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ABSTRACT

We study the global dynamics of the universe within the framework of the interacting dark matter (IDM) scenario. Assuming that
the dark matter obeys the collisional Boltzmann equation, we can derive analytical solutions of the global density evolution, that can
accommodate an accelerated expansion, equivalent to either the quintessence or the standard Λ models, with the present time located
after the inflection point. This is possible if there is a disequilibrium between the DM particle creation and annihilation processes
with the former process dominating, which creates an effective source term with negative pressure. Comparing the predicted Hubble
expansion of one of the IDM models (the simplest) with observational data, we find that the effective annihilation term is quite small,
as suggested by various experiments.
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1. Introduction

The analysis of high quality cosmological data (e.g. supernovae
type Ia, CMB, galaxy clustering) have suggested that we live
in a flat, accelerating universe, that contains cold dark matter to
explain clustering and an extra component with negative pres-
sure, the vacuum energy (or more generally the dark energy),
to explain the observed accelerated cosmic expansion (Spergel
et al. 2007; Davis et al. 2007; Kowalski et al. 2008; Komatsu
et al. 2009, and references therein). Because of the absence
of a physically well-motivated fundamental theory, there have
been many theoretical speculations about the nature of the ex-
otic dark energy (DE) including a cosmological constant, or ei-
ther scalar or vector fields (see Weinberg 1989; Wetterich 1995;
Caldwell et al. 1998; Brax & Martin 1999; Peebles & Ratra
2003; Perivolaropoulos 2003; Brookfield et al. 2006; Boehmer
& Harko 2007, and references therein).

Most papers in this type of study are based on the assump-
tion that DE evolves independently of the dark matter (DM). The
unknown nature of both DM and DE implies that we cannot
preclude the possibility to find interactions in the dark sector.
This is very important because interactions between the DM and
quintessence could provide possible solutions to the cosmolog-
ical coincidence problem (Grande et al. 2009). Several papers
have been published in this area (e.g., Amendola et al. 2003;
Cai & Wang 2005; Binder & Kremer 2006; Campo et al. 2006;
Wang et al. 2006; Das et al. 2006; Olivares et al. 2008; He &
Wang 2008, and references therein) proposing that the DE and
DM could be coupled, assuming also that there is only one type
of non-interacting DM.

However, there are other possibilities. It is plausible, for ex-
ample, that the dark matter is self-interacting (IDM) (Spergel
& Steinhardt 2000). This possibility was proposed in order to
solve discrepancies between theoretical predictions and astro-
physical observations, including less cuspy halo profiles, pre-
dicted by the IDM model, allowing for the observed gamma-ray

and microwave emission from the center of our galaxy (Flores &
Primack 1994; Moore et al. 1999; Hooper et al. 2007; Regis &
Ullio 2008, and references therein) and the discrepancy between
the predicted optical depth, τ, inferred from the Gunn-Peterson
test in the spectra of high-z QSOs and the WMAP-based value
(e.g., Mapelli et al. 2006; Belikov & Hooper 2009; Cirelli et al.
2009, and references therein). It has also been shown that some
dark matter interactions could provide an accelerated expansion
phase of the universe (Zimdahl et al. 2001; Balakin et al. 2003;
Lima et al. 2008). In addition, DM could potentially contain
more than one particle species, for example a mixture of cold,
warm, or hot dark matter (Farrar & Peebles 2004; Gubser &
Peebles 2004), with or without inter-component interactions.

In this work, we are not concerned with the viability of
the different possibilities, nor with the properties of interacting
DM models. The single aim of this work is to investigate whether
there are repercussions of DM self-interactions on the global dy-
namics of the universe and specifically whether these models can
yield an accelerated phase of the cosmic expansion, without the
need for dark energy. We note that we do not “design” the fluid
interactions to produce the desired accelerated cosmic evolution,
as in some previous works (e.g., Balakin et al. 2003), but investi-
gate the circumstances under which the analytical solution space
of the collisional Boltzmann equation, in the expanding universe,
allows for a late accelerated phase of the universe.

2. Collisional Boltzmann equation in an expanding
universe

It is well established that the global dynamics of a homogeneous,
isotropic, and flat universe is given by the Friedmann equation
(
α̇

α

)2

=
8πG

3
ρ, (1)

where ρ is the total energy-density of the cosmic fluid, contain-
ing (in the matter-dominated epoch) dark matter, baryons, and
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any type of exotic energy. Differentiating Eq. (1), we derive the
second Friedmann equation, given by:

α̈

α
= −4πG

3

(
−2ρ − ρ̇

H

)
· (2)

As we mentioned in the introduction, the dark matter is usually
considered to contain only one type of particle that is stable and
neutral. In this work, we investigate, using the Boltzmann for-
mulation, the cosmological potential of a scenario in which the
dominant “cosmic” fluid does not contain dark energy, is not
perfect, and at the same time is not in equilibrium1. Although
our approach is phenomenological, we briefly review a variety
of physically motivated dark matter self-interaction models that
have appeared in the literature.

The time evolution of the total density of the cosmic fluid is
described by the collisional Boltzmann equation

dρ
dt
+ 3H(t)ρ + κρ2 −Ψ = 0, (3)

where H(t) ≡ α̇/α is the Hubble function, Ψ is the rate of cre-
ation of DM particle pairs, and κ(≥0) is given by:

κ =
〈σu〉
Mx
, (4)

where σ is the cross-section for annihilation, u is the mean par-
ticle velocity, and Mx is the mass of the DM particle.

We note that, in the context of a spatially flat FLRW cosmol-
ogy, for an effective pressure term of:

P =
κρ2 −Ψ

3H
, (5)

the collisional Boltzmann equation reduces to the usual fluid
equation: ρ̇ + 3H(ρ + P) = 0. Inserting Eqs. (3) and (5) into
Eq. (2), we obtain

α̈

α
= −4πG

3

(
ρ +
κρ2 −Ψ

H

)
= −4πG

3
(ρ + 3P) . (6)

Obviously, a negative pressure (whatever its cause) can ef-
fectively act as a repulsive force possibly providing a cosmic
acceleration.

We investigate the effects of DM self-interactions on the
global dynamics of the universe and under which circumstances
they can produce a negative pressure and thus provide an alterna-
tive to conventional dark energy. It is well known that negative
pressure implies tension rather than compression, which is an
impossibility for ideal gases but not for some physical systems
that depart from thermodynamic equilibrium (Landau & Lifshitz
1985).

The particle annihilation regime was described by Weinberg
(2008), using the collisional Boltzmann formulation, in which

1 Initially, the total energy density is ρ = ρIDM + ρr. We consider that
the self-interacting dark matter does not interact significantly with the
background radiation, and thus in the matter-dominated epoch, radia-
tion is irrelevant to the global dynamics (because of the well-known
dependence: ρr ∝ a−4). Therefore, taking the above considerations into
account and assuming that there are no residual radiation products of
the DM interactions (otherwise see Appendix A), we conclude that in
the matter-dominated era the total cosmic dark-matter density reduces
to that of the IDM density (ρ � ρIDM), which obeys the collisional
Boltzmann equation (see Eq. (3)).

the physical properties of the DM interactions are related to mas-
sive particles (which are still present) that, if they carry a con-
served additive or multiplicative quantum number, would im-
ply that some particles must remain after all the antiparticles
have been annihilated (Weinberg calls them L-particles). The
L-particles may annihilate to form other particles, which during
the period of annihilation they can be assumed to be in thermal
and chemical equilibrium (see Weinberg 2008). This DM self-
interacting model can affect the global dynamics of the universe
(see our Case 2 below).

The corresponding effects on the global dynamics of the par-
ticle creation regime, which provides an effective negative pres-
sure, has also been investigated by a number of authors (e.g.,
Prigogine et al. 1989; Lima et al. 2008, and references therein).

In the framework of a Boltzmann formalism, a negative
pressure could in general be the outcome of dark matter self-
interactions, as suggested in Zimdahl et al. (2001) and Balakin
et al. (2003), if an “anti-frictional” force is self-consistently ex-
erted on the particles of the cosmic fluid. This possible alterna-
tive to dark energy has the caveat of its unknown exact nature,
which is also however the case for all dark energy models. Other
sources of negative pressure have been proposed, including grav-
itational matter “creation” processes (Zeldovich 1970), modeled
by non-equilibrium thermodynamics (Prigogine et al. 1989) or
even the C-field of Hoyle & Narlikar (1966). The effects of
the former proposal (gravitational matter creation) on the global
dynamics of the universe have been investigated, based on the
assumption that the particles created are non-interacting (Lima
et al. 2008). The merit of all these alternative models is that they
unify the dark sector (dark energy and dark matter), since a sin-
gle dark component (the dark matter) needs to be introduced into
the cosmic fluid.

In a unified manner we present, the outcome for the global
dynamics of the universe of different type of dark matter self-
interactions, using the Boltzmann formulation in the matter-
dominated era.

3. The Cosmic density evolution for different
DM interactions

We proceed to analytically solve Eq. (3). We change variables
from t to α and thus Eq. (3) can be written

dρ
dα
= f (α)ρ2 + g(α)ρ + R(α), (7)

where

f (α) = − κ

αH(α)
g(α) = − 3

α
R(α) =

Ψ(α)
αH(α)

· (8)

Within this framework, based on Eqs. (5), (7) and (8), we can
distinguish four possible DM self-interacting cases:

Case 1: P = 0: If the DM is collisionless or the collisional
annihilation and pair creation processes are in equilibrium (i.e.,
Ψ ≡ κρ2), the corresponding solution of the above differential
equation is ρ ∝ α−3 (where α is the scale factor of the universe),
and thus we obtain, as we should, the dynamics of the Einstein
de-Sitter model, with H(t) = 2/3t.

Case 2: P = κρ2/3H: If we assume that in the matter-
dominated era the particle creation term is negligible, Ψ = 0
[R(α) = 0], (the case discussed in Weinberg 2008), then the
corresponding pressure becomes positive. It is clear that Eq. (7)
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becomes a Bernoulli equation, the general solution of which pro-
vides the evolution of the global energy-density, which is that
corresponding to the IDM ansanz:

ρ(α) =
α−3

C2 −
∫ α

1
x−3 f (x)dx

=
α−3

C2 + κ
∫ t

t0
α−3(t)dt

· (9)

Prior to the present epoch (α � 1), we find that ρ(α) ∝ α−3, while
at late enough times (α	 1) the above integral converges, which
implies that the corresponding global density tends to evolve
again as the usual dark matter (see Weinberg 2008), with

ρ(α)→ α−3

C2 + κ
∫ ∞

t0
α−3(t)dt

∝ α−3, (10)

where t0 is the present age of the universe. The latter analysis,
relevant to the usual weakly interacting massive particle case –
Weinberg (2008), leads to the conclusion that the annihilation
term has no effect resembling that of dark energy, but does af-
fect the evolution of the self-interacting DM component, with
the integral in the denominator rapidly converging to a constant
(which depends on the annihilation cross-section).

Case 3: P = (κρ2 −Ψ)/3H: For the case of a non-perfect
DM fluid (i.e., having up to the present time, a disequilibrium
between the annihilation and particle pair creation processes),
we can have either a positive or a negative effective pressure
term. Although the latter situation may or may not appear plau-
sible, even the remote such possibility, i.e., the case in which the
DM particle creation term is larger than the annihilation term
(κρ2 −Ψ < 0), is of particular interest because of its effect on the
global dynamics of the universe (see for example Zimdahl et al.
2001; Balakin et al. 2003).

It is interesting to note that this case can be viewed as
a generalization of the gravitational matter creation model of
Prigogine et al. (1989) (see also Lima et al. 2008, and refer-
ences therein) in which annihilation processes are also included,
although the matter-creation component dominates over annihi-
lations. In this scenario, as in any interacting dark-matter model
with a left-over residual radiation, a possible contribution from
the radiation products to the global dynamics is negligible, as we
show in Appendix A.

For κ � 0 and Ψ � 0, it is not an easy task in general to solve
analytically Eq. (7), because it is a non-linear differential equa-
tion (Riccati type). However, Eq. (7) could be fully solvable if
(and only if) a particular solution is known. We indeed find that
for some special functional forms of the interactive term, such as
Ψ = Ψ(α,H), we can derive analytical solutions. We identified
two functional forms for which we can solve the previous differ-
ential equation analytically, only one of these two is of interest
because it provides a ∝a−3 dependence of the scale factor (see
Appendix B), which is:

Ψ(α) = αH(α)R(α) = C1(m + 3)αmH(α) + κC2
1α

2m. (11)

Although, the above functional form was not motivated by phys-
ical theory, but rather phenomenologically because it provides
analytical solutions to the Boltzmann equation, its exact form
can be justified a posteriori within the framework of IDM (see
Appendix C).

The general solution of Eq. (7) for the total energy density,
using Eq. (11), is:

ρ(α) = C1α
m +

α−3F(α)[
C2 −

∫ α
1

x−3 f (x)F(x)dx
] , (12)

where the kernel function F(α) has the form

F(α) = exp

[
−2κC1

∫ α

1

xm−1

H(x)
dx

]
· (13)

We note that κC1 has units of Gyr−1, while m, C1, and C2 are the
corresponding constants of the problem. Obviously, Eq. (12) can
be rewritten as

ρ(α) = ρc(α) + ρ′(α), (14)

where ρc = C1α
m is the density corresponding to the residual

matter creation that results from a possible disequilibrium be-
tween the particle creation and annihilation processes, while ρ′
can be viewed as the energy density of the self-interacting dark
matter particles that are dominated by the annihilation processes.
This can easily be understood if we define the constant C1 to
equal to zero, implying that the creation term is negligible and
reducing the current solution (Eq. (14)) to that of Eq. (9). We
note that close to the present epoch as well as at late enough
times (α 	 1), as also in Case 2, the ρ′ evolves in a similar
way to the usual dark matter (see also Weinberg 2008). Finally,
if both κ and Ψ tend to zero, the above cosmological model re-
duces to the usual Einstein-deSitter model (Case 1).

We note that, since ρ′ > 0, the constant C2 obeys the
restriction

C2 > G(α) =
∫ α

1
x−3 f (x)F(x)dx ≥ 0. (15)

Evaluating now Eq. (12) at the present time (α = 1, F(α) = 1),
we obtain the present-time total cosmic density, which is: ρ0 =
C1 + 1/C2 , with C1 ≥ 0 and C2 > 0.

Case 4: P = −Ψ/3H: In this scenario, we assume that the an-
nihilation term is negligible [κ = 0 and f (α)=0] and the particle
creation term dominates. This situation is mathematically equiv-
alent to the gravitational DM particle creation process within
the context of non-equilibrium thermodynamics Prigogine et al.
(1989), the important cosmological consequence of which were
studied by Lima et al. (2008, and references therein). Using our
nomenclature and κ = 0, Eq. (7) becomes a first order linear
differential equation, a general solution of which is:

ρ(α) = α−3

[∫ α

1
x3R(x)dx + C2

]
. (16)

The negative pressure can yield a late accelerated phase of the
cosmic expansion (as in Lima et al. 2008), without the need for
the required (in “classical” cosmological models) dark energy.

4. Case 3: P = (κρ2 − Ψ)/3H

In this section, we investigate the conditions under which
Eqs. (12) and (16) could provide accelerating solutions, similar
to the usual dark energy case.

4.1. Conditions to have an inflection point and galaxy
formation

To have an inflection point at α = αI , we must have α̈I = 0 (see
Eq. (6)). The latter equality implies that the expression ρ+3P = 0
should contain a real root in the interval: α ∈ (0, 1). Therefore,
with the aid of Eq. (12), (5) and (11), we derive the following
condition:

α−3F(H + 2κC1α
m)

C2 −G
+
κα−6F2

(C2 −G)2
− (m + 2)C1α

mH = 0, (17)
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from which we obtain that m > −2 (where C1 > 0, κ ≥ 0,
and C2 − G > 0). Evidently, if we parametrize the constant m
according to m = −3(1+ wIDM), we obtain the condition wIDM <
−1/3, which implies that the current cosmological model can be
viewed as a viable quintessence dark-energy look-alike, as far as
the global dynamics is concerned. We remind the reader that the
same restriction holds for the conventional dark energy model in
which PQ = wρQ (w = const.; for more details see Appendix D).

Furthermore, to ensure the growth of spatial density fluc-
tuations, the effective DM should be capable of clustering and
providing the formation of galaxies, while the effective dark en-
ergy term should be close to being homogeneous. In our case,
the effective term that emulates dark energy is homogeneous in
the same sense as in the classical quintessence, while the κρ2

term slightly modifies the pure DM evolution. In any case, the
interacting DM term after the inflection point tends to an evo-
lution ∝a−3. During the galaxy formation epoch at high-z’s, we
expect (due to the functional form of the DM term) that the slope
of the interacting DM term is not far from that of the classical
DM evolution (we will explore these issues further in a forth-
coming paper).

4.2. Relation to the Standard Λ Cosmology

As an example, we show that for m = 0 (or wIDM = −1), the
global dynamics, provided by Eq. (12), is equivalent to that of
the traditional Λ cosmology. To this end, we use dt = dα/(αH)
and the basic kernel (Eq. (13)) becomes

F(α) = exp

[
−2κC1

∫ α

1

1
xH(x)

dx

]
= e−2κC1(t−t0), (18)

where t0 is the present age of the universe. In addition, the
integral in Eq. (12) (see also Eq. (15)) now takes the form
G(α) = −κZ(t) and Z(t) =

∫ t

t0
α−3e−2κC1(t−t0). We note that at the

present time we have G(1) = 0. Therefore, using the above for-
mula, the global density evolution (Eq. (12)) can be written

ρ(α) = C1 + α
−3 e−2κC1(t−t0)

[C2 −G(α)]
· (19)

As expected, at early enough times (t → 0) the overall density
scales according to ρ(α) ∝ a−3, while close to the present epoch
the density evolves according to

ρ(α) � C1 +
α−3

C2
, (20)

which is approximately equivalent to the corresponding evolu-
tion in the Λ cosmology in which the term C1 resembles the
constant-vacuum term (ρΛ) and the 1/C2 term resembles the
density of matter (ρm). We note that the effective pressure term
(Eq. (5)), for κ → 0, becomes Ψ ∼ 3C1H, which implies that:
P ∼ −Ψ/3H = −C1. Therefore, this case relates to the traditional
Λ cosmology, since C1 corresponds to ρΛ (see Eq. (20)). We now
investigate in detail the dynamics of the m = 0 model.

From Eq. (19), using the usual unit-less Ω-like parametriza-
tion, we derive after some algebra that

(
H
H0

)2

= Ω1,0 +
Ω1,0Ω2,0α

−3e−2κC1(t−t0)

Ω1,0 + κC1Ω2,0Z(t)
, (21)

where Ω1,0 = 8πGC1/3H2
0 and Ω2,0 = 8πG/3H2

0C2, which in the
usual Λ cosmology relates to ΩΛ and Ωm, respectively.

Fig. 1. Left panel: the Ω2,0 − κC1 solution space provided by fitting our
model to the early-type galaxy Hubble relation of Simon et al. (2005).
Right panel: the corresponding Ω2,0 − Mx solution space.

We can now attempt to compare the Hubble function of
Eq. (21) to that corresponding to the usual Λ model. To this
end, we use a χ2 minimization between the different models (our
IDM Eq. (21) or the traditional ΛCDM model) and the Hubble
relation derived directly from early-type galaxies at high red-
shifts (Simon et al. 2005). For the case of our IDM model, we
simultaneously fit the two free parameters of the model, i.e.,Ω2,0
and κC1 for a flat background (Ω1,0 = 1 − Ω2,0) with H0 =
72 km s−1 Mpc−1 and t0 = H−1

0 � 13.6 Gyr which is roughly
the age of the universe of the corresponding Λ cosmology. This
procedure yields the best-fit model parameters Ω2,0 = 0.3+0.05

−0.08
and log(κC1) � −9.3 (with a stringent upper limit �−3, but un-
constrained towards lower values) where χ2/d.f. = 1.29 (see left
panel of Fig. 1). Using Eq. (4) we can now relate the range of
values of κC1 to the mass of the DM particle, from which we
obtain that

Mx =
1.205 × 10−12

κC1

〈σu〉
10−22

GeV, (22)

(see also right panel of Fig. 1) and since κC1 is unbound at small
values, it is consistent with currently accepted lower bounds of
Mx(∼ 10 GeV) (e.g., Cirelli et al. 2009, and references therein).
The corresponding Hubble relation (Fig. 2), provided by the
best-fit model free parameters, is indistinguishable from that of
the traditional ΛCDM model, because of the very small value
of κC1 � 10−9.3. For completeness, we also show, as the dashed
line, the IDM solution provided by Mx ∼ 1 eV (κC1 � 10−3),
which is the stringent lower bound found by our analysis. In this
case, the predicted Hubble expansion deviates significantly from
the traditionalΛmodel at small α values indicating that it would
probably create significant alterations to the standard BBN (e.g.
Iocco et al. 2009, and references therein).

Although the present analysis does not provide any impor-
tant constraints on Mx (within our model), we plan on the future
to use a large amount of cosmologically relevant data to attempt
to place stronger Mx constraints, also in the general case (see
Eq. (12)).

5. Case 4: P =−Ψ/3H

We now prove that for κ = 0 (negligible annihilation), the
global dynamics resembles that of the traditional quintessence
cosmology (w = constant). Using again the phenomenolog-
ically selected form of Ψ, provided by Eq. (11), we obtain
R(α) = C1(m + 3)αm−1. It is then straightforward to obtain the
density evolution from Eq. (16), as:

ρ(α) = Dα−3 + C1α
m, (23)

whereD = C2 − C1. The conditions in which the current model
acts as a quintessence cosmology, are given by D > 0, C1 > 0,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912661&pdf_id=1
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Fig. 2. Comparison of the Hubble function provided by the traditional
ΛCDM model, which coincides with our m = 0 model (for the best-fit
model of the two free parameters - see text). The dashed line corre-
sponds to our m = 0 IDM model for the highest κC1 bound, provided
by our fitting procedure (∼10−3). The dot-dashed line corresponds to our
κ = 0 IDM model (Case 4) for the best-fit model parameters (m � −0.3
and Ω2,0 � 0.28). Finally, the points correspond to the observational
data (Simon et al. 2005).

and wIDM = −1 − m/3, which implies that to have an inflection
point, the following should be satisfied: wIDM < −1/3 or m > −2
(see Appendix D). We note, that the Hubble flow is now given by

(
H
H0

)2

= Ω2,0α
−3 + Ω1,0α

m, (24)

where Ω2,0 = 8πGD/3H2
0 and Ω1,0 = 8πGC1/3H2

0. Finally, by
minimizing the corresponding χ2, we find that the best-fit model
values are Ω2,0 � 0.28 and m � −0.30 (wIDM � −0.90) with
χ2/d.f. = 1.29. The corresponding Hubble flow curve is shown
in Fig. 2 as the dot-dashed line. We note that this solution is
mathematically equivalent to that of the gravitational matter cre-
ation model of Lima et al. (2008).

6. Conclusions

We have investigated the evolution of the global density of the
universe in the framework of an interacting DM scenario by
solving analytically the collisional Boltzmann equation in an
expanding universe. A disequilibrium between the DM parti-
cle creation and annihilation processes, regardless of its cause
and in which the particle creation term dominates, can create an
effective source term with negative pressure, which acting like
dark energy, provides an accelerated expansion phase of the uni-
verse. There are also solutions for which the present time is lo-
cated after the inflection point. Finally, comparing the observed
Hubble function of a few high-redshift elliptical galaxies with
that predicted by our simplest IDM model (m = 0), we find that
the effective annihilation term is quite small. In a forthcoming
paper, we propose to use a multitude of cosmologically rele-
vant observations to jointly fit the predicted, by our generic IDM
model, Hubble relation and thus possibly provide more stringent
constraints on the free parameters of the models. We also plan to
derive the perturbation growth factor to study structure forma-
tion within the IDM model.
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Appendix A:The effect of the decay products

Here we attempt to investigate in the matter-dominated era,
whether the possible radiation products related to dark matter
interactions can affect the global dynamics. A general coupling
can be viewed by the continuity equations of interacting dark
matter ρIDM and residual radiation δρr,

dρIDM

dt
+ 3H(t)ρIDM + κρ

2
IDM −Ψ = Q, (25)

dδρr

dt
+ 4H(t)δρr = −Q, (26)

where Q is the rate of energy density transfer. If Q < 0, then
the IDM fluid transfers to residual radiation. As an example, we
can use a generic model with Q = −εδρr, where ε > 0. Thus,
Eq. (26) has an exact solution

δρr = δρr0α
−4eε(t−t0), (27)

where t0 is the present age of the universe. This shows that the
contribution of the residual radiation to the global dynamics was
negligible in the past, since there is not only the usual ∝a−4 de-
pendence of the background radiation but also a further expo-
nential drop, and thus Q � 0. We therefore conclude that we can
approximate the total energy-density with that of the interacting
dark-matter density (ρ � ρIDM). Note, that 1/ε can be viewed as
the mean lifetime of the residual radiation particles.

Appendix B: Solutions of the Riccati equation

With the aid of differential equation theory we present solutions
that are relevant to our Eq. (7). In general, a Riccati differential
equation is given by

y′ = f (x)y2 + g(x)y + R(x) (28)

and it is fully solvable only when a particular solution is known.
Below, we present two cases in which analytical solutions are
possible:

– Case 1: for the case where

R(x) = C1mxm−1 − C2
1x2m f (x) − C1xmg(x) (29)

the particular solution is xm and thus the corresponding gen-
eral solution can be written as

y(x) = C1xm + Φ(x)

[
C2 −

∫ x

1
f (u)Φ(u)du

]−1

, (30)

where

Φ(x) = exp

[∫ x

1
(2C1um f (u) + g(u)) du

]
(31)

and C1,C2 are the integration constants. Using now Eq. (8),
we obtain Ψ(x) = xH(x)R(x) = C1(m + 3)xmH(x) + κC2

1x2m.
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– Case 2: for the case where

R(x) = h′(x) with g(x) = − f (x)h(x), (32)

the particular solution is h(x) (in our case we have h(x) =
−3κ−1H(x)). The general solution now becomes

y(x) = h(x) + Φ(x)

[
C2 −

∫ x

1
f (u)Φ(u)du

]−1

, (33)

where

Φ(x) = exp

[∫ x

1
f (u)h(u)du

]
. (34)

In this framework, using Eq. (8) we finally obtain Ψ(x) =
xH(x)R(x) = −3κ−1xH(x)H′(x).

Note that the solution to Case 1 is the only one providing a ∝α−3

dependence of the scale factor (see Eqs. (12), (19) and (20)).

Appendix C: Justification of the functional form
of Ψ

We assume that we have a non-perfect cosmic fluid in a dise-
quilibrium phase with energy density ρ then from the collisional
Boltzmann equation, we have that

Ψ = ρ̇ + 3Hρ + κρ2 =
dρ
da

aH + 3Hρ + κρ2. (35)

Furthermore, we assume that for a convenient period of time, the
cosmic fluid, in an expanding Universe, is slowly diluted accord-
ing to ρ ∼ C1α

m (m ≤ 0). From a mathematical point of view, the
latter assumption simply means that a solution of the form ∝αm

is a particular solution of the Boltzmann equation. Therefore, we
have finally that:

Ψ � C1(m + 3)amH + κC2
1a2m. (36)

Appendix D: Correspondence between our model
and conventional dark energy models

We remind the reader that for homogeneous and isotropic flat
cosmologies (Ωm + ΩQ = 1), controlled by non-relativistic
DM and a DE with a constant equation of state parameter (w),
the density evolution of the cosmic fluid can be written as

ρ(α) = ρm,0α
−3 + ρQ,0α

−3(1+w), (37)

where ρm,0 and ρQ,0 are the present-day DM and DE densities,
respectively.

The necessary criteria for cosmic acceleration and an inflec-
tion point in our past (ti < t0), are (a) P < 0 and (b) α̈ = 0, which
leads to the conditions

– Dark Energy models: P = Pm + PQ = wρQ < 0, Pm = 0
with w < −1/3.

– IDM models: P = κρ2 − Ψ < 0 and m > −2 (or wIDM <
−1/3).
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