by  

 

out inP =P exp(-αL),                                     (2.4) 

 

where dB kmα=0.23α  is the attenuation constant. 

 

                                                 
7 R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” 

J. Lightwave Technol. 28(4), 662–701 (2010). 
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2.4    Compensation of Fiber Losses 

 

Fiber attenuation losses are compensated by using optical amplifiers, which 

amplify the optical signal directly without requiring conversion of the signal to 

the electric domain as it was done before 19908.  

 

 

 

 

 

Fig. 2.4 a) Absorption and gain spectra of an EDFA whose core was doped with erbium ions 

( 3+Er ) and 2GeO 9. b) Typical configuration of EDFA based OFC system.  

 

 

Most OFC systems actually employ inline EDFAs in which attenuation 

losses accumulated over 60 to 80 km of fiber lengths are compensated using 

                                                 
8  L. Kazovsky, S. Benedetto, and A. Willner, Optical Fiber Communications Systems (Artech House, Inc, 1996). 
9  C. R. Giles and E. Desurvire, “Modeling Erbium-Doped Fiber Amplifiers,” J. Lightwave Techno. 9, 271-283 (1991). 
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short lengths around 10 m of erbium-doped fibers10. This is so because 

erbium-doped fibers provide gain at the low-loss spectral window around 

1.55 μm11. The EDFAs are pumped at 0.98 μm  or 1.48 μm  in OFC systems. 

They have a typical gain in the range of 20-40 dB from a few meters of fiber, 

but the gain varies significantly with wavelength2 (see Fig. 2.4a). 

 

 

2.5    Amplified Spontaneous Emission Noise 

 

The EDFAs have been applied broadly nowadays in OFC systems due to their 

significant features. One important feature is to enable the use of the 

technique of DWDM, which led to the development of systems with capacities 

exceeding 10 Tb/s. However, there is a problem when they are used; the 

addition of ASE noise to the amplified signal pulses
1. 

 

 

Fig. 2.5 ASE noise obtained from a 1 m length of Er-80 when it is pumped by a 980 nm light 

source12.  

                                                 
1

 G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010). 
2

 A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 

2006). 
10  P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology 

(Academic Press, 1999). 
11   E. Desuvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994). 
12  http://www.intechopen.com/books/current-developments-in-optical-fiber-technology/multi-wavelength-fiber-lasers  

http://www.intechopen.com/books/current-developments-in-optical-fiber-technology/multi-wavelength-fiber-lasers
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The physical origin of this noise is the spontaneous emission that occurs 

just after the positive population inversion in the pumped erbium-doped 

fibers. The transition due to spontaneous emission produces photons with 

similar energies than the signal photons, but without the same physical 

properties. These photons do not contribute to the amplification of the signal 

pulses but rather contribute adding noise to the signal through its 

amplification by stimulated emission. 

 

 

2.6    Optical Fiber Nonlinearities 

 

The availability of low-loss optical fibers and optical amplifiers led not only to 

a revolution in the field of OFC but also to advent of the new field of 

nonlinear fiber optics 3 . The term nonlinear in the field of optical fibers refers 

to the nonlinear response of optical fibers to an intense electromagnetic field. 

When optical signals propagate through an optical fiber, they suffer a 

distortion due to nonlinearity. The shape, spectrum and phase are the 

features of optical pulses that are distorted. The Kerr effect is the dominant 

nonlinear phenomenon in optical fibers. It refers to the change in the 

refractive index of silica glass due to intense electromagnetic fields13. The 

intensity dependence of the refractive index is given as 

 

 0 2n(t)=n +n I(t),                                     (2.5) 

 

                                                 
3

 G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
13   R. H. Stolen and A. Ashkin, “Optical Kerr effect in glass waveguide”, Appl. Phys. Lett. 22, 294 (1973) 
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where 0n  is the linear part of the refractive index, 2n  is the nonlinear-index 

coefficient, effI(t)=P(t) A  is the optical intensity, P (t)  is the optical power 

inside the optical fiber, and effA  is the effective area of the optical fiber core.  

 

The nonlinear part of the refractive index 2n I(t)  governs most of the 

nonlinear effects in optical fibers3 . When an optical pulse propagates 

through an optical fiber, the higher intensity portions of an optical pulse 

encounter a higher refractive index of the optical fiber because the Kerr 

effect. Silica glass does not exhibit a high nonlinearity because 2n  is small 

compared to most other nonlinear media. The nonlinear-index coefficient 2n  

is -20 23x10 m W . However, optical fibers offer strong spatial confinement of 

light in very small dimensions such that its intensity is enhanced (see Eq. 

(2.5)). As a result, the nonlinearity is also enhanced because the nonlinear 

Kerr effect. Because the relatively long lengths over which optical fibers can 

maintain high optical intensities, nonlinear effects are important. Nonlinear 

effects in DWDM-OFC systems are routinely observed even at mW power 

levels. 

 

 

2.6.1    Self-phase modulation 

 

In particular, phenomenon of SPM refers to a manifestation of the intensity 

dependence of the refractive index in nonlinear optical media like optical 

fibers, i.e., it is a consequence of the optical Kerr effect14. Specifically, SPM is 

the change in the phase of an optical pulse resulting from the nonlinearity of 

                                                 
3

 G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
14 R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978). 
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the refractive index of the optical fiber. Therefore, the phase shift is intensity 

depended. Here an explication of the SPM phenomenon. 

 

 

2.6.1.1    Nonlinear phase shift 

 

Consider the simplest situation in which a single optical pulse of the form 

A(0,T)  is launched into a dispersionless single-mode SCF. Here, gT = t - z v ,  

is the time measured in the frame of reference moving with the pulse at the 

group velocity 
gv .  The origin of the nonlinear phenomenon comes from the 

definition of the propagation constant 0β =nk , which using Eq. (2.5) can be 

written as  

 

0 2
0

eff

k n
β(T) =β + P(T),

A
                               (2.6) 

 

where 0 0 0β =n k is the linear propagation constant. Here the optical power is 

defined as 
2

P(T)= A(0,T) . The total phase shift of an optical pulse due to 

SPM after a distance L of propagation is given by   

 

 
L

NL 0
0

(L,T) = β -β dz,                                 (2.7) 

 

where the z-axis is the direction of propagation. Substituting Eq. (2.6) into 

(2.7) and assuming no optical fiber losses, we obtain  

 

NL(L,T)= γP(T)L,                                    (2.8) 
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where 0 2 effγ =k n A  is nonlinear coefficient. Equation (2.8) gives the amount 

of phase that an optical pulse can accumulate via SPM. The nonlinear phase 

shift changes with time in exactly the same way as the optical pulse. 

Therefore, the optical pulse at the output can be written as 

 

NLA(L,T)= A(0,T)exp[i (L,T)].                        (2.9) 

 

As we can see in Eq. (2.9), SPM induce a nonlinear phase shift in an 

optical pulse. The nonlinear phase shift depends on the power of the launch 

optical pulse and increase with the propagation distance of the pulse. The 

nonlinear phase shift increases with the nonlinear constant as well. The 

maximum nonlinear phase shift occurs at the pulse center located at T=0, 

and is given by 

 

NLmax 0(L)= γP L,                                 (2.10) 

 

where 0P =P(0)  is the peak power of the input optical pulse. 

 

 

2.6.1.2    Spectral broadening of optical pulses 

 

SPM induce spectral broadening in optical pulses when they propagate 

through SCFs
3 , 15. This is so because of the time dependence of the 

nonlinear phase shift (see Eq. (2.8)), i.e., the variation of the instantaneous 

frequency across the pulse from its central frequency value 0ω .  To 

                                                 
3

  G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
15   G. S. He and S. H. Liu, Physics of Nonlinear Optics (World Scientific, 1999). 
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demonstrate this phenomenon, we consider again the propagation of a single 

pulse of light inside a dispersionless single-mode SCF. At the entrance of the 

optical fiber, we launch a unchirped Gaussian pulse of the form: 

 

 
 
 

2

0 2

0

T
A(0,T)= A exp - ,

2T
                             (2.11) 

 

where 0T  is the pulse width, and 0A  is the constant amplitude such that 

2

0 0A =P .  

 

The spectral content of the optical pulse at the output of the optical 

fiber of length L, is obtained by taking the Fourier transform of Eq. (2.9) and 

using Eq. (2.11). This is given by 

 






2

NL 0
-

S(ω,L)= A(0,T)exp[i (L,T)+i(ω-ω )T]dT .         (2.12) 

 

 

Figure 2.6 shows the spectra of an unchirped Gaussian pulse for several 

values of L, i.e., for different values of the maximum phase shift NLmax . Here 

the following values for the calculation are used: 0P =0.1 W, and 

γ = 2 -1 -1km W  . It is clear to notice that SPM creates new frequencies and 

leads to spectral broadening. Spectral broadening is accompanied with an 

oscillatory structure covering the entire frequency range. The number of peak 

depends on L (NLmax ) and increase linearly with it. SPM-induced spectral 

broadening can degrade the performance of OFC systems that use the 

technique of DWDM.  
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Fig. 2.6 Output spectra (blue curve) of an unchirped Gaussian pulse for different lengths of 

the dispersionless single-mode SCF. The input spectra are specified by the yellow curve. 
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2.7    Nonlinear Phase Noise 

 

Consider an optical signal propagating through an OFC system with N inline 

EDFAs. The electric field at the output of the OFC system can be represented 

by 

...E E n n0 1 N= + + + ,                              (2.13) 

 

where n j  with j=1,…,N represents the jth noise component of the electric 

field. Therefore, the output nonlinear phase noise is given by 

 

... ... 
 
E E E

2 2 2

NL 0 1 0 1 2 0 1 N= γL +n + +n +n + + +n + +n .       (2.14) 

 

 

Fig. 2.7 OFC system with N inline EDFAs. 

 

 

In summary, when EDFAs are used to compensate for optical fiber 

losses in OFC systems, the field amplitude fluctuations caused by the ASE 

noise are translated into phase fluctuations, nonlinear phase noise, because 

of the optical fiber nonlinearity16. The nonlinear phase noise degrades OFC 

systems that use phase modulation as the principal format to transmit 

information, limiting the regeneration-free transmission distance.  

                                                 
16 J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” 

Opt. Lett. 15, 1351-1353 (1990). 
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Chapter 3 

 

Pulse Propagation in Nonlinear 
Directional Fiber Couplers 
 

 

Abstract 

 

In this chapter, we derive the coupled-mode propagation equations that 

govern the evolution of the complex envelope of optical pulses along NLDFCs. 

In this regard, a NLDFC made of two identical single-mode highly nonlinear 

fiber cores is considered such that the vectorial nature of the propagating 

modes must be applicable. Section 3.1 introduces the theoretical elements to 

consider for the nonlinear processes in NLDFCs. In Section 3.2, the Maxwell’s 

equations and important concepts such as the Poynting’s theorem, which it is 

used to express the electromagnetic power flow along NLDFCs, and the linear 

and nonlinear induced polarization are introduced. In addition, an operator 

Schrödinger-like equation that completely describes the spatial evolution of 
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an electromagnetic field through an optical medium like a NLDFC is 

introduced too. In Section 3.3, the concepts of propagating modes of fiber 

cores, normalization and the coupled-mode approach to solve the operator 

Schrödinger-like equation are discussed. The coupled-mode equations for a 

NLDFC are given in Section 3.4. 

 

 

3.1    Introduction 

 

For an understanding of the coupling and nonlinear phenomena in NLDFCs, it 

is necessary to consider the theory of electromagnetic wave propagation in 

dispersive nonlinear media1. In the investigation of the nonlinear processes in 

NLDFCs, we must deal with sufficiently intense light launched into any NLDFC 

core such that the optical properties of the NLDFC depend on the intensity 

and other characteristics of the light waves. Alternatively, to examine the 

behavior of the nonlinear wave propagation along NLDFCs, we need to 

consider the linear and nonlinear coupling between the propagating modes of 

both NLDFC cores and the induced polarization, and we can do this last by 

introducing the induced polarization as a source term in Maxwell’s equations.  

 

 

3.2    Electromagnetic Vectorial Theory 

  

Consider the rational theory for the propagation of light that was developed 

by Maxwell in the 1860s. The equations for the electric field vector E  and 

magnetic field vector H  in MKS units are given by  

                                                 
1 G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008). 
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  E H M0 t t× =-μ - ,                                   (3.1) 

  0 t t× = ε + ,H E P                                    (3.2) 

 

where 0μ  is the vacuum permeability, 0ε  is the vacuum permittivity, and P  

and M are the induced electric and magnetic polarizations. For optical fibers 

M=0. Maxwell’s equations can be used to obtain a plausible relationship 

between an electromagnetic wave and its energy content2  3. To derive this 

relationship, we subtract the scalar product of the electric field E  and Eq. 

(3.2) from the scalar product of the magnetic field H  and Eq. (3.1), and 

integrate both sides over a volume V. The following equation is obtained: 

 

        0 t 0 t t
V V
[ ( × )- ( × )]dV =- [μ ( )+ε ( )+( )]dV.H E E H H H E E E P  (3.3) 

 

 

Using the vector identity     ( × )= ( × )- ( × )E H H E E H  and noting 

that   1
t t2

= ( )H H H H  and   1
t t2

= ( ),E E E E  Eq. (3.3) becomes 

 

ˆ  
    

 
 

2 20 0
t t t

S V

μ ε
- × dS = + + dV,

2 2
E H n H E E P              (3.4) 

 

where n̂  is the outward-directed unit vector normal to the surface S 

enclosing V. Here we have used the divergence theorem for the vector × .E H  

In Eq. (3.4), the first term on the right-hand side represents the rate of 

                                                 
2 M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999). 
3 A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 

2007).  
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increase of the magnetic stored energy, the second term represents the rate 

of increase of the electric stored energy, and the last term represents the 

power per unit volume expended by the electric field on the electric dipoles 

that are formed in the optical medium3  4. Therefore, the left-hand side of 

Eq. (3.4) represents the total electromagnetic power flow into the volume V 

bounded by S. If we replace n̂  by the inward-directed unit vector in the z 

direction ˆˆ =- ,z n  the total power of the electromagnetic wave flowing in the z 

direction, out of the volume V bounded by S, can be expressed by 

 

ˆSP= dS,S z                                        (3.5) 

 

where = ×S E H[W/m²] is the Poynting vector that represents the 

electromagnetic power flow density3  5.  

 

The general second-order wave equation for the propagation of an 

electromagnetic wave through an optical dielectric medium, valid for both 

linear and nonlinear characterization, can be obtained by taking the curl of 

Eq. (3.1) and using Eq. (3.2), that is 

 

   2 2

t 0 t2

1
× × =- -μ ,

c
E E P                              (3.6) 

 

where c  is the speed of light in vacuum and we have used the relation 

2

0 0μ ε =1 c .  

                                                 
3

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 
2007). 

4 K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006).  
5 A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, 2000). 
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The nature of the optical medium is exhibited by the relation between 

P  and ,E  called the medium equation. On a fundamental level, the origin of 

the nonlinear response of an optical medium is related to the anharmonic 

motion of the bound electrons under the influence of an applied optical 

field6  7. Because M=0 for optical fibers8, there are not nonlinear terms in the 

magnetic field H. As a result, the total electric dipole-moment density P  is 

not linear in the electric field ,E  but satisfies the more general relation6  8 

 

:   (1) (2) (3)

0 0 0=ε +ε +ε +...,P E EE EEE                    (3.7) 

 

where (j)  (j=1,2,3,…) is the jth order susceptibility. In general, (j)  is a 

tensor of rank j+1. Here it is convenient to split P  into its linear and 

nonlinear parts as L NL= + ,P P P  where LP  is the part of the induced 

polarization that depends linearly on the electric field ,E  and NLP  has a 

nonlinear field dependence. 

 

Introducing ,E  in terms of its Fourier transform through the relation 

 




+

-

1
( ,t)= ( ,ω)exp(-iωt)dω,

2π
E r E r                         (3.8) 

 

as well as a similar relation for P  in Eq. (3.6), we obtain a vector wave 

equation in the Fourier space that is valid for each frequency component of 

the field:  

                                                 
6 Y. R. Shen, Principles of Nonlinear Optics (John Wiley & Sons, 1984). 
7 P. N. Butcher and D. N. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990). 
8 R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008). 
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  2 2 2 NL

0 0× × -n k =ω μ ,E E P                              (3.9) 

 

where 0k =ω c  is the free-space wavenumber and ω  is the angular 

frequency of the electromagnetic wave. Here we have used the relation 

 L (1)

0= ε ,P E  which is the definition of the Fourier transform of the induced 

polarization of first order. In general, for silica glass (1)( ,ω)r  is assumed a 

scalar and related with the linear part of the refractive index profile n( ,ω)r  of 

the whole system through 2 (1)n ( ,ω)=1+ ( ,ω)r r 9. For NLP  in Eq. (2.9), since 

(2)( ,ω)=0r  for an isotropic medium such a glass7  9, we can only consider 

the third-order induced polarization and approximate the total electric dipole-

moment density by NL (3) ,P P  where (3) (3)

0= ε .P EEE   

 

When we consider an optical pulse with a carrier frequency 0ω ,  

propagating through an optical dielectric medium in which the linear 

refractive index is dependent on frequency, E  and (3)P  can be expressed as 

 

0-iω t1
( ,t) = [ ( ,t)e +c.c.],

2
EE r r                           (3.10) 

0-iω t(3) (3)1
( ,t) = [ ( ,t)e +c.c.],

2
P r rP                        (3.11) 

                           

where c.c denotes the complex conjugate. Note that we have separated the 

rapidly varying part of E  and (3).P  Therefore,  

                                                 
7

P. N. Butcher and D. N. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990). 
8

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008). 
9 G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
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0

1
( ,ω)= [ ( ,ω - ω )+c.c.],

2
EE r r                         (3.12) 

(3) (3)

0

1
( ,ω)= [ ( ,ω - ω )+c.c.].

2
P r rP                      (3.13) 

 

Substituting Eqs. (3.12) and (3.13) in Eq. (3.9), we obtain the nonlinear 

wave equation for the Fourier transform of the electric slowly varying 

amplitude E :  

 

  2 2 2 (3)

0 0× × -n k =ω μ ,E E P                           (3.14) 

 

where (3)P  is only a small perturbation of the linear wave equation.  

Analogously, if the magnetic field is defined as 0-iω t1
2

( ,t)= [ ( ,t)e +c.c.],H r rH  

the nonlinear wave equation for the Fourier transform of the magnetic slowly 

varying amplitude H  can be written as  

 

  2 (3)

0

1 1
× × -k =-iω × ,
ε ε

H H P                        (3.15) 

 

where 2ε( ,ω)=n ( ,ω)r r  is the dielectric constant of the medium. Because 

optical fiber cores are longitudinally homogeneous and transversely 

inhomogeneous media, ε( ,ω)=ε(x,y,ω)r  and the flow of the electromagnetic 

energy is only along the guiding structure and not perpendicular to it. 

Equations (3.14) and (3.15) are the general slowly varying amplitude 

equations that governs the propagation of an electromagnetic field in a 

NLDFC.  
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It results be useful to rewrite Eqs. (3.14) and (3.15) as an operator 

Schrödinger-like equation that completely describes the spatial evolution of 

an electromagnetic field through an optical medium like a NLDFC. This linear 

operator formalism allows to directly establish the normalization property of 

guided modes of the NLDFC cores10  11. To obtain the operator equation, we 

first make a distinction between the transverse and longitudinal components 

of the Fourier transform of the electric slowly varying amplitude, magnetic 

slowly varying amplitude and third-order dipole-moment density as 

ˆ
T z= + ,EzE E  ˆ

T z= + ,HzH H  and ˆ(3) (3) (3)

T z= + .PzP P  Making a similar 

distinction for the nabla and Laplacian operators as ˆ  T z= +z  and 

  2 2

T zz= + , respectively, Eqs. (3.14) and (3.15) can be rewritten as (see 

Appendix A for its derivation) 

 

ˆ ˆz T T-i F =H ,Ψ Ψ + P                               (3.16) 

 

where TΨ  is a vector space that contains the transverse fields H T  and E T ,  

and is given by 

 

 
 
 
 

0 T

T

0 T

ε
Ψ = .

μ

E

H
                                  (3.17) 

 

The F̂  and Ĥ  operators are given by 

 

                                                 
10  A. D. Bresler, G. H. Joshi, and N. Marcuvitz, “Orthogonality properties for modes in passive and active uniform 

wave guides,” J. Appl. Phys 29, 794-799 (1958). 
11  B. A. Daniel, D. N. Maywar, and G. P. Agrawal, “Dynamic mode theory of optical resonators undergoing refractive 

index changes," J. Opt. Soc. Am. B 28, 2207-2215 (2011). 
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ˆ
ˆ

ˆ

 
 

 

0 -
F = ,

0

z

z
                                   (3.18) 

    ˆ

 
  

 
   
 

2

T T

T T2

ω c
n - × × 0

c ω
H= .

ω c 1
0 - × ×

c ω n

               (3.19) 

 

In the theory of nonlinear fiber optics, the nonlinear term (3)P  usually is 

treated as a small perturbation to the linear terms in the electromagnetic 

field. Here the perturbative term P  is given by 

 

ˆ

 
 
 
 
 

(3)

0 T

(3)

T z

0

ω μ

P = .1 1
-i ×

εε

P

z P
                            (3.20) 

 

The overlap between, or inner product of, two vector spaces TnΨ  and 

Tm ,Ψ  is the number Tn TmΨ Ψ  given by  

 




  

+
* *

Tn Tm 0 Tn Tm 0 Tn Tm nm
-

= (ε +μ )dxdy=δ ,Ψ Ψ E E H H         (3.21) 

 

which express the normalization and orthogonality condition for the vector 

spaces TnΨ  and Tm .Ψ  Here nmδ  is the Kronecker delta that is defined as: 

nmδ =1  if m=n and nmδ =0  if m n. If nmδ =0,  the vector spaces TnΨ  and 

TmΨ  are orthogonal. If nmδ =1,  then the vector space TnΨ  is said to be 

normalized.   
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3.3   Formulation of Guided Modes of Two Parallel Fiber Cores 

 

3.3.1   Fiber core modes 

 

 

Optical fiber cores can support a finite number of guided modes9 , 12 which 

spatial distribution is a solution of Eq. (3.16) with P 0  and satisfies all 

appropriate boundary conditions. Optical modes supported by any fiber core 

in the absence of other fiber core can be represented by 

 

niβ z

n n= β e ,Ψ                                   (3.22) 

 

where nβ (ω)  is the propagation constant or eigenvalue of the nth mode, and 

nβ  the eigenmode defined as: 

 

 
 
 
 

0 n

n

0 n

ε
β = .

μ

e

h
                                   (3.23) 

 

Here ˆ
n Tn zn= + ee e z  and ˆ

n Tn zn= + hh h z  are the electric and magnetic modal 

profiles of the nth mode of the fiber core, respectively. For simplicity, we 

approximate the electric and magnetic modal profiles with their value at the 

carrier frequency 0ω ,  i.e., we assume that the modal profiles do not change 

significantly over the pulse bandwidth.  

 

                                                 
9

 G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
12 A. Ghatak and K. Thyagarajan, Introduction to fiber optics (Cambridge University Press, 1997).  
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In this work, we only consider fiber cores supporting the fundamental 

mode. To find the transverse modal profile of the fundamental mode of each 

fiber core, we need to solve the following equation: 

 

ˆ ˆz Tm m Tm-i F =H ,Ψ Ψ                                (3.24) 

 

where the operator ˆ mH  is given by 

 

 

ˆ

 
  

 
   
 

2

m T T

m

T T2

m

ω c
n - × × 0

c ω
H = ,

ω c 1
0 - × ×

c ω n

              (3.25) 

 

and m=1,2. Here m represents the number of fiber cores that form the 

NLDFC and mn  is the linear refractive index of the mth fiber core.  

 

 

 

 

Fig 3.1 Refractive index distribution n  of the NLDFC. 1n  and 2n  are the linear refractive 

indexes of each NLDFC core, and 0n  is the linear refractive index of the cladding. 
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The longitudinal part of the fundamental mode of the mth fiber core   

  

 
 
 
 

0 zm

zm

0 zm

ε
Ψ = ,

μ

E

H
                                 (3.26) 

 

can be obtained using 
TmΨ  and the Maxwell’s equations. Decomposing the 

eigenmode mβ  into transverse and longitudinal components, the vector 

space that contains the mode fields mH  and mE  is given by  

 

ˆ ˆ m miβ z iβ z

m Tm zm Tm zm= Ψ Ψ = β e β e ,z zΨ               (3.27) 

 

where 

 
 
 
 

0 Tm

Tm

0 Tm

ε
β = ,

μ

e

h
                                 (3.28) 

 

 
 
 
 

0 zm

zm

0 zm

ε e
β = .

μ h
                                  (3.29) 

 

 

Substituting the corresponding transversal part of Eq. (3.27) into Eq. 

(3.24), we obtain the following eigenvalue equation for the transversal part of 

the eigenmode mβ :  

 

ˆ ˆ
m Tm m TmH β =β F β .                                 (3.30) 
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Because we are considering normal modes of the fiber cores with a 

mexp(iβ z)  z-dependence, we can replace the F̂  operator in Eq. (3.24) by the 

following operator relation when P (3) =0  (see Appendix B for its derivation): 

 

ˆ ˆ ˆ  2

z Tm z m zm z m Tm-i F = N - Z .Ψ Ψ Ψ                       (3.31) 

 

In this regard, we can take into consideration the effects caused by the 

nonlinear terms in mβ  in Eq. (3.24). The ˆ mN  and ˆ mZ  operators are given by 

 

ˆ

 
 

 
  
 

T

m

T2

m

c
0

ω
N = ,

c 1
0

ω n

                             (3.32) 

 

ˆ

 
 
 
 
 
 

m

2

m

c
0

ω
Z = .

c 1
0

ω n

                                  (3.33) 

 

Substituting the corresponding transversal and longitudinal part of Eq. 

(3.27) into Eq. (3.31), we obtain the following relation:  

 

ˆ ˆ ˆTm m zm m m TmF β =iN β β Z β .                         (3.34) 

 

Equation (3.34) shows the relation between the longitudinal and transverse 

components of the electromagnetic field mode. Multiplying Eq. (3.34) by 

Tkβ  with k=1,2 from the left, we obtain 
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ˆ ˆ







 
 


 

m

* *

Tk Tm Tm Tk Tk Tm

km

4N
if k =m

1 c
β F β = ( × + × ) dxdy = ,

Cc
if k m

c

e h e h z (3.35) 

 

where kmC  is an arbitrary parameter. This is so because, in general, 

fundamental modes supported by the two NLDFC cores are not orthogonal. If 

the field modes Tmβ  and Tkβ  were orthogonal, then kmC =0.  

 

Applying the definitions of the electric and magnetic field in the slowly 

varying envelope approximation (Eqs. (3.10) and (3.11)) to Eq. (3.5), we can 

note that the parameter mN  represents the time average of the mth mode 

power flow in the propagation direction. The parameter mN  is defined as 

 

ˆ



 

*

m m m

1
N = Re{( × ) }dxdy,

2
e h z                       (3.36) 

 

where ˆ ˆ * *

Tm Tm m m( × ) ( × ) .e h z= e h z  Moreover, we obtain the following 

relations for the electric and magnetic field modes: 

 

ˆ








 

 

 

 

*

Tk Tm

* *

m Tk Tm Tk T zm

0

0

0

( ) dxdy

ε1
= (β +i e )dxdy,

k μ

e h z

e e e

          (3.37) 
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ˆ








 

 
   

 

 

 

*

Tm Tk

* *

m Tk Tm Tk T zm2 2

0 m m

0

0

( ) dxdy

1 1 1
= β i h dxdy.

k ε n n

μ

e h z

h h h

     (3.38) 

 

From Maxwell’s equations, one can deduce that electric and magnetic of 

the mth field modes me  and mh  and the vector in the direction of wave 

propagation ẑ  are mutually orthogonal, and me  and mh  are related by 

 

m Tm m
0

0

n = .
ε

μ
e h                                    (3.39) 

 

Therefore, 

 

ˆ








 

 
   

 

 

 

*

Tm Tk

* *k k
m Tk Tm Tk T zm

0 m m

0

0

( ) dxdy

ε1 n n
= β i e dxdy.

k n nμ

e h z

e e e

     (3.40) 

 

 

 

3.3.2   Coupled mode theory 

 

 

Couple-mode theory deals with the simplest formulation that describes the 

mutual lightwave interactions between two propagation modes. It is used 

commonly for directional couplers because it addresses systems where the 
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total field can be described approximately with a linear combination of two 

propagating modes1 , 3  5 , 13. To derive the coupled-mode equations that 

describe the propagation of electromagnetic waves through NLDFCs, we use 

the coupled-mode approach to solve the operator Schrödinger-like equation 

given by Eq. (3.16).  

 

The total optical field in the NLDFC is expressed by a linear combination 

of the two guided modes that corresponds to the modes of the uncopled fiber 

cores, with an infinite separation between them, which form the NLDFC. 

Every guided mode is a solution of the Maxwell’s equations of each NLDFC 

core and do not satisfy the Maxwell’s equations of the whole system. 

Considering only the fundamental mode of each NLDFC core as forward-

propagating mode, which travel in the positive z-direction, solution of Eq. 

(3.16) can be expressed by  

 

a aT 1 T1 2 T2= + ,Ψ Ψ Ψ                              (3.41) 

 

where am(z,ω)  is the modal amplitude in the frequency domain of the mth 

NLDFC core. The coupling between modes (1) and (2) is expressed by the z-

dependence of a1  and a2.  The complete vector space solution is given by 

ˆT z= .zΨ Ψ Ψ  Here we are considering the addition of the modes of two 

parallel fiber cores together each other with propagation constants evaluated 

                                                 
1

 G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2008). 
3

 A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 
2007). 

4
 K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006). 

5
 A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, 2000). 

13 C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991). 
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at the carrier frequency 0ω ,  i.e., we are considering unperturbed field 

modes, which represents the electromagnetic fields of narrowband pulses at 

frequency 0ω  for which dispersion, loss, and nonlinearity terms are zero, to 

represent the total perturbed field of the NLDFC.  

 

Vectorial modal fields me  and mh  on the perturbed and unperturbed 

fiber cores can be treated as similar functions. Therefore, the field of the 

NLDFC can be well approximated by  

 

a a 1 2iβ z iβ z

T 1 T1 2 T2β e + β e ,Ψ                         (3.42) 

 

where mβ (ω)  is the mth perturbed propagation constant of the mode in the 

mth NLDFC core. Introduction of the mth slowly varying mode amplitude is 

given by the relation 

 

a m 0m-i(β -β )z

m m 0(z,ω)=A (z,ω -ω )e ,                        (3.43) 

 

where 0m m 0β =β (ω )  is the mth unperturbed propagation constant of the 

mode in the mth NLDFC core. 

 

 

3.4   Coupled-Mode Equations for Nonlinear Directional Fiber 

Couplers 

 

In order to calculate the longitudinal evolution of the complex amplitudes a1  

and a2  along the NLDFC, we derive the coupled-mode equations based on 
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the perturbation theory applied to NLDFCs. For simplicity, we use Eq. (3.16) 

only applicable for the electric field. In this regard, Eq. (3.16) can be 

particularly rewritten as 

 

    2 2 2 2 (3)

T T T z T z z T 0 T 0 T×( × )+ - -n k =ω μ ,E E E PE            (3.44) 

 

where we have use the relation: ˆ   0 z T z T z zz Tiωμ ( × )= -H Ez E  (see Maxwell 

relations in Appendix A). The relation ˆ ˆ   T z T T T z×[ ( × )]+ ×[ ×( )]=Ez zE  

ˆ ˆ2 2 2 (3)

0 z 0 zn k ω μz zE P  can be used to obtain the most general relation for E  

 

ˆ ˆ     

  

T T T T z T T T z

2 2 2 2 (3)

0 z T z z T 0

×( × )+ ×[ ( × )]+ ×[ ×( )]

=n k - + +ω μ .

z zE E

E E P

E

E
         (3.45) 

 

 

If we consider that a single input pulse, at the carrier frequency 0ω ,  is 

launched into one NLDFC core such that it excites a single mode of the 

NLDFC core, the Fourier transform of the electric field E  can be expressed in 

a similar way like Eq. (3.42), i.e., 

 

a  m

2

iβ z

0 m m 0
m=1

( ,ω ω )= (z,ω) (x,y,ω )e ,E r F                  (3.46) 

 

where m 0 m 0 m(x,y,ω ) (x,y,ω ) NF e  governs the shape of the mth mode in 

the absence of other modes. Substituting Eq. (3.46) into (3.45) and applying 

the slowly varying envelope approximation, we obtain after associating term: 



PhD THESIS. NÉSTOR LOZANO CRISÓSTOMO                                                                                47 

CHAPTER 3. PULSE PROPAGATION IN NONLINEAR DIRECTIONAL FIBER COUPLERS 

 

 

ˆ

ˆ

a

a

a

   

  

   







m

2

-iβ z2 (3)

0 m Tm T zm T Tm z m
m=1

2

m m Tm T zm T Tm m
m=1

2

2 2 2

T m T T Tm 0 m m
m=1

-μ ω e = (2iβ - F - )

+i β (iβ - F - )

+ [ - ( )+k n ] ,

P F z F

F z F

F F F

           (3.47) 

 

where ˆ  T z= + ,z  ˆ ˆ  T x y= + ,x y  ˆ
m Tm zm= + F ,F F z  and ˆ ˆ

Tm xm ym= F + F .F x y  

Here zmF  is the longitudinal component and TmF  is the transverse part of the 

mth normalized mode field. In the above equation, we have applied the 

vector identity      2

T T T T T T T T×( × )= ( ) - .E E E   

 

The distribution of the mth electric field mode can be obtained by using 

Eq. (3.31) only applicable for the electric field mode. Its distribution satisfies:  

 

ˆ      2 2 2

T m T T Tm m m Tm T zm T Tm 0 m m- ( )=-iβ (iβ - F - ) -k n .F F F z F F      (3.48) 

 

Substituting Eq. (3.48) into the last term on the right-hand side of Eq. 

(3.47) and associating terms, we obtain  

 

ˆ a

a

   



m

2

-iβ z2 (3)

0 m Tm T zm T Tm z m
m=1

2

2 2 2

0 m m m
m=1

-μ ω e = (2iβ - F - )

+k (n -n ) .

P F z F

F

           (3.49) 
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If we multiply Eq. (3.49) by *

kF  from the left, use the vectorial identity 

    * * *

zk T Tm T zk Tm Tm T zkF ( )= (F ) - F ,F F F  and integrate over the transverse 

plane, Eq. (3.49) becomes 

 

a

a













   

 



 

 

 m

2

* * *

z m m Tk Tm Tk T zm Tm T zk
m=1

2

2 2 *

0 m m k m
m=1

-iβ z2 * (3)

0 k

(2iβ - F + F )dxdy

+k n dxdy

= -μ ω e dxdy,

F F F F

F F

F P

         (3.50) 

 

where  2 2 2

m mn =n -n  is the change in the linear refractive index due to the 

presence of the mth guide mode. Here we are considering that the integral 




  

*

T zk Tm(F )dxdy =0F  because all guided modes decay exponentially in the 

cladding. Simplification of Eq. (3.45) is something complicated because both 

guided modes in the NLDFC are not orthogonal in general. However, if we 

add Eq. (3.37) and its complex conjugate, i.e., 

 

ˆ
 

 
      

* * *

k m m Tk Tm Tk T zm

m k

0 ( ) dxdy = ( β - F )dxdy,
N N

iωμ
ie h z F F F   (3.51) 

  ˆ
 

 
      

* * *

m k k Tk Tm Tm T zk

m k

0 ( ) dxdy = ( β + F )dxdy,
N N

iωμ
ie h z F F F   (3.52) 

 

we obtain 
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ˆ

  

  





  

  

     

 

* * *

m Tk Tm Tk T zm Tm T zk

* *

m k k m

m k

0

β dxdy - F dxdy+ F dxdy.

= ( + ) dxdy,
N N

2i

iωμ

F F F F

e h e h z

 (3.53) 

 

where we have considered that the modes are perfectly matched, i.e., 

k mβ =β .  Substituting Eq. (3.53) into (3.50), we obtain 

 

ˆa

a













   

 



 

  

 m

2

* *

z m m k k m
m=1 m k

2

2 *

0 m m k m
m=1

-iβ z * (3)

k

1
( + ) dxdy

N N

-iωε n dxdy

= iωe dxdy.

e h e h z

F F

F P

               (2.54) 

 

If we introduce the slowly varying mode amplitude m 0A (z,ω-ω )  given 

in Eq. (3.43) into Eq. (3.54), we obtain 

 

ˆ












    
 

 



 

  

 0m

2

* *

z m m 0m m m k k m
m=1 m k

2

2 *

0 m m k m
m=1

-iβ z * (3)

k

1
A - i(β -β )A ( + ) dxdy

N N

-iωε A n dxdy

=iωe dxdy.

e h e h z

F F

F P

  (3.55) 

 

The last three terms shown in Eq. (3.55) correspond respectively to the 

dispersion, linear coupling and nonlinearity.  
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Equation (3.55) describes the evolution of each spectral component ω  

within the pulse spectrum along then NLDFC. However, we are interested in 

the evolution of the whole pulse envelope mA (z,t) . Therefore, we rewrite Eq. 

(3.55) into the time domain. For this purpose, we replace the propagation 

constant mβ  with its Taylor expansion around 0ω  as: 

 



 nnm
m 0

n=0

β
β (ω)= (ω -ω ) ,

n!
                             (3.56) 

 

where nmβ  are the dispersion coefficients defined as 
0

n

nm ω m ω=ω
β = β .  In 

addition, if we replace 0ω -ω  with  ti  and multiplying both sides of Eq. (3.55) 

by -iωte  and integrate with respect to ω,  we obtain 

 

ˆ














 
     
 

 



  

 

 0m 0

2

n+1 n * *nm
z m t m m k k m

m=1 n=1 m k

2

2 *

0 0 m m k m
m=1

-i(β z-ω t) * (3)

0 k

β 1
A - i A ( + ) dxdy

n! N N

-iω ε A n dxdy

=iω e dxdy.

e h e h z

F F

F P

 (3.57) 

 

The slowly varying third-order dipole-moment density (3)P  in Eq. (3.52) 

is related with the electric slowly varying amplitude .E  For simplicity, (3)P  

can be approximately written as9 , 14 

 

 

                                                 
9

 G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
14 G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress [invited],” J. Opt. Soc. Am. B 28, A1- A10 

(2011). 
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*(3) (3)

0 xxxx

3
( ,t)= ε ( ,t) ( ,t) ( ,t).

4
r r r rP E E E                   (3.58) 

 

The real parameter (3)

xxxx  is related with n  and nonlinear-index coefficient by: 

(3) 2

xxxx 0 2=4ε cn n 3. Here we are considering that the electronic response of 

the bound electrons in the silica atoms is extremely fast and can be taken to 

be instantaneous 9 .15In addition, in Eq. (3.58) we are not considering the 

effect of third-harmonic frequency because this requires phase matching and 

it is generally negligible in optical fibers 9 . The electric slowly varying 

amplitude E  in the time domain is given by 

 

 0m 0

2

i(β z-ω t)

m m
m=1

( ,t) = A (z,t) (x,y)e .r FE                    (3.59) 

 

Substituting Eq. (3.59) into (3.58), and using the latter in Eq. (3.57), we 

obtain the following equation for the modal amplitudes: 

 

 

ˆ














 
     
 

 

  

  

  

  

2

n+1 n * *nm
z m t m m k k m

m=1 n=1 m k

2

2 *

0 0 m m k m
m=1

* (3) * *

0 0 h n l xxxx h n k l
hnl

β 1
A - i A ( + ) dxdy

n! N N

= iω ε A n dxdy

3
+i ε ω A A A ( )( )dxdy,

4

e h e h z

F F

F F F F

 (3.60) 

 

                                                 
9

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
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where the indices k, h, n, and l take values 1 to 2 that correspond to the 

modes of every fiber core that form the NLDFC. A compact form of Eq. (3.60) 

is given by  

 

ˆ






 
     
 

  

 

2

n+1 n * *nm
z m t m m k k m

m=1 n=1 m k

2

(k) *

km m hnl h n l
m=1 hnl

β 1
A - i A ( + ) dxdy

n! N N

= 4i κ A +4i γ A A A ,

e h e h z

 (3.61) 

 

where  

 




  

2 *0 0
km m k m

k m

ω ε
κ = n dxdy,

4 N N
e e                        (3.62) 

(k) 0 2
hnl

eff

ω n
γ = .

cA
                                        (3.63) 

 

 

kmκ  is the coupling coefficient and (k)

hnlγ  is the nonlinear parameter of the 

NLDFC. The additional parameters are given by 

 

 
 
 


1/4

(v)

eff eff

v=k,h,n,l

A = A ,                               (3.64) 

 

ˆ

ˆ









 

 

 

 

2
*

v v
(v)

eff 2
*

v v

( ) dxdy
A = ,

( ) dxdy

e h z

e h z

                         (3.65) 
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ˆ









  
 

  
  

 

 

 

2 * *

2 h n k l0
2 1/4

2
0 *

v v

v=k,h,n,l

n (x,y)n (x,y)( )( )dxdyε
n = .

μ
( ) dxdy

e e e e

e h z

            (3.66) 

 

Equation (3.61) is a general relation that govern the behavior of the 

modal amplitudes of light pulses in a NLDFC. With the replacement of Eq. 

(3.35), Eq. (3.61) becomes  

 

k

  
    

 
 



n+1 n n+1 nnk nm km
z k t k z m t m

n=1 n=1 m k

(k) *

kk km m hnl h n l
hnl

β β C
A - i A + A - i A

n! n! N N

= iκ A +iκ A +i γ A A A ,

         (3.67) 

 

where k m  and k = 1,2. Although Eq. (3.67) appears complicated, it can be 

simplified in some specific situations. For example, if the NLDFC cores are 

identical, the coupling coefficients between both NLDFC cores are equal, i.e., 

12 21κ =κ =κ  and 11 22 2κ =κ =κ . In addition, if the two NLDFC cores are 

sufficiently separated, 2κ  is much smaller than κ,  and 2κ ,  12C ,  and 21C  can 

be neglected4  5. Alternatively,16if the perturbation of the electric field 

amplitude 2A  inside the NLDFC core 1 is quite small when it is compared to 

its intensity 
2

2A  or 2

2A ,  and similarly with 1A ,  then only four of the eight 

terms in the sum over h, n, l in Eq. (3.67), with k =1 or 2, are not vanishing. 

Therefore, the coupled mode equations are given by 

 

                                                 
4

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006). 
5

W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, 2000). 
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

 
2 2n+1 n (1) (1) (1) 2 *n1

z 1 t 1 1 2 111 1 1 122 2 1 212 2 1
n=1

β
A - i A = iκ A +iγ A A +i2γ A A +iγ A A ,

n!
 (3.68) 



 
2 2n+1 n (2) (2) (2) 2 *n2

z 2 t 2 1 1 222 2 2 211 1 2 121 1 2
n=1

β
A - i A = iκ A +iγ A A +i2γ A A +iγ A A ,

n!
 (3.69) 

 

where (1) (1)

122 221γ =γ  and (2) (2)

211 112γ = γ .   

 

In obtaining Eq. (3.68) and (3.69), we have used the normalization of 

each guided mode in the NLDFC given by4  5 

 

ˆ ˆ
 

 
      

* *

m m m m m

1 1
( ) dxdy = ( ) dxdy =N .

2 2
e h z e h z          (3.70) 

 

 

In Eq. (3.68) and (3.69),17the parameters (1)

111γ  and (2)

222γ  are responsible 

for SPM, while the effects of XPM are governed by (1)

122γ  and (2)

211γ . Because we 

are considering a symmetric NLDFC with two identical fiber cores, we can 

define (1) (2)

111 222γ =γ =γ,  (1) (2)

122 211γ = γ = γσ 2,  and (1) (2)

212 121γ =γ =η.  Therefore, 

 

 
2 22 2 *2

z 1 T 1 1 2 1 2 1 2 1

β
A +i A = iκ A +iγ( A +σ A )A +iηA A ,

2
          (3.71) 

 
2 22 2 *2

z 2 T 2 1 1 2 1 2 1 2

β
A +i A = iκ A +iγ( A +σ A )A +iηA A ,

2
          (3.72) 

 

                                                 
4

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006). 
5

W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, 2000). 
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where we have retaining terms up to second order for mβ (ω).  The time 

gT = t - z v  is measured in a frame of reference moving with the optical pulse 

at the group velocity 
gv .  
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Chapter 4 

 

Exact Analytical Solution of the 
Dispersionless Nonlinear 
Directional Fiber Coupler 
 
Abstract 

 

In this chapter, we develop for the first time, to the best of our knowledge, a 

comprehensive theory to describe the nonlinear propagation of picosecond 

pulses through symmetric NLDFCs. Considering the elementary NLDFC 

switching process, we have derived an exact analytical expression for the 

optical power and nonlinear phase shift of a picosecond pulse of arbitrary 

shape and chirp. Applying our results to a Gaussian input pulse, we have 

shown how the maximum nonlinear phase shift is affected by the linear 

coupling. To analyze this result, we have defined a critical coupling coefficient 

that determines the separation of the NLDFC cores at which the pulse energy 

is maximally exchanged from one NLDFC core to the other for the first time. 
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We also have shown that the critical coupling coefficient plays an important 

role in the NLDFC performance and has a dramatic impact on the 

accumulated nonlinear phase shift. In Section 4.1, we briefly introduce the 

way to solve the nonlinear coupled-mode equations that describe the NLDFC. 

In Section 4.2, we provide the analytical solution of the nonlinear coupled-

mode equations. In addition, we give the analysis of the solution for the 

nonlinear phase shift and power that an optical pulse obtains in each NLDFC 

core. Finally, in Section 4.3 we give the analytical calculations of the output 

nonlinear phase shift and power in each NLDFC core. 

 

 

4.1   Introduction 

 

In general, exact analytical solutions to the coupled-mode Schrödinger 

equations for the NLDFC do not exist1. Therefore, approximations based on 

numerical methods are needed in order to solve the approximate scalar form 

of these equations. The split-step Fourier method is the common numerical 

method used to solve the coupled-mode Schrödinger equations1. However, 

because we are interested in the analysis of the nonlinear effects alone, we 

can neglect the dispersion effects in the NLDFC considering the propagation 

of picosecond pulses, and solve analytically the resulting equations. In this 

section, we solve analytically the nonlinear coupled-mode equations that 

describe the propagation of picosecond pulses along a lossless NLDFC. With 

the obtained analytical solutions of the power and nonlinear phase shift in 

each NLDFC core, we accurately analyze and obtain a physical insight of the 

effects of the linear coupling on the properties of the output signal pulses. 

                                                 
1 G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008). 
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4.2   Nonlinear coupled-mode equations and their analytic solution 

 

We begin by considering a lossless NLDFC with identical fiber cores of radius 

a,  separated by a distance d  between their centers, as shown in Fig. 4.1. 

More specifically, the NLDFC consist of a launch fiber core coupled with an 

unlaunch fiber core. The launch fiber core is a fiber core that is initially 

pumped with an optical pulse and the unlaunch fiber core is not initially 

pumped. Here we are considering the simplest situation in which a single-

input pulse is launched into one NLDFC core such that it excites a single TE 

polarization mode of the NLDFC core. We can introduce the dispersion length 

in the usual way as 2

D 0 2L = T β ,  where 0T  is the pulse width and 2β  is the 

GVD parameter2. 

 

 

Fig. 4.1 Geometry of the symmetric NLDFC. 

 

 

In Section 3.4, we obtained the coupled-mode Schrödinger equations 

that govern the propagation of optical pulses inside a NLDFC. For optical 

                                                 
2 G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
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pulses, wide enough that DL  is much larger than the NLDFC length L, one can 

use Eqs. (3.71) and (3.72) and obtain 

 

 1 2 2

z 1 2 1 21 1A A = iκA +iγ( A +σ A
α

2
)A+ ,                     (4.1) 

 2 2 2

z 2 2 1 2 1 2A A = iκA +iγ( A +σ A
α

2
)A+ ,                     (4.2) 

 

where we have neglected the last term in both equations. In addition, we 

have heuristically added the terms 1α  and 2α  to account the loss or gain in 

the corresponding NLDFC cores. Introducing the normalized amplitudes 

m m m 0(z,T) = (z,TU )exp( zα 2)A P ,  where 0P  is the peak power of the 

incident pulse, Eqs. (4.1) and (4.2) become 

 

 1 1

1- zα

NL

2 2-M z 2 -M z

z 1 2 1 2 1U U U
e

= iκ e +i ( + eU
L

)Uσ ,                  (4.3) 

 1 1

2- zα

NL

2 2+M z 2 +M z

z 2 1 2 1 2U U U
e

= iκ e +i ( + eU
L

)Uσ ,                 (4.4) 

 

where 1 2 1M = α - α  and -1

NL 0L = (γP )  is the nonlinear length. If mα >0,  the 

mth NLDFC core represents a lossy fiber core, but if mα <0,  the mth NLDFC 

core represents an active fiber core. Remember that we are considering the 

fundamental modes in the NLDFC are perfectly matched. The coupling 

coefficient κ  and the cross-phase modulation (XPM) parameter σ,  which 

represent the linear and nonlinear coupling coefficients respectively, depend 

on the distance d  between the two NLDFC cores. 
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The complex slowly varying amplitude mU (z,T)  of the mth NLDFC core 

has an instantaneous optical power of 
2

m mP (z,T)= U (z,T) . Both optical 

powers, 1P (z,T)  and 2P (z,T),  can vary along L because of the overlap of the 

two modes. Here it is convenient to define  1 2P (z,T)=[P (z,T) P (z,T)] 2  such 

that m

m + -P (z,T)=[P (z,T) - (-1) P (z,T)].   

 

We analytically solve Eqs. (4.3) and (4.4) by using a generalization of 

the well-known technique of introducing real amplitudes and phases terms 

 m m NLm 0mU (z,T)= P (z,T)exp{i[ (z,T)+ (0,T)]}.  We note that +P (z,T)  is a z 

constant +[P (z,T) dz=0], so 

 

 
  

 

1/2

m -
m + NLm 0m

+

P (z,T)
U (z,T)= P (0,T) 1- (-1) exp{i[ (z,T)+ (0,T)]},

P (z,T)
 (4.5) 

 

where 0m(0,T)  is a z constant, as well. Here we consider the specific case in 

which all the input power is initially launched into one NLDFC core (i.e., 

2U (0,T)=0  at any time), therefore 

 

1
1 1

U (0,T)
U (z,T)= 1+u(z,T)exp[i (z,T)],

2
                  (4.6) 

1
2 2

U (0,T)
U (z,T)= i 1-u(z,T)exp[i (z,T)],

2
                  (4.7) 

 

where   m NLm 0m(z,T)= (z (,T)+ 0,T)  and - +u(z,T) =P (z,T) P (z,T) .  1U (z, T)  

and 1U (z, T)  give the information of the behavior of the optical pulse when it 
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propagates through the launch and unlaunch NLDFC core, respectively. The 

factor i in Eq. (4.7) appears because the NLDFC introduces a relative phase 

shift of π 2  before any power is transferred to the second NLDFC core1 , 3. 

Initial conditions are such that u(0,T)=1, 1(0,T)=0,  and 2(0,T)=0,  for 

each time element. By inserting the solution from Eqs. (4.6) and (4.7) into 

Eqs. (4.3) and (4.4), we arrive at 

 

2du
=-2κ 1-u cos ,

dz
                                  (4.8) 




2

1

2
NL

U (0, T)d 2κu
=- sin + (σ -1)u,

dz L1-u
                     (4.9) 

 

 

where 1 2α =α =0  and   2 1(z,T)= (z,T) - (z,T),  and 

 




2

11

2
NL

U (0, T)d 1-u
= - κsin + [(σ+1) - (σ -1)u],

dz 2L1-u
            (4.10) 




2

12

2
NL

U (0, T)d 1+u
=- κsin + [(σ+1)+(σ -1)u].

dz 2L1-u
            (4.11) 

 

Equations (4.8) and (4.9) can be integrated using elliptic integrals4. Two kind 

of solutions of Eqs. (4.8) and (4.9), that satisfy the initial conditions, are 

available. 

 

                                                 
1

 G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008). 
3  C.-L. Chen, Foundations for Guided-Wave Optics (John Wiley and Sons, 2007). 
4 M. Abramowitz and I. A. Stegam, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical 

Tables (Dover, New York, 1972). 
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Solution 1: 

 
 
 
 

1

1

2κz
u(z,T) = dn ,m

m
                              (4.12) 

  
  

    
1

1

2κz
(z,T) = arccos cn .m

m
                        (4.13) 

 

Solution 2: 

 

2u(z,T)=cn(2κz ),m                                (4.14) 

 2(z,T)=arccos[dn(2κz )].m                          (4.15) 

 

 

The Jacobi elliptic functions, m mdn(x )m  and m mcn(x ),m  are two 

variable functions with argument mx  and modulus mm . In our case, 1(T) =m  

 
 

22

NL 14κL (σ -1) U (0,T)  and  
 

22

2 1 NL(T)= (σ -1) U (0,T) 4κLm  are time-

dependent parameters. Note that 1 2=1 .m m    

 

The values of κ  and 0P  for which 1 =1m  and 2 =1m  are defined as the 

critical coupling coefficient cκ  and critical power cP , respectively. The 

substitution of solution 1 or 2 into Eq. (4.9) produces the function f(κ)  (when 

1 =1m  or 2 =1m ): 

 

2

NL 1f(κ)=4κL -[1-σ(κ)] U (0,T) .                       (4.16) 
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cκ  is the solution of the function f(κ)=0.  This is so because σ  depends on 

κ  in general. By using the definition of NLL ,  cP  is given by 

 

c c
c 2

c 1c 1

4κ 4κ
P = = .

γ[1- σ(κ )]P (0,T)γ[1- σ(κ )] U (0,T)
             (4.17) 

 

For any elliptic function, its modulus must lie between 0 and 1. Using the 

condition  10 1m  or  20 1,m  we obtain  

 


2 c

1

0 c

κ γ κ
(1 - σ) U (0,T) = ,

P 4 P
                          (4.18) 

or 


2 c

1

0 c

κ γ κ
(1 - σ) U (0,T) = ,

P 4 P
                          (4.19) 

 

respectively. 

 

Equation (4.17) reduces to the well-known definition of the continuous 

wave cP  (
2

1U (0,T) =1)1 , 5. In the case of optical pulses, both cκ  and cP  are 

time-dependent functions that give rise to a power-dependent transmission 

and a pulse intensity discrimination6. These two parameters play an 

important role because they define a boundary between the two possible 

solutions (solutions 1 and 2) of Eqs. (4.8) and (4.9). It is important to note 

[Eqs. (4.16) and (4.17)] that γ  controls the relationship between cκ  and cP .  

                                                 
1

 G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008). 
5  S. M. Jensen, “The nonlinear coherent coupler,” IEEE J. Quantum Electron. QE-18, 1580-1583 (1982). 
6  E. E. Nazemosadat and A. Mafi, “Saturable absorption in multicore fiber couplers,” J. Opt. Soc. Am. B 30, 2787-

2790 (2013). 
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In general, solutions 1 and 2 form a complete solution of the system for 

all values of κ  and 0P . Equation (4.18) shows that solution 1 applies when 

 c0<κ κ  or/and the input power is high ( c 0P P < ); resulting into a 

reduction in the power exchange efficiency, i.e., the linear coupling effect is 

reduced and the optical field remains primarily in the launch NLDFC core. On 

the other hand, Eq. (4.19) shows that solution 2 applies when cκ κ <  

or/and the input power is low ( 0 c0<P P ). It is well-known that in this case, 

both 1P (z,T)  and 2P (z,T)  vary sinusoidally with z for any directional 

coupler1 , 3 , 7.8The periodic power transfer between the two NLDFC cores 

depends on the parameter κL.  In particular, cL  is the shortest distance 

coupling length at which the maximum power is transferred to the second 

NLDFC core for the first time. 

 

The parameter that defines the boundary between the low-power and 

high-power regimes is cP .  Analogously, it is easy to show that the parameter 

that defines the boundary between the weak-coupling (  c0<κ κ ) and 

strong-coupling ( cκ κ < ) regimes is cκ .  In particular, cκ  acts as the 

overlap enhancement starting point of the fields associated with the two 

NLDFC cores. NLDFCs can thus operate in two distinct regimes: 

 

 

 

 

                                                 
1

 G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2008). 
3

 C.-L. Chen, Foundations for Guided-Wave Optics (John Wiley and Sons, 2007). 
7   K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, New York, 2000) 
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4.2.1 Nonlinear Regime  

 

In this regime, κ  and 0P  satisfy the following inequalities:  c0<κ κ  and 

c 0P P < . For this case, we demonstrate below that the evanescent field is 

so weak that we can neglect both the XPM effect (negligible σ ) and the field 

transfer among the NLDFC cores. Here the expressions for the output powers 

are given by 

 

 

  
   
   

2

21

1 1 1

NL

U (0,T) L
P (L,T)= 1+dn U (0,T) (σ -1) ,

2 2L
m         (4.20) 

  
   
   

2

21

2 1 1

NL

U (0,T) L
P (L,T)= 1- dn U (0,T) (σ -1) .

2 2L
m          (4.21) 

 

 

Using Eqs. (4.20) and (4.21), we can notice that -P (L,T) 0  because the 

function  1 10 dn(x | ) 1.m  Therefore, as light propagates in the NLDFC, the 

total power in the launch NLDFC core cannot be transferred to the other 

NLDFC core. Therein, the XPM effect is so small that we can neglect σ. Using 

Eqs. (4.12) and (4.13) to integrate Eqs. (4.10) and (4.11), we obtain the 

output nonlinear phases in this regime that are given by 

 

   
  
   



1

2

NL1 1

NL

k
2 1

1 1

NL

L
(L,T)= U (0,T) (σ+3)

4L

(-1) L πk
- arcsin sn U (0,T) (σ -1) - ,

2 2L 2
m

    (4.22) 
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   
  
   



1

2

NL2 1

NL

k
2 1

1 1

NL

L
(L,T)= U (0,T) (σ+3)

4L

(-1) L πk
+ arcsin sn U (0,T) (σ -1) + ,

2 2L 2
m

  (4.23) 

 

where 1k  is defined by the argument and period of the Jacobian elliptic 

function 1 1sn(x ).m  More specifically, 1k  is an integer given by 

 

2-1

NL 1

1

1

L(2L ) U (0,T) (σ -1)
k = ,

2K
                        (4.24) 

 

where 1 1K ( )m  is a complete elliptic integral of the first kind. x  means the 

nearest integer to x. 

 

Because we are in the regime in which κ  can be so small but not zero 

or/and 0P  can be so high but not infinity, we are going to analyze what 

happen in the limit when we separate the two NLDFC cores or/and we launch 

a pulse with strong 0P  to the NLDFC such that any power from the launch 

NLDFC core cannot be transferred to the other NLDFC core. In this 

decoupling limit, when κ 0  ( σ 0 ), or/and 0P ,  the modulus 1 0.m  

Therefore, 
2

NL1 1 NL(L,T) U (0,T) L L  and  
2

NL2 1 NL(L,T) U (0,T) L (2L ).  

 

In this limit, we can see that NL1(L,T)  recovers the standard form 

obtained for SCFs. For a useful notation, we define these last two limiting 

values as: 
2κ 0

NL1 1 NL(L,T)= U (0,T) L L  and   κ 0 κ 0

NL2 NL1(L,T)= (L,T) 2.  In fact, 
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NL2(L,T)=  0  when κ 0  because of the initial conditions, however, 

NL2(L,T)  reach the κ 0

NL2 (L,T)  value because this is the nonlinear phase 

lowest value that can reach NL2(L,T)  when an exchange of power begins or 

ends. Here we define the maximum nonlinear phase shifts at the pulse center 

as  max1 NL1= (L,0)  and  max2 NL2= (L,0),  where the complex slowly varying 

amplitude of the input pulse is normalized such that 1U (0,0) =1. Therefore, 

in the decoupling limit, κ 0

max1 NL=L L  and   κ 0 κ 0

max2 max1= 2.  

 

 

4.2.2 Linear Regime   

 

In this regime, κ  and 0P  satisfy the following inequalities: cκ κ <  and 

0 c0<P P . For this case, we derive the expressions that govern the power 

exchange between both NLDFC cores. The expressions for the output powers 

are given by 

 

2

1

1 2

U (0,T)
P (z,T)= [1+cn(2κL )],

2
m                     (4.25) 

2

1

2 2

U (0,T)
P (z,T) = [1- cn(2κL )].

2
m                      (4.26) 

 

From Eqs. (4.25) and (4.26), we find that the coupling length is given by 

c 2L =K κ ,  where 2 2K ( )m  is a complete elliptic integral of the first kind. Using 

Eqs. (4.14) and (4.15) to integrate Eqs. (4.10) and (4.11), we obtain the 

output nonlinear phases in this regime that are given by 
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
2k

2

NL1 1 2

NL

L (-1)
(L,T) = U (0,T) (σ+3) - arccos[dn(2κL )],

4L 2
m     (4.27) 


2k

2

NL2 1 2

NL

L (-1)
(L,T)= U (0,T) (σ+3)+ arccos[dn(2κL )],

4L 2
m     (4.28) 

 

where 2k  is an integer that depends on the argument and period of 

2 2dn(x ).m  More specifically, 2k  is given by 

 

2

2

κL 1
k = - .

K 2
                                     (4.29) 

 

 

In this regime, κ  can be so large but not infinity or/and 0P  can be so 

low but not zero. We are going to analyze what happen in the limit when we 

put together the two NLDFC cores so close or/and we launch a pulse with low 

0P  to the NLDFC such that an exchange of power between the two NLDFC 

cores is observed. In this coupling limit, when κ  or/and 0P 0,  the 

modulus 2 0m  and therefore  
2

NLm 1 NL(L,T) U (0,T) (3+σ)L 4L  and 

cL =π 2κ ,  which is the standard definition of the coupling length of linear 

directional couplers. Assuming that σ 0  when d a >4, we define the last 

limit values as:   κ κ 0

NLm NL1(L,T)=3 (L,T) 4.  Note that both nonlinear phases 

tend to the same value, i.e., when a NLDFC undergoes a strong linear 

coupling the output nonlinear phases will be the same, approximately.  
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As in the previous section, we define the maximum nonlinear phase 

shifts at the pulse center as  max1 NL1= (L,0)  and  max2 NL2= (L,0),  where the 

complex slowly varying amplitude of the input pulse is normalized such that 

1U (0,0) =1. Therefore, in the coupling limit   κ κ 3
max1 max2 NL4

= = L L .   

 

 

4.3 Analytical calculations of the output nonlinear phase shifts and 

powers 

 

In this section, we graphically show how the nonlinear phase shifts and 

powers in a lossless NLDFC are affected by the linear coupling. For this task, 

we have considered the simplest case when a unchirped Gaussian pulse of 

the form 

 

 
 
 

2

1 2

0

1 T
U (0,T)=exp - ,

2 T
                          (4.30) 

 

is launched into one NLDFC core.  

 

Figure 4.2 shows the two distinctive NLDFC regimes by a calculation of 

the analytical solutions of the output powers and nonlinear phase shifts at the 

pulse center. We chose the following values for our calculations: 0T =100 ps, 

0P = 4πW, 2β =20 2ps km , and -1 -1γ =2 km W  at λ=1.55 μm.  Therefore, we 

obtain that DL =500 km and NLL =0.04 km. With these values, we ensure to 

minimize the dispersion effects in the NLDFC. Additional values are: a =4μm,  
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the relative fiber core-cladding index difference =0.3%,  the normalized 

frequency V=2 and L=1km. 

 

 

    

 

Fig. 4.2 The role of cκ  is shown in (a), (b), (c) and (d), and the drop of the NLPS is shown 

in (c) and (d). The output power and nonlinear phase at the pulse center, 1P  and  κmax1 max1  

at the upper, and 2P  and  κmax2 max2  at the bottom of each figure, respectively. The d a  

value related with the cκ  value has been marked down by a red dashed line that separates 

both NLDFC regimes. 

 

 

We show the role of cκ  in the design of NLDFCs and the drop of the 

output nonlinear phase shift of the signal pulse when an interchange of 

power begins between the two NLDFC cores. Using the values of L and NLL for 

our calculations, we obtain: κ 0

max1 = 8π  and κmaxm = 6π.  In this regard, there is 

a suppression of 2π  in the normalized maximum nonlinear phase shift. For 

convenience, we have plotted our graphic (Fig. 4.2) in terms of d a  where it 

is clearly noticeable that the d a  value related with the cκ  value, marked 
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down by a red dashed line, separates both NLDFC regimens. The cκ  value 

displaces to the left when γ  or 0P  is larger (see Eq. (4.17)). Notice that at 

cκ ,  the growth in the linear coupling results into a smooth jump for both the 

output power and normalized maximum nonlinear phases in such way that a 

transfer of power between the two NLDFC cores begins and a second state of 

the nonlinear phase shift persists. Also, note that the nonlinear phase shift 

has a reduction only when all the power in the launch NLDFC core is 

transferred to the other NLDFC core, and although we are increasing the 

linear coupling the nonlinear phase shift will continue with the saturated 

value.  

 

 

    

 

Fig. 4.3 The drop of the NLPS is shown in (c) and (d). The output power and nonlinear 

phase at the pulse center, 1P  and  κmax1 max1  at the upper, and 2P  and  κmax2 max2  at the 

bottom of each figure, respectively.  

 

 

To analyze more carefully the system, we illustrate in Fig. 4.3 (see 

below) the analytical expressions of the output nonlinear phases and powers 
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at the pulse center in terms of cL L ,  where c 2L L =(L K )κ. These results 

indicate that the output nonlinear phases reach a saturation value in such a 

way that  κmaxm maxm
 as cL L  grows. The absolute state differences for each 

maximum nonlinear phase through the critical regions are given by: 

    κ 0 κ κ 0

maxm maxm max1- = 4.  These relations show that the nonlinear phase shift is 

reduced a quantity that depends on L, 0P ,  and γ,  when a transfer of power 

between the two NLDFC cores begins. However, the total suppression of the 

nonlinear phase shifts with respect to κ 0

max1  is always a constant. 

 

 
 

Fig. 4.4 Temporal variation of the normalized nonlinear phase shifts  κNL1 NL1/  (left) and 

 κNL2 NL2/  (right) as a function of d a . The d a  values related with the cκ  values has been 

marked by a white dashed line that separates both NLDFC regimes. The color scale is 

logarithmic and represents the normalized nonlinear phase shift density on a 3 dB scale (see 

the color bar). 

 

 

In Figs. 4.4 and 4.5, we depict again the two distinctive NLDFC regimes 

by a simulation of the analytical solutions of the powers and output nonlinear 
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phases of the whole pulse. We show the temporal variation of the normalized 

nonlinear phase shifts  κmax1 max1  and  κmax2 max2 ,  and normalized output 

powers, 1P  and 2P ,  as a function of the relative core-center separation d a.  

 

 
 

Fig. 4.5 Temporal variation of the normalized output powers 1P  (left) and 2P  (right) as a 

function of d a . The d a  values related with the cκ  values has been marked by a white 

dashed line that separates both NLDFC regimes. The color scale is logarithmic and represents 

the power density on a 40 dB scale (see the color bar). 

 

 

In summary, we derived an exact analytical expression for the nonlinear 

phase shift of an optical pulse propagating in a NLDFC with single-input 

excitation. Applying our results to an input Gaussian pulse, we showed that 

the nonlinear phase shift at the output is reduced and attains a saturation 

value when the joint effects of the linear and nonlinear couplings cause a 

quasi-periodic power transfer between the two NLDFC cores. This means that 

the simple interaction between the two NLDFC cores produces a reduction of 

the nonlinear phase shift through the first transmission of power from the 
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launch NLDFC core to the other NLDFC core. To analyze this result, we 

defined a critical coupling coefficient that determines the separation of the 

NLDFC cores at which the reduction in the nonlinear phase shift occurs. In 

addition, we found that the nonlinear phase shift is reduced in proportion 

with L,  0P ,  and γ.  
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Chapter 5 

 

Impact of Linear Coupling on 
Nonlinear Phase Noise in 
Nonlinear Directional Fiber 
Couplers 
 
Abstract 

 

In this chapter, we study the effect of the linear coupling on the nonlinear 

phase noise in NLDFCs when a single-input excitation is considered to 

perform optical switching. For this purpose, we use a Gaussian probability 

density function to represent the statistical properties of a stochastic 

continuous-wave optical power input. We show how the variance of the 

output nonlinear phase shift is reduced when the exchange of optical power 

begins between the two NLDFC cores. We also show that the signal-to-noise 

ration (SNR) of the output nonlinear phase shift is maximally improved just 
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when the linear coupling achieves L equals to one cL  or two cL ,  i.e., when 

cL =nL ,  with n = 1 or 2. Moreover, if n grows, the SNR tends to 0 and hence 

it is not improved by the linear coupling. 

 

 

5.1   Nonlinear phase noise 

 

Consider an optical signal launched into one NLDFC core immediately after its 

amplification by an in-line optical amplifier. The total electric field envelope 

after the amplifier can be expressed mathematically as follows: 

 

1 1 1U (0,T)=s (0,T)+n (0,T),                             (5.1) 

 

where 1s (0,T)  is the input signal field and 1n (0,T)  is the time-dependent 

noise field added by the amplifier due to spontaneous emission. Typically, 

1n (0,T)  is much smaller than 1s (0,T)  at any time. As a result, the electric 

field envelope 1U (0,T)  is randomly varying in time, and its propagation 

through a NLDFC becomes a random process. 

 

In general, the complex amplitude noise 1n (0,T) , which has both the in-

phase and quadrature components, is a statistically independent and 

identically distributed Gaussian random variable with zero mean and variance 

2

12σ ,  where 2

1σ  is the noise variance per dimension1. Therefore, the time-

dependent mean and variance of 
2

1U (0,T)  are given by2 

                                                 
1 K.-P. Ho, “Probability density of nonlinear phase noise,” J. Opt. Soc. Am. B 20(9), 1875–1879 (2003). 
2 K.-Po Ho and J. M. Kahn, “Electronic Compensation Technique to Mitigate Nonlinear Phase Noise,” J. 

Lightwave Technol. 22(3), 779–783 (2004). 
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2
1

2 2

1 1|U (0,T)|
m = s (0,T) +2σ ,                              (5.2) 

2
1

22 2 4

1 1 1|U (0,T)|
σ = 4 s (0,T) σ +4σ .                          (5.3) 

 

Considering the simplest case when a noisy CW beam 
2

1( s (0,T) =1)  is 

launched into one NLDFC core, therefore, the stochastic input signal power is 

given by 

 

2 2

1 1 1U (0,T) =1+2 2σ +2σ ,                           (5.4) 

 

where 1σ  change according with a Gaussian distribution with time. 

 

The overall output nonlinear phases of the NLDFC caused by the 

stochastic input signal 1U (0,T)  (Eq. (5.1)) are given by Eqs. (4.19) and 

(4.22). Using Eq. (5.4), we can investigate the effect of the linear coupling on 

the variances, NL1

2σ  and NL2

2σ ,  of the two output nonlinear phases, NL1(L,T)  

and NL2(L,T),  respectively. In the limit when there is no coupling between 

the two NLDFC cores,  
NL1 NL

2 2σ σ ,  where NL

2σ  is the variance of the output 

NLPS, 
2

NL 1 NL(L,T)= U (0,T) L /L ,  which corresponds to the same 

electromagnetic field propagating along a SCF that has the same physical 

properties like one NLDFC core. 
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Fig. 5.1 Ratio of the variances, NL1

2σ  and NL

2σ ,  at the upper, and NL2

2σ  and NL

2σ ,  at the 

bottom of each figure, (a) and (b) versus the relative core center separation d a  and (c) 

and (d) versus 0P .  (a) and (b) 0P =πW and (c) and (d) d a =12. The d a  and 0P  values 

related with the cκ  and cP  values, respectively, have been marked down by a red dashed 

line that separates both NLDFC regimens. 

 

 

Figure 5.1 shows the ratios of the two independent estimates of 

variance, NL1

2σ  and NL

2σ ,  and NL2

2σ  and NL

2σ ,  as a function of the relative core 

center separation d a ,  and as a function of 0P .  We chose the following 

values for our calculations: L=1 km, -1 -1γ=2 km W ,  and 2

1σ =0.01.  Notice 

that the variance NL1

2σ  undergoes a reduction of around of  42%, with respect 

to the variance of a SCF nonlinear phase shift, in its saturation value 

magnitude when the joint effects of the linear and nonlinear couplings or/and 

0P  cause a periodic power transfer between the two NLDFC cores. This 

means that the simple interaction between the two NLDFC cores produces a 

reduction of the variance of the nonlinear phase shift through the first 

transmission of power from the launch NLDFC core to the other NLDFC core. 
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In other words, this is the origin of a suppression of the nonlinear phase 

noise of an optical beam propagating through the NLDFC. In Fig. 5.1(a) and 

(b), independently of the values of L, 0P ,  and γ,  the reduction of 
NL1

2σ  with 

respect to 
NL

2σ  is always a contant. This is so because the total reduction of 

the nonlinear phase shift with respect to κ 0

NL1  is always a constant as well. 

The behavior of 
NL1

2σ  and 
NL2

2σ  follows the behavior of NL1  and .NL2  The 

peaks at cκ  and cP  in Fig. 5.1(a) and 5.1(c), respectively, are related with the 

degradation of the performance of the NLDFC because at these levels the 

nonlinear phase noise is maximized. 

 

   

  

 

Fig. 5.2 Normalized SNR at the output of every NLDFC core, 1 0SNR /SNR  and 2 0SNR /SNR ,  

in dB units, as a function of c 2L /L =(L /K )κ.   

 

 

In Fig. 5.2, we show the SNR penalties of the nonlinear phase shifts, at 

the output of every NLDFC core. 1SNR Penalty= 10 0 110log (SNR SNR )  and 
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2SNR Penalty= 10 0 210log (SNR SNR ) , where 

NL1

2 2

1 NL1SNR =< > /σ  and 


NL2

2 2

2 NL2SNR =< > /σ ). The 

NL

2 2

0 NLSNR =< > /σ ) represents the SNR of a 

SCF nonlinear phase shift. In the plot, we can see that the NLDFC SNR at the 

output is maximally improved just when the linear coupling produce that 

cL =L ,  when the optical signal is collected from the unlaunch fiber core, and 

also at cL =2L ,  when the optical signal is collected from the launch core.  In 

other words, the 2SNR penalty is negative (<0 dB) when the linear coupling 

produce that cL =L . This indicates an improvement of the system 

performance caused by linear coupling in reference with the performance of a 

SCF. When cL =nL ,  with n growing, the SNR tends to 0 and it is not 

improved by the linear coupling. 
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Chapter 6 

 

Compensation of Self-Phase 
Modulation through Linear 
Coupling in Nonlinear 
Directional Fiber Couplers 
 
Abstract 

 

In this chapter, we present the results of a theoretical study of the effect of 

linear coupling on the frequency spectrum of an initial unchirped optical pulse 

propagating through a NLDFC. We have focused on a NLDFC, which is the 

simplest, but most important, setup of MCFs to obtain physical insight of the 

effect of linear coupling on the phenomenon of SPM. For our purposes, the 

analysis of the elementary switching process in a NLDFC was suffice to obtain 

considerable and comprehensible results. We demonstrate spectral narrowing 

in the propagation of an initial unchirped optical pulse through a NLDFC. Our 
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results show that the linear coupling between both NLDFC cores induces that 

spectral narrowing. The amount of narrowing of the pulse spectra depend on 

the peak power of the input optical pulse. First in Section 6.1, we present an 

introduction of the nonlinear phenomenon of SPM in NLDFCs.  

In Section 6.2 we graphically show how the linear coupling affect the power 

and SPM-induced phase shift of an optical pulse propagating through a 

NLDFC. For this purpose, we consider an unchirped Gaussian input pulse and 

the role of cκ  in describing NLDFCs. 

 

 

6.1 Introduction 

 

In SCFs, the nonlinear effect of SPM gives rise to an intensity-dependent 

phase shift called nonlinear phase shift1. The time dependence of the 

nonlinear phase shift caused by the temporal behavior of the amplitude 

function of an optical pulse induces spectral broadening1. On the positive 

side, SPM-induced spectral broadening plays an important role in many cases 

of light-wave propagation such as soliton formation and supercontinuum 

generation1 , 2, and it is widely applied for all-optical regeneration3. On the 

negative side4 , 5, it degrades the performance of high-bandwidth optical fiber 

communication systems, and it is a limiting factor in high-power fiber laser 

systems6 , 7.  

                                                 
1 G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013). 
2 R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006). 
3 P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proc. European 

Conference on Optical Communications (ECOC'98), p. 475-476, 1998. 
4 R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers," Phys. Rev. A 17, 1448-1453 (1978). 
5 G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed. (Wiley, 2010). 
6 W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation 

in fibers," J. Opt. Soc. Am. B 1, 139-149 (1984). 
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The SPM-induced phase shift and spectral broadening of an optical 

pulse propagating through a fiber core that is coupled with adjacent parallel 

fiber cores are still unexplored. This is due in part by the complexity of the 

systems of multiple fiber cores named MCFs. However, SPM-induced spectral 

broadening in MCFs plays the same important positive and negative role than 

in SCFs. In fact, it is very important for soliton switching8 , 9 and multi-

frequency generation10 , 11 in MCF couplers. In addition, its understanding in 

MCFs results quite promising to optimize the engineering of novel 

components for information technology such as mode-locked MCF lasers, and 

MCF amplifiers. 

 

 

6.2 Impact of Linear Coupling on Self-Phase Modulation of Optical 

Pulses in a NLDFC 

 

In Chapter 4, we have showed how the linear coupling affects the maximum 

nonlinear phase shift of an optical pulse after propagating through the length 

of a NLDFC. NL1(L, T)  gives the form of the output nonlinear phase shift 

when the optical pulse leaves the launch NLDFC core at the output, and 

NL2(L, T)  gives the form when the optical pulse leaves the unlaunch NLDFC 

core at the output. The effect of linear coupling on SPM in a NLDFC can be 

                                                                                                                                           
7 J. van Howe, G. Zhu, and C. Xu, “Compensation of self-phase modulation in fiber-based chirped-pulse 

amplification systems," Opt. Lett. 31, 1756-1758 (2006). 
8 Y. S. Kivshar and M. L. Quiroga-Teixeiro, “Influence of cross-phase modulation on soliton switching in nonlinear 

optical fibers," Opt. Lett. 18, 980-982 (1993). 
9 P. L. Chu, Y. S. Kivshar, B. A. Malomed, G.-D. Peng, and M. L. Quiroga-Teixeiro, “Soliton controling, switching, 

and splitting in nonlinear fused-fiber couplers," J. Opt. Soc. Am. B 12, 898-903 (1995). 
10 A. Betlej, S. Suntsov, K. G. Makris, L. Jankovic, D. N. Christodoulides, G. I. Stegeman, J. Fini, R. T. Bise, and D. 

J. DiGiovanni, “All-optical switching and multifrequency generation in a dual-core photonic crystal fiber," Opt. Lett. 
31, 1480-1482 (2006). 

11 K. R. Khan, T. X. Wu, D. N. Christodoulides, and G. I. Stegeman, “Soliton switching and multi-frequency 
generation in a nonlinear photonic crystal fiber coupler," Opt. Express 16, 9417-9428 (2008). 



PhD THESIS. NÉSTOR LOZANO CRISÓSTOMO                                                                                84 

CHAPTER 6. COMPENSATION OF SELF-PHASE MODULATION THROUGH LINEAR COUPLING IN 
NONLINEAR DIRECTIONAL FIBER COUPLERS 

 

investigated through the expressions of the time-dependent nonlinear phase 

shift in each NLDFC core. The maximum nonlinear phase shifts, max1  and 

max2 , are related with the spectrum of an optical pulse in the launch and 

unlaunch NLDFC core, respectively. In this regard, if an optical pulse is 

propagating through the launch NLDFC core, its spectral content can be 

obtained by taking the Fourier transform of Eq. (4.6). On the other hand, if 

an optical pulse is propagating through the unlaunch NLDFC core, its spectral 

content can be obtained by taking the Fourier transform of Eq. (4.7). In 

general, the pulse spectrum at the output of each NLDFC core can be 

obtained by 

.





2

m m 0S (L,ω)= U (L,T)exp[i(ω ω )T]dT                    (6.1) 

 

Figures 6.1 shows the symmetric pulse spectra, of initially unchirped Gaussian 

pulses, at the output of each NLDFC core for three input values of 0P . Each 

pulse spectra is normalized and corresponds to a particular separation 

between both NLDFC cores. As one may expect, the effect of linear coupling 

reduces the pulse spectra just when the first maximum transfer of optical 

power is carried out between both NLDFC cores. This is so because the 

maximum nonlinear phase shift, 0 κmax1 max1 , is reduced when that first 

coherent interaction between both NLDFC cores results in an exchange of 

energy for the first time (see Fig. 4.2). This result can be alternatively seen if 

we consider the characteristic of the oscillatory structure that covers the 

entire frequency range of each spectrum. In this sense, the spectral width is 

reduced by a factor of 1/4 of the number of peaks when an interchange of 

energy between both NLDFC cores begins. 
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Fig. 6.1 SPM-broadened pulse spectra at the output of the launch and unlaunch NLDFC core 

for 0P =2π, 4π,  and 6πW. Each normalized pulse spectra corresponds to a particular 

separation between both NLDFC cores. 
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The number of peaks M and maximum nonlinear phase shift max  before and 

after the interaction of both NLDFC cores satisfy the standard relation 

  max M-1 2 π  given in Ref. [1]. In Fig. 6.1 the top, middle, and bottom row 

shows a reduction of one peak, two peaks and three peaks, respectively. 

 

Although the general case of an input picosecond pulse of arbitrary 

shape and chirp is applicable to our developed theory, the analysis of an 

unchirped Gaussian input pulse was suffice and useful to obtain considerable 

and comprehensive results about the effect of linear coupling on the 

phenomenon of SPM in NLDFCs. For the case of a chirped Gaussian input 

pulse, the effect of the initial chirp leads to structural changes in the SPM-

broadened pulse spectrum such as in SCFs, however, the performance of the 

NLDFC is comparable with the case of an unchirped Gaussian input pulse and 

not much is gained on the spectral narrowing. 

 

Strictly speaking, in the case of considering an asymmetric NLDFC, the 

linear coupling and mode propagation constant must be different for each 

NLDFC core. In this regard, the pulse energy is never maximally exchanged 

from one NLDFC core to the other for the first time and the total suppression 

of maximum nonlinear phase shift can be smaller than the total suppression 

when we consider symmetric NLDFC s. Therefore, a NLDFC with dissimilar 

cores can induces smaller spectral narrowing than a symmetric NLDFC.   

 

To calculate the amount of spectral narrowing induced by the linear 

coupling, we use the relation of the rms frequency width of a Gaussian input 

pulse after undergoing SPM. This relation is given by 
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.
 

 
 

1/2

2

0 max

4
Δω=Δω 1+

3 3
                             (6.2) 

 

where 0Δω  is the input rms frequency width. 

 

 

 

 

          
 

Fig. 6.2 Reduction of the SPM-broadened spectra of a unchirped Gaussian pulse due to 

linear coupling. (a) and (b) 0P =2πW, (c) and (d) 0P = 4πW, and (e) and (f) 0P =6πW. The 

d a  value related with the cκ  value has been marked down by a red dashed line that 

separates both NLDFC regimes for each curve. 
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Figure 6.2 shows the normalized frequency widths, κ 0

1 1Δω Δω  and 

κ 0

2 1Δω Δω ,  as a function of d a  for 0P =2π,4π  and 6π W. Here 1Δω  and 

2Δω  represent the frequency width of an optical pulse when it is collected at 

the output of the launch and unlaunch NLDFC core, respectively. The 

constant limiting value κ 0

1Δω  represents the frequency width with maximum 

nonlinear phase shift κ 0

max1 NL=L /L . The green dashed line represents the 

limit value for which κ 0

2 1Δω Δω  has not physical interpretation because 

there is not light in the unlaunch NLDFC core. In fact, we also need to specify 

that in the Linear Regime some discrete values of κ 0

1 1Δω Δω  and 

κ 0

2 1Δω Δω  also have not physical interpretation because for those values 

there is not light in the launch and unlaunch NLDFC core, respectively. We 

can see how the d a  value related with the cκ  value displaces to the left 

when 0P  is larger. This same effect can be observed for larger values of γ . 

In Fig. 6.2, it is clear to see that the amount of spectral narrowing induced by 

the linear coupling in a NLDFC is one-quarter of the SPM-broadened spectra 

κ 0

1Δω . In general, the SPM-broadened spectra of an optical pulse is reduced 

a quantity that depends on L, 0P , and γ , just when the energy is maximally 

exchanged from the launch to the unlaunch NLDFC core for the first time. 

However, the total suppression of frequency width with respect to the κ 0

1Δω  

value is always a constant. 

 

In summary, we conclude that linear coupling induces narrowing in the 

SPM-broadened spectra of an optical pulse propagating through a NLDFC, 

just when the first maximum transfer of optical power is carried out between 
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both NLDFC cores. This is so because the maximum nonlinear phase shift is 

reduced when that first coherent interaction between both NLDFC cores 

results in an exchange of energy for the first time. The amount of spectral 

narrowing induced by linear coupling depend on the peak power of the input 

optical pulse. We describe this result as an overcoming of linear coupling on 

SPM effect. In addition, we show that exist a power-dependent critical 

coupling coefficient that plays a crucial role in the design of NLDFCs. 
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Chapter 7 

 

Conclusion 
 
We have developed, for the first time, a comprehensive theory to describe 

the nonlinear propagation of picosecond pulses through symmetric NLDFCs. 

Considering the elementary NLDFC switching process, we have derived an 

exact analytical expression for the optical power and nonlinear phase shift of 

a picosecond pulse of arbitrary shape and chirp. Applying our results to a 

Gaussian input pulse, we have shown how the maximum nonlinear phase 

shift is affected by the linear coupling. To analyze this result, we have defined 

a critical coupling coefficient that determines the separation of the NLDFC 

cores at which the pulse energy is maximally exchanged from one NLDFC 

core to the other for the first time. We also have shown that the critical 

coupling coefficient plays an important role in the NLDFC performance and 

has a dramatic impact on the accumulated nonlinear phase shift, and 

therefore in the frequency spectrum. We also have demonstrated spectral 

narrowing in the propagation of an initial unchirped pulse through a NLDFC. 
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Our results have shown that the linear coupling between both NLDFC cores 

induces that spectral narrowing just when the first maximum transfer of 

optical power is carried out between both NLDFC cores. This is so because 

the maximum nonlinear phase shift is reduced when that first coherent 

interaction between both NLDFC cores results in an exchange of energy for 

the first time. The amount of spectral narrowing induced by the linear 

coupling depends on the peak power of the input pulse. However, the total 

reduction of frequency width is one-quarter of the SPM-broadened spectra. 

We describe this result as an overcoming of linear coupling on SPM effect.  

 

We have developed, a comprehensive study of the impact of the linear 

coupling on SPM and nonlinear phase noise in NLDFCs. For this purpose, we 

have considered a NLDFC with single-mode identical cores and relative 

lengths in such way that optical losses were ignored. In particular, for a noisy 

CW beam optical input, we have shown that the variance of the output 

nonlinear phase shift undergoes a reduction in its saturation value when the 

joint effects of the linear and nonlinear couplings cause a quasi-periodic 

power transfer between the two NLDFC cores. This is a result of overcoming 

the linear coupling on SPM. We have shown that the power-dependent critical 

coupling coefficient plays a crucial role in the design of NLDFCs.  Also, we 

have found that the variance of the nonlinear phase shift is reduced in 

proportion with the magnitude of L, 0P , and γ . However, that reduction is a 

constant with respect to the variance of the nonlinear phase shift which 

corresponds to the same electromagnetic field propagating along a SCF that 

has the same physical properties like one NLDFC core. We also have shown 

that the NLDFC SNR at the output is maximally improved just when the linear 
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coupling produce that L= cL , when the optical signal is collected from the 

unlaunch core, and also at L=2 cL , when the optical signal is collected from 

the launch core. When L=n cL , with n growing, the 1SNR  Penalty and 2SNR  

Penalty tend to 0 and hence it is not improved by the linear coupling. 

 

 

 

 

 



 

 

 

 

 

 

 

Appendix A 

 

Derivation of the Operator 
Schrödinger-like Equation 
 
 

The starting point for the derivation of the operator Schrödinger-like equation 

(Eq. (3.16)) is to rewrite Eqs. (3.14) and (3.15) decomposing ,E  ,H  (3) ,P  

and   into their transverse and longitudinal components as 

 

 ˆ
T z= + ,E E zE                                       (A.1) 

ˆ
T z= + ,H H zH                                       (A.2) 

ˆ(3) (3) (3)

T z= + ,P P zP                                   (A.3) 

ˆ  T z= + .z                                        (A.4) 

 

Therefore, Eqs. (3.14) and (3.15) become 
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ˆ ˆ

ˆ ˆ ˆ[ ]

ˆ ˆ ˆ[ ]

ˆ

     

    

    

T T T z T T T T z

z T z T z T

2 2 2 2

z z T 0 T 0 z

2 (3) 2 (3)

0 T 0 z

×( × )+ ×( × )+ ×[ ×( )]

+ ×[ ×( )]+ × ( )

+ × ( ) n k n k

=ω μ + ω μ ,

E E

E

E E

P

z z

z z z

z z z

z

E

E

E

P

            (A.5) 

 

ˆ ˆ

ˆ ˆ ˆ[ ]

ˆ ˆ ˆ[ ]

ˆ ˆ

ˆ ˆ

     

    

    

   

   

T T T z T T T T z2 2 2

z T z T z T2 2

2 2

z z T 0 T 0 z2

(3) (3)

z z T T2 2

(3) (3)

z T T z2 2

1 1 1
× ( × )+ × ( × )+ × [ ×( )]

n n n

1 1
+ × [ ×( )]+ × ( )

n n

1
+ × ( ) k k

n

1 1
= iω × iω ×

n n

1 1
iω × iω × ,

n n

H H

H

H H

P

P

z z

z z z

z z z

z z

z z

H

H

H

P

P

      (A.6) 

 

where ˆ ˆz z× =0z zE  and ˆ ˆz z× =0.z zH  

 

Applying the Fourier transform to the time-dependent Maxwell´s 

equations (Eqs. (3.1) and (3.2)), and using the relations given by Eqs. (A.1)-

(A.4), we obtain  

 

ˆ ˆ ˆ   T T T z z T 0 T 0 z× + ×( )+ ( )=iωμ + iωμ ,E E Hz z zE H            (A.7) 

 

ˆ ˆ

ˆ ˆ

   

   

T T T z z T

2 2 (3) (3)

0 T 0 z T z

× + ×( )+ ( )=

iωε n iωε n iω iω ,

H H

E P

z z

z z

H

E P
             (A.8) 
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where L NL 2 (3)

0= + = ε (n 1) + .P P P E P  Identifying the transverse and 

longitudinal terms of Eqs. (A.7) and (A.8), we obtain 

 

ˆ ˆ  T z z T 0 T×( )+ ( )=iωμ ,E Hz zE                          (A.9) 

ˆT T 0 z× = iωμ ,E z H                                  (A.10) 

ˆ ˆ    2 (3)

T z z T 0 T T×( )+ ( )= iωε n iω ,H E Pz zH                (A.11) 

ˆ ˆ  2 (3)

T T 0 z z× = iωε n iω .H z zE P                         (A.12) 

 

 

Multiplying Eq. (A.9) by T ×, Eq. (A.10) by  0iωε , Eq. (A.11) by T 2

1
×

n
, 

and Eq. (A.12) by 0iωμ , we obtain 

 

ˆ ˆ     T T z T z T 0 T T× ×( )+ × ( )=iωμ ( × ),E Hz zE             (A.13) 

ˆ  2

0 T T 0 ziωε ( × )= k ,E z H                               (A.14) 

ˆ ˆ    

   

T T z T z T2 2

(3)

0 T T T T2

1 1
× ×( )+ × ( )

n n

1
= iωε ( × ) iω × ,

n

H

E P

z zH

          (A.15) 

ˆ ˆ 2 2 2 (3)

0 T T 0 z 0 ziωμ ( × )= k n + μ ω .H z zE P                      (A.16) 

 

 

Substituting Eq. (A.16) into Eq. (A.13), and Eq. (A.14) into Eq. (A.15), we 

obtain 

 

ˆ ˆ ˆ ˆ     2 2 2 (3)

T T z T z T 0 z 0 z× ×( )+ × ( )= k n + μ ω ,Ez z z zE E P         (A.17) 
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ˆ ˆ ˆ      2 (3)

T T z T z T 0 z T T2 2 2

1 1 1
× ×( )+ × ( )= k iω × .

n n n
H Pz z zH H   (A.18) 

 

 

Using Eqs. (A.17) and (A.18), we can rewrite Eqs. (A.5) and (A.6) as 

 

ˆ     2 2 2 (3)

T T T 0 z T 0 T 0 T×( × )+iωμ ( ) n k =ω μ ,E H E Pz          (A.19) 

ˆ ˆ       2 (3)

T T T 0 z T 0 T T z2 2

1 1
× ( × ) iωε ( ) k = iω × .

n n
H E Hz z P    (A.20) 

 

where ˆ ˆ ˆ ˆ ˆ[ ]       z T z z z T 0 z T×[ ×( )]+ × ( ) iωμE Hz z z z zE , ˆ ˆ z T z2

1
× ×( )

n
z zH   

ˆ ˆ ˆ ˆ       (3)

z z T 0 z T z T2 2

1 1
+ × ( )= iωε × iω × ,

n n
H E Pz z z z  ˆ ˆ  z z T2

1
× =0,

n
Hz z  and 

ˆ z T T×( × )=0Ez . 

 

 

 

 

 


