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ABSTRACT
In this work, we present a comprehensive X-ray picture of the interaction between a super
star cluster and the interstellar medium. In order to do that, we compare and combine the
X-ray emission from the superwind driven by the cluster with the emission from the wind-
blown bubble. Detailed analytical models for the hydrodynamics and X-ray luminosity of
fast polytropic superwinds are presented. The superwind X-ray luminosity models are an
extension of the results obtained in Paper I. Here, the superwind polytropic character allows
us to parametrize a wide variety of effects, for instance, radiative cooling. Additionally,
X-ray properties that are valid for all bubble models taking thermal evaporation into account
are derived. The final X-ray picture is obtained by calculating analytically the expected
surface brightness and weighted temperature of each component. All of our X-ray models
have an explicit dependence on metallicity and admit general emissivities as functions of
the hydrodynamical variables. We consider a realistic X-ray emissivity that separates the
contributions from hydrogen and metals. The paper ends with a comparison of the models
with observational data.
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1 IN T RO D U C T I O N

Young super star clusters (SSCs) are compact stellar aggregates re-
sulting from intense, concentrated, violent star formation episodes.
With ages between ∼106 and 107 yr and masses in the range of
∼104– 107 M�, they represent the current analogues of globular
clusters and have been identified as the building blocks of stel-
lar formation in many galaxies (O’connell et al. 1995; Whitmore
& Schweizer 1995; Ho 1997; Whitmore et al. 1999; Melo et al.
2005, and references therein). Within its effective radius of up to a
few parsec (�10 pc, Meurer et al. 1995; Melo et al. 2005), a SSC
contains many thousands or tens of thousands of early-type stars
(Leitherer & Heckman 1995) that dominate the injection of mass
and energy (∼1038–1041 erg s−1) to the interstellar medium (ISM)
through the overall contribution of their individual stellar winds
and supernovae explosions. The interactions that take place among
these inner flows lead to the thermalization of their kinetic energy
through strong shock waves that generate a high central overpres-
sure. As a result, a powerful superwind is driven out of the cluster at
large speed (�1000 km s−1). Outside of the cluster, the superwind
expands almost freely until the presence of the ISM becomes impor-
tant. The subsequent interaction of this supersonic and metal-rich
outflow with the ambient interstellar gas generates a structure with
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a more complex dynamics, namely, a superbubble (Castor, McCray
& Weaver 1975; Weaver et al. 1977, hereafter W77; Koo & McKee
1992a,b; Bisnovatyi-Kogan & Silich 1995, and references therein).
The configuration of a superbubble is traced by two shock fronts
that are inherent to its hydrodynamical evolution: a leading (outer)
shock that sweeps up, compresses and confines the ambient ISM
to an external shell; and a secondary (inner) shock that propagates
backwards (in the leading shock reference frame) and thermalizes
the kinetic energy of the free superwind. The resulting shocked
gases are separated by a contact discontinuity and the thermal pres-
sure of the hot, shocked superwind drives the outer shell. Soon, the
mass of the shocked ambient gas becomes progressively larger than
that of the shocked superwind. As this tendency continues, the outer
shock becomes radiative and the shocked ISM collapses into a thin,
dense shell. Being more tenuous, the bubble hot interior has a larger
cooling time-scale and thus it remains quasi-adiabatic. This stage is
called the snowplow phase. Here, in the same fashion as in Silich
et al. (2005, hereafter Paper I), the resulting structure is split into the
four zones shown in Fig. 1: region A corresponds to the star cluster
volume itself, region B is the zone where the wind freely expands,
region C is the superbubble that contains the shocked superwind
and region D is the outer shell where the leading shock accumulates
ambient gas.

Due to the high temperatures produced by the multiple shock
waves and the large amount of mass deposited by the sources, both
superwinds and superbubbles are potential diffuse X-ray emitters
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Figure 1. Structure of a superbubble. Each zone is defined according to
its contents: region A contains the thermalized SNe and stellar wind ejecta,
region B contains the free-expanding wind, region C represents the hot
superbubble where the wind thermalized at the inner shock is confined and
region D is the shell that contains the swept-up ambient gas. An unperturbed
ISM surrounds the structure.

(Chevalier 1992; Chu et al. 1995, hereafter C95; Cantó, Raga &
Rodrı́guez 2000; Stevens & Hartwell 2003). This represents an
opportunity to study the X-ray emission associated with massive
stellar clusters to better understand and constrain the ongoing hy-
drodynamics and its energetics. With the aid of Chandra, it has
been found that several clusters in the Local Group emit an im-
portant amount of diffuse X-rays: near the centre of our Galaxy,
the X-ray emissions of the Arches and Quintuplet clusters have
been detected and studied by Yusef-Zadeh et al. (2002) and Law
& Yusef-Zadeh (2004); that of NGC 3603 – one of the most lu-
minous clusters in the Milky Way – has been discussed by Moffat
et al. (2002) and Stevens & Hartwell (2003) have analysed R136
and NGC 346 in the Magellanic Clouds [Large Magellanic Cloud
(LMC) and Small Magellanic Cloud (SMC), respectively]. On the
other hand, Chu & Mac Low (1990) examined the Einstein archives
for LMC and found seven superbubbles that were related to OB
associations. Repeating later the same analysis using ROSAT data,
they found four additional but dimmer superbubbles (C95). More re-
cently, Townsley et al. (2003) have reported diffuse emission from
a superbubble associated with M 17, also known as the Omega
Nebula; similarly, Smith & Wang (2004) have used XMM–Newton
data to study the emission from a 100 pc superbubble related to the
dense OB association LH90 in 30 Dorados. In distant galaxies, the
X-ray emission presents two components: a system of point-like
non-resolved sources and an extended diffuse component possibly
associated with a collection of superbubbles generated by individual
SSCs (Summers et al. 2004; Smith, Struck & Nowak 2005).

This theoretical work has a two-fold objective. The first one is
to present detailed hydrodynamic and X-ray luminosity models for
fast polytropic superwinds, models that can be easily modified to
account for general emissivity functions (Section 2). This property
allowed us to explicitly separate the X-ray contributions from hy-
drogen and metals and to obtain the plasma weighted temperature.
These results could be of particular use when comparing with syn-
thetic or observed spectra, since we obtained them theoretically
taking into consideration bands suitable to the instruments on board
Chandra and XMM–Newton. Additionally, we also present analyt-
ical formulae for the corresponding X-ray surface brightness. The
second objective is to undertake the task of obtaining thoroughly all

of the above for the standard analytical bubble models (Section 3).
Three properties that are universal for bubbles accounting for shell
evaporation are derived: an X-ray luminosity scaling factor that is
independent of the particular dynamical evolution, the shape of the
related surface brightness profile and the projected X-ray tempera-
ture. We also examine the case of when the evaporation of material
from the outer shell is prohibited (Section 4). Later, we assemble
our models and present the complete X-ray panorama (Sections 5).
Finally, we make a comparison with observational data (Section 6).

All of our X-ray models are analytical. Moreover, they are in-
dependent of the actual shape of the emissivity function because
they involve hypergeometric functions. In the more general case,
they can be evaluated using the code of Colavecchia & Gasaneo
(2004); however, that would not be necessary here because we have
constructed closed-form expansions in terms of elementary alge-
braic expressions. From the theoretical point of view, the freedom
of selecting the emissivity function and the separation of the contri-
butions from hydrogen and metals are advantages, since it is usual in
the literature to assume a constant X-ray emissivity (C95; Garcı́a-
Segura & Mac Low 1995) and that the X-ray luminosity scales
linearly with metallicity (∝ Z). The first advantage enables a more
realistic modelling and the second allows us to discriminate the
importance of each contribution at a given temperature and metal
abundance. Our formalism also permits a straightforward calcula-
tion of other integral properties such as the luminosity of the plasma
in other bands and the mass of the emitting gas (see Appendix A2).
On the hydrodynamical side, the polytropic character of the winds
makes it possible to implicitly parametrize the effect of radiative
cooling in a simple manner.

Throughout the paper, astrophysical units are used when conve-
nient: t6 is the time in Myr, Ė38 is the mechanical luminosity in
units of 1038 erg s−1, Rsc,pc is the star cluster radius in parsec, V8

is the terminal speed in units of 1000 km s−1, TkeV is the plasma
temperature at the star cluster centre in units of keV and �X,−23 is
the X-ray emissivity in units of 10−23 erg s−1 cm3. A comprehensive
list of symbols is given in Table D1. The reader not interested in
the detailed theoretical derivations may wish to proceed directly to
Sections 5 and 6.

2 PO LY T RO P I C SU P E RW I N D S

Stationary superwind models have proven valuable in reproducing
the average behaviour of the star cluster outflows obtained from full
3D hydrodynamical simulations. Although the continuous wind-
source distributions assumed in the analytical models do not pro-
duce the detailed features that might result from the local interaction
of stellar winds and supernovae explosions, they provide a good ap-
proximation for the radially averaged hydrodynamical profiles even
for clusters with only ∼100 stars and become an increasingly ac-
curate approximation as the cluster mass and stellar density also
increase. Furthermore, not to far away from the cluster the agree-
ment is better than in the inner zone because the inhomogeneities
introduced by the discrete stellar population are quickly smoothed
out (Cantó et al. 2000).

After a short initial transitory period, both the averaged hydro-
dynamical profiles and the X-ray luminosity reach almost steady
values. The transitory period lasts until the cluster core is filled with
shocked gas, which depends on the cluster radius and mass and en-
ergy injection rates. For instance, in their simulations, Rockefeller
et al. (2005) have found this time to be ∼2 × 104 yr for the Arches
cluster (Rsc,pc ≈ 0.2 pc), whereas for the approximately five times
larger Quintuplet cluster they found it to be larger than ∼105 yr.
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They also found small temporal variations of the X-ray luminosity:
∼1 per cent for the Arches cluster and around 4–7 per cent for the
Quintuplet cluster over a period of ∼50 yr.

All of the above imply that stationary models can be used to
sequentially approximate the hydrodynamical evolution of a clus-
ter as well as the corresponding diffuse X-ray emission, given that
the self-adjustment times between transitions are short and not too
frequent in comparison with the cluster age and the intrinsic tem-
poral variations of the quasi-steady states are large in comparison
with the observing time. Here, we present a new set of stationary
wind models and obtain their associated X-ray luminosity, surface
brightness and spectroscopical temperature. Certainly, the presented
X-ray models do not include short-scale variations associated with
interacting binaries. These are associated with the point-like X-ray
sources, whose luminosity must be removed from the diffuse X-ray
component (Moffat et al. 2002).

Consider the Chevalier & Clegg (1985, hereafter CC85) fast
superwind model, which assumes that the flow is steady, spherically
symmetric, adiabatic and ideal. Each star cluster can be defined by
a set �� = {Rsc, qe, {qm, V∞A}} containing three parameters: the
cluster radius, Rsc; the energy deposition rate per unit volume, qe =
Ė/Vsc and the mass deposition rate per unit volume, qm = Ṁ/Vsc.
Alternatively, the adiabatic terminal speed V∞A = (2qe/qm)1/2 may
be used. For the interior of the cluster, r < Rsc (region A), the
equations of conservation of mass and momentum are

ρ = qmr

3u
(1)

and

ρu
du

dr
= −dP

dr
− qmu, (2)

respectively. Above, only models with finite central densities (ρc >

0) are considered, i.e. it is a requirement that uc = u(0) = 0 km s−1.
For region B, the corresponding equations are

ρ = Ṁ

4πur2
(3)

and

ρu
du

dr
= −dP

dr
. (4)

For both regions, the conservation of energy can be stated as a
steady state Bernoulli-like equation:

ε = 1

2
u2 + γ

γ − 1

P

ρ
= 1

2
V 2

∞A, (5)

where ε is the total energy per unit mass. Since the gas is adiabatic
and perfect, γ = 5/3. Let us consider now a polytropic perfect gas
with equation of state

P = Kρ
η+1
η = nkT , (6)

where η is the polytropic index and K > 0 is a proportionality
constant. This equation replaces (5) in the polytropic case, where
the entropy variations are parametrized through a constant η.

The combination of (4) and (6) yields the explicit form of the
energy conservation per unit mass for region B

εBP = 1

2
u2 + (η + 1)

P

ρ
= constant. (7)

As expected, the polytropic and the CC85 solutions have the same
algebraic structure on r ≥ Rsc. They are isomorphic through the
transformations γ → (η + 1)/η and εBP = (1/2)V2

∞P (V∞A →
V∞P). The constant V∞P is arbitrary and related to the temperature

at r = Rsc or, equivalently, to the speed at which the superwind
leaves the star cluster surface. However, this arbitrariness van-
ishes when additional constraints or boundary conditions related
to the parametrized effects are imposed on the model, for example,
V∞P < V∞A when just dissipative processes are involved. When
more specific information about the nature of the processes is avail-
able, explicit expressions for the constraints can be given as thresh-
old lines. For region A, the isomorphism is not exactly the case;
nevertheless, as discussed below, equation (7) remains a good ap-
proximation there.

A continuous gas acceleration requires the following condition
at r = Rsc:

usc =
[

(η + 1)

η

Psc

ρsc

]1/2

< V∞P. (8)

The isomorphic solutions are self-similar if written in terms of
the dimensionless variables R = r/Rsc and U = u2/V2

∞P:

R = D1U
1/2 [1 + (6η + 5)U ]−

4η+3
6η+5 , r < Rsc, (9)

R = D2U
−1/4 (1 − U )−

η
2 , r ≥ Rsc. (10)

Accordingly, the boundary condition (8) becomes

Usc = 1

2η + 1
. (11)

From equations (9) and (10) and condition (11), one can find that
for an accelerating solution

D1 = (2η + 1)1/2

(
1 + 6η + 5

2η + 1

) 4η+3
6η+5

(12)

and

D2 = (2η + 1)−1/4

(
1 − 1

2η + 1

)η/2

. (13)

The actual polytropic solution for the innermost region (r <

Rsc) can be obtained from one of the Pfaffian forms related to the
conservation laws. The simplest Pfaffian form is(
Aρ

2+ 1
η − r2

)
dρ + 4ρr dr = 0, (14)

with A = 9(η + 1)K/(q2
mη). The associated ordinary differential

equation is inexact, but it has a unique integrating factor: IF = ρ− 1
2 .

After multiplying by it, the next solution can be found with ease

r2 + Aη

3η + 2
ρ

2η+1
η + Cρ1/2 = 0, (15)

where C is an arbitrary constant. Such a solution has several
branches according to the values that C, K and η take. By using
equation (7) and the transformation εBP = 1

2 V 2
∞P as closure re-

lations for the true polytropic solution given by equation (15), a
simple parametrization that we call the pseudo-adiabatic solution
can be obtained:

R = D1PU
1/2 [1 + 3(2η + 1)U ]−2/3 (r < Rsc). (16)

In what follows, we will consider the polytropic solutions (16)
and (10) satisfying the boundary condition (11). Thus,

D1P = 24/3(2η + 1)1/2 (17)

and the values of the hydrodynamical variables at r = Rsc are

Tsc =
(

η

η + 1

)(
1

2η + 1

)
μi

k
V 2

∞P, (18)
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Figure 2. Panel (a): comparison of the adiabatic isomorphism velocity profile for region A, equation (9), with that of the pseudo-adiabatic solution, equation (16).
In general, the solutions are alike for the same set of parameters. Here, η = 3/2 and V∞P = V∞A. Panels (b), (c) and (d): normalized velocity, density and
temperature profiles for pseudo-adiabatic polytropic solutions with η = 3/2 (solid lines), η = 1 (dashed lines) and η = 2 (dotted lines), respectively. The
temperature profile is by far the most sensitive to changes of η. For superwinds with terminal speeds of the order of V8 � 1, TscA � 107 K.

ρsc = (2η + 1)1/2 qmRsc

3V∞P
(19)

and

Psc =
(

η

η + 1

)(
1

2η + 1

)1/2
qmRsc

3
V∞P, (20)

where μi is the mean mass per particle for a completely ionized
interstellar plasma and k is the Boltzmann constant. For solar abun-
dance μi = 14/23μH. The central values are

Tc = 1

2(η + 1)

μi

k
V 2

∞P, (21)

ρc = D1P
qmRsc

3V∞P
(22)

and

Pc = D1P

(
1

2η + 1

)
qmRsc

3
V∞P. (23)

Note that the models are valid just for η > 0. For simplicity and
in order to cover the polytropic states of astrophysical interest, we
will further consider that η ≥ 3/10 in region A. The isomorphism
approaches the pseudo-adiabatic solution for large η (the isothermal
case). For intermediate values of η, they are similar [see panel (a) of
Fig. 2] since they predict the same values for the hydrodynamical
variables at Rsc and the same central temperature and velocity. Their
densities and pressures just differ by factors of D1/D1P at the centre
and their ratios reduce towards Rsc.

Since the effective polytropic index depends on the balance
of heating and cooling among other factors, our models can
parametrize these effects when complemented with acceptable
boundary conditions or constraints, as we discuss next. In prin-
ciple, zones with distinct entropy variations and properties can be

modelled using a piecewise polytropic index or, in the limit, a slow
varying one. For the case of a continuous accelerating solution,
equation (7) implies that any change in the available energy per
unit mass is concomitant with a change of η in the same direc-
tion. Nevertheless, note that velocity discontinuities produced by
shock fronts are not prohibitive. For a smooth accelerating solution
with parameters �∗, models with η < 3/2 have higher velocity
profiles and lower density profiles than the corresponding adiabatic
solution (η = 3/2, V∞A = V∞P). On the other hand, their tempera-
ture profiles have a bimodal behaviour: in region A, they are higher,
whereas in region B they are lower and very sensitive to the adopted
value of η. Models with η > 3/2 have the opposite behaviour1 (see
Fig. 2). In the external zone, all the density profiles fall off asymp-
totically as Ṁ/4πV∞Pr

2. In connection with the radiative case,
Silich, Tenorio-Tagle & Rodrı́guez González (2004) have shown
that whilst the velocity and density profiles are barely affected by
the small variations of the effective terminal speed promoted by
radiative cooling, the temperature profile can be changed drasti-
cally at distances larger than a few times the star cluster radius.
Given that for dissipative solutions V∞P < V∞A and the relative
behaviour of the profiles has to scale accordingly, it follows that
models with η > 3/2 are appropriate for region A, whereas those
with η < 3/2 may be used for region B. In Fig. 3, we reproduce the
numeric results of Silich et al. (2004) for radiative winds using the
aforesaid method. At least three different η’s were required for each
case presented. The profiles were constructed using the X-ray lu-
minosity (Section 2.1) to estimate the energy radiated by the cluster
core, since �X ≈ �total for temperatures of the order of ∼107 K and
Z ≈ Z�. The emissions of the external subzones were weighed (see

1 Note, however, that a very large η produces very slow winds which are
susceptible to instabilities and might have different driving mechanisms.
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Figure 3. Silich et al. (2004, fig. 4) radiative temperature profiles for
clusters with �∗ = {Rsc,pc = 10, Ė38 = {500, 2000, 3000}, V8 = 1}. They
were here constructed using piecewise continuous polytropic laws. For the
cluster cores (region A), η ≈ 3/2 for the three mechanical luminosities.
The respective free winds have different thermodynamical configurations:
B0 represents a quasi-adiabatic wind with Ė38 = 500, η1 ≈ 1.45 (dashed
line) and η2 ≈ 1.15 (dash–dotted line); likewise, B1 is a radiative wind with
Ė38 = 2000, η1 ≈ 1.3 and η2 ≈ 0.42 and B2 is a strongly radiative wind
with Ė38 = 3000, η1 ≈ 1.19 and η2 ≈ 0.22. In the later case, the velocity–
radius relationship adopts η = 3/2 for T > 104 K (dotted line). The assumed
metallicity is Z = Z�. The squares show the external temperature profile
expected from the adiabatic solution, which better applies for clusters with
smaller masses (mechanical luminosities).

Appendix A) using the total cooling function tabulated by Plewa
(1995). From this, the respective changes in V∞P were found, and
with the aid of (7), also the corresponding values of η. As a conclu-
sion, it can be pointed out that just a change of η (adequate for each
zone) is sufficient to reproduce and explain the radiative profiles.
For region A, we found that η is always close to 3/2. However, a
closed analytical estimation to find explicitly the adequate values
of η for the free wind is still lacking. In principle, just a knowledge
of the star cluster parameters and the overall cooling function is
sufficient to obtain it. A general discussion of the radiative case will
be presented on a forthcoming paper.

2.1 X-ray luminosity

The cumulative X-ray luminosity of a spherically symmetric gas
distribution is given by the integral:

LX(r) = 4π

∫ r

0
n(r ′)2�X[T (r ′), Z]r ′2 dr ′, (24)

where r is the radial coordinate from the object centre, r′ is the
corresponding dummy integration variable, n is the particle number
density and �X is the X-ray emissivity function, which in general
depends on the plasma temperature and metallicity. Here, the later is
assumed homogeneous; nevertheless, tools to deal with metallicity
gradients are given.

The actual dependence of the superwind X-ray emission on the
star cluster parameters is determined by the functional relation
of �X with the hydrodynamical variables. This functional depen-
dence synthesizes the physics behind the emission mechanisms. In
Appendix A1, we give an initial approximation that corresponds to
a constant emissivity, whereas in Appendix A2, we give transforma-
tion laws that are used to show how to overcome such a limitation.
Those laws can also be used to incorporate the effect of metallic-

ity gradients or non-collisional ionization equilibrium (non-CIE).
Below, we concentrate on region A because, as is demonstrated
in Appendix A1, region B contributes less than 20 per cent to the
superwind total X-ray luminosity.

In Appendix A2, it is demonstrated that for a realistic emissivity
given as piecewise continuous power laws, �X =

∑
�αT

α , the
cumulative X-ray luminosity is given by

LXA(η, {α}, U ) = XAU 3/2
∑

α

FA(η, α,U )�αT
α

c , (25)

where

XA = D5
1PĖ

2

πμ2
nV

6
∞PRsc

, (26)

FA(η, α, U ) =
350

[
1 + η2(8η+1)

5(2η+1) U 2
]4/10

9
(

350
3 + φ1U + φ2U 2

) (1 − U )
α
30 , (27)

φ1(η, α) = 70(α + 28η + 14) (28)

and

φ2(η, α) = [17α2 + α(501 + 952η) + 9528η(1 + η) + 2382].

(29)

In these expressions, α ∈ [−4, 4] and U ∈ [0, 1/(2η + 1)].
To account for a realistic emission, we assume CIE. This as-

sumption is valid for the central region, where the ionization and
recombination time-scales used to assess the collisional equilibrium
(Mewe 1984, 1999) are smaller than the radiative and adiabatic ex-
pansion cooling time-scales (see Ji, Wang & Kwan 2006). Outside
of the cluster, CIE does not hold for r > 2– 3 Rsc(T � 3 × 106 K);
however, the predicted X-ray emission of such region is negligible.
Hence, we use the Strickland & Stevens (2000, hereafter SS00)
X-ray emissivity tables, which are based on a recent version of the
Raymond & Smith (1977) code. These tables give the X-ray emis-
sivity as a function of temperature for two energy bands appropriate
for Chandra and XMM–Newton observations: a soft band that goes
from 0.3–2.0 keV and a hard band from 2.0–8.0 keV. They account
for continuum emission by incorporating the free–free (dominant
for T � 3 keV), the free-bound and the two photon (significant
for T ≤ 2 keV in the energy range 1–10 keV) processes. They also
account for the line emission, which dominates the spectrum at tem-
peratures around and below 1 keV. Additionally, the contributions
from hydrogen and metals were separated to allow the inclusion of
arbitrary metallicities. Therefore, the total X-ray emissivity can be
written as

�X(T , Z) = �XH(T ) + Z�XM(T ). (30)

We fitted power laws and rational functions to the SS00 tables
using a trust region method (see Tables D2 and D3). As an outcome,
it was found that for fast winds (V∞P � 1000 km s−1 and Tsc �
9 × 106 K) the hydrogen component in both bands well resembles
a bremsstrahlung law, whereas the emissivity of metals has an al-
most constant value at high temperatures (2.6–8.6 keV) and a sharp
power-law behaviour at the other end (0.8–2.6 keV). Using these
results (marked with �� in Table D2) and evaluating formulae (25)
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Figure 4. Panel (a): region A cumulative X-ray luminosity normalized by a factor of XA/D5
1P, which contains the dependence on the cluster parameters. The

values of the polytropic index are η = 3/2 (solid line), η = 1 (dashed line) and η = 2 (dotted line). Panel (b): ratio of the X-ray luminosity of metals (solid
lines, region A) to that of hydrogen for different core temperatures (TkeV). Here, η = 3/2. The dashed line is used as a reference. From bottom to top of the
panel, the metallicities are 0.1, 0.2, 0.5, 1.0, 2.0 and 5.0 Z�. The axes marks are logarithmically spaced for a better visualization.

and (27) at Usc = 1/(2η + 1), we get that

LXA,total = XAU 3/2
sc

{
FA

(
η,

1

2
, Usc

)
�HT 1/2

c

+ Z

[
FA

(
η,−5

2
, Usc

)
�M1T

−5/2
c + FA(η, 0, Usc)�M2T

0
c

]}
.

(31)

Bearing in mind equations (21) and (26), and taking η = 3/2 we
have that

LXA,total = (5.12 × 1033 erg s−1)
Ė2

38

Rsc,pcV
5

8

×
[

1.00 + 1.32Z

(
1

V 6
8

+ 1.30

V8

)]
, (32)

or, in terms of TkeV,

LXA,total = (9.31 × 1033 erg s−1)
Ė2

38

Rsc,pcT
5/2

keV

×
[

1.00 + 1.32Z

(
2.05

T 3
keV

+ 1.47

T
1/2

keV

)]
, (33)

where the first and second terms between square brackets give
the relative contribution from hydrogen and metals, respectively.
Since a term ∝ T1/2 was factorized, the bracketed quantities show
the variations of the SS00 emissivity function with respect to
bremsstrahlung. The X-ray luminosity of warmer (Tsc < 9 ×
106 K) and generally slower winds (V8 < 1) can be obtained in
a similar way using equations (25)–(29) together with Table D2.

In Paper I, the total X-ray luminosity of regions A and B was esti-
mated by approximating the temperature and density by the constant
values that they take at Rsc according to the CC85 adiabatic model,
i.e. by setting ρ = ρsc and T = Tsc with η = 3/2. Consequently, it
was found that LXAB,total = 4πα2

ρ�X(Tsc, Z)ρ2
scR

3
sc/3μ2

n. Explicitly,
this is

LX,AB = (
1.27 × 1034 erg s−1

) �X,−23(Tsc, Z)Ė2
38

Rsc,pcV
6

8

= (
1.08 × 1034 erg s−1

) �X,−23(Tsc, Z)Ė2
38

Rsc,pcT
3

keV

. (34)

In the above formula, the effects of the actual thermodynamical
structure of zones A and B and the realistic X-ray emissivity (SS00)
were incorporated through the fiducial coefficient αρ ≈ 2, which
smoothed the differences between the analytical and the numerical

calculations that were carried out for winds with V8 ≈ 1. Because
such calculations also showed that the contribution of region B was
always less than one-quarter of that of region A, the former was
also incorporated into (34) through αρ . These results agree fairly
well with equations (A6) and (A12) which just assume a constant
X-ray emissivity. In contrast, equations (32) and (33) explicitly
show their physical dependence on the thermodynamical structure
and the SS00 X-ray emissivity function through the numerical co-
efficients obtained, the separation of the contributions of hydrogen
and metals and their functional dependence on the terminal speed
and temperature, respectively. Another advantage of these formulae
over that of Paper I is that they can be used for very fast winds with
V∞P ∼ 2500–4500 km s−1.

Additionally, in the current formalism, equations (25) and (16)
allow us to calculate the cumulative X-ray luminosity profile of
region A for different polytropic indexes. If it were needed, the
luminosity of region B could be calculated using our transformation
laws. The cumulative X-ray luminosity profile of the cluster core
for different values of η is presented in panel (a) of Fig. 4. In the
same figure, panel (b) shows that for TkeV ≥ 3 keV the contribution
from hydrogen is comparable (within a factor of ∼2) to that from the
metals when Z ∼ Z�, whereas for lower metallicities hydrogen can
dominate in the same temperature range. On the other hand, metals
dominate the cluster core emission at lower temperatures when
Z ∼ 0.5–1 Z� or higher. In general, hydrogen always dominates
for Z < 0.2 Z� and metals for Z > 2 Z�. We remark that metallicity
gradients or a different X-ray emissivity can be handled using the
aforementioned transformation laws and the adequate polytropic
index. For instance, when the CIE assumption does not hold one
can use non-equilibrium emissivity functions like the one presented
by Gnat & Sternberg (2007), who, for solar metallicity, found that
�non−eq ∝ 5.6 × 10−20T−0.46 erg s−1 cm3. When CIE does not hold
inside of the cluster, formula (25) can handle this new emissivity
function with ease. By separating components and because of their
ability to handle arbitrary emissivities, our formulae round out the
X-ray luminosity model for the gas contained within the star cluster.

2.2 Surface brightness

To calculate the surface brightness and other projected quantities,
we use the Abel transform (see e.g. Yoshikawa & Suto 1999):

Q(s) = 2
∫ ∞

s

q(r)
r√

r2 − s2
dr, (35)
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Figure 5. Abel transform of a spherically symmetric function with compact
support on a ball of radius R and projected angular diameter δ. For rd �
R, the Radon transform lines (dashed) approach the Abel transform lines
(dotted) since sR = rd sin(θ ) ≈ rdθ and sA = rd tan(θ ) ≈ rdθ . The right
angles that the projected radii and the respective projection lines subtend
are indicated with black and white squares. The spherical symmetry of the
function warrants that the integral yields the same value along both lines
of sight. The difference is that in the astrophysical case the distribution is
projected along the R lines, i.e. the values at points ℘′ are mapped to points
℘. Compare the difference in the auxiliary projection plane.

where r has the same meaning as before, s = rdθ is the projected
radius, rd is the angular diameter distance to the object and θ is
the projected subtended angle. The factor of 2 takes advantage of
the spherical symmetry (see Fig. 5). Since we are dealing with
finitely localized gas distributions, the traditional upper limit (∞) is
replaced by the size of the region of interest. This size is determined
by the gas temperature. We consider an X-ray cut-off temperature
of Tcut = 5 × 105 K for all regions. The corresponding radius is
Rcut.

The surface brightness can be obtained by setting q = n2�X in
equation (35). For the superwind, it is given in terms of elliptical in-
tegrals in a non-canonical form, the reduction of which requires the
awkward calculation of the roots of several quartics for each s. None
the less, the whole superwind (regions A + B) surface brightness

Figure 6. Normalized X-ray surface brightness of a superwind (η = 3/2).
Soft line: actual surface brightness, dashed line: fitted profile. Note that
although the outer layers of the core contribute relatively more to the central
X-ray luminosity (Fig. 5), no limb-brightening is produced there. The overall
superwind surface brightness sharply drops in the external zone.

can be fitted by a function of the form

σAB(s) = AAB

[
1 +

(
s

Rsc

)α1
]α2

. (36)

For η = 3/2, we have that α1 ≈ 3 and α2 ≈ −5/2. The asso-
ciated central brightness can be found in terms of hypergeometric
functions. For fast winds, V8 � 1, it is given by

AAB ≈ 1.28
�X(Tsc, Z)Ė2

μ2
nR

3
scV

6∞

= (1.9 × 1034 erg s−1pc−2)
�X,−23(Tsc, Z)Ė2

38

R3
sc,pcT

3
keV

.
(37)

From this formula and Fig. 6, it becomes clear that even in the
adiabatic case (η = 3/2) the superwind X-ray surface brightness
drops extremely fast (∝ s−15/2) for s � Rsc. Thus, although, in
principle, clusters in the quasi-adiabatic regime per se can generate
very extended X-ray emitting haloes, see equation (A7), their sur-
face brightnesses far away from the cores could be too weak to be
detectable, specially when the integration times are short (see Lang
et al. 2005).

2.3 Weighted temperatures

Several definitions of the projected X-ray temperature exist, that is,
of the temperature TX by which the spectrum of an often multitem-
perature plasma is fitted as if it would have just one component. The
most frequently used ones are of the form (see e.g. Navarro, Frenk
& White 1995)

TX =
∫

n2�T dV∫
n2�dV

, (38)

where � is a weighting function that may be the X-ray emissivity
function (see Mazzotta et al. 2004, and references therein). The
emission-measure weighting scheme uses � = 1, whereas the so-
called (bolometric) emission weighting scheme assumes that �

= �(T) ∝ T1/2, i.e. it assumes just free–free emission, notwith-
standing the fact that this later mechanism dominates just for T >

3 keV. Mazzotta et al. (2004) have shown that theoretically none of
these definitions is an accurate approximation of the spectroscopic
temperature of multitemperature plasmas. However, they have ar-
gued that since noise, instruments response and instrumental and
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cosmic backgrounds among other factors affect and distort the ob-
served spectrum, sometimes it is possible to fit a single-temperature
plasma model to the data. In their work, they simulated the ex-
pected spectra of galaxy clusters (Z = Z�) taking into account the
sensitivity of the Chandra and XMM–Newton instruments in the
soft band. They found that for T ≥ 3 keV the synthetic spectra
(with temperature Tspec) could be reproduced –at a level better than
5 per cent – by weighting with a function of the form � = �(T) ∝
T−3/4. Such a function yields a spectroscopic-like temperature TSL

that can be used as an estimator of the actual temperatures of the
isothermal models that might be fitted to real spectral data.

None of the above schemes takes into consideration arbitrary
metal abundances. Vikhlinin (2006) sought to extend the previous
result for T � 0.5 keV and arbitrary metallicities. Although his al-
gorithm yields a significant accuracy gain when lower temperatures
are involved, it does not provide analytical estimations because
his weighting function has to be constructed ad hoc (it depends
on the measurement device characteristics and individual observa-
tional conditions). We present here a theoretical weighting scheme
based on the SS00 tables. Since we do not consider observational
artefacts, our spectroscopical temperature TX corresponds to the
ideal projected X-ray temperature of the models. Nevertheless, our
scheme can incorporate artefacts easily, provided that the overall
weighting function could be parametrized in the same way as the
one found by Mazzotta et al. (2004), i.e. as a power law (or series)
in T.

For bubbles and superbubbles, we give preference to the projected
temperature map as a diagnostic tool

TX(s) =
∫

n2�T (r2 − s2)−1/2rdr∫
n2�(r2 − s2)−1/2rdr

. (39)

For superwinds, the emission measure and the Chandra and
XMM–Newton spectroscopic-like temperatures (whether the later
applies or not depends on η; for η ≈ 3

2 , it is a valid measure when
V8 � 1.65) can be obtained from equations (25) and (27):

TX1(η, α, Usc) = LXA(η, α + 1, Usc)

LXA(η, α, Usc)
= FA(η, α + 1, Usc)

FA(η, α,Usc)
Tc,

(40)

where α = 0 for the first estimator and α = −3/4 for the second
one. Finally, our X-ray emission weighted temperature is

TX2(η, α, Usc, Z) = LXA(η, {α + 1}, Usc)

LXA(η, {α}, Usc)
, (41)

which depends implicitly on metallicity. For superwinds with
V8 � 1, η � 3/2 and Z = Z�, all the above estimators yield
that TX ≈ 0.95 Tc and TX gets closer to Tc as η increases. There is
just a slight difference at the other end: for η ≈ 0.3, we obtained that
TX ≈ 0.85 Tc. This implies that the cluster central temperature is
adequate for representing the spectroscopical one. For superwinds,
Tsc/Tc ∈ [ 3/8, 1), so in many cases, the temperature difference be-
tween the centre and the edge might not be significative. However,
for superbubbles – as we will see – such a difference does matter.

3 BUBBLES WITH SHELL EVAPORATION

On the theoretical side, X-ray models for superbubbles with evap-
oration from the cold, dense and thin outer shell (W77, region C in
Fig. 1) have an interesting analytical behaviour. During the sweep-
up phase, thermal conduction fluxes across the contact discontinuity
promote the injection of radiatively cooled material into the cavity
that contains the hotter (shock thermalized) but much more tenuous

superwind. As a result, the gas distribution has very steep density
and temperature gradients and to account for the actual shape of the
emissivity function becomes crucial. On the other hand, in some
cases the observations pose another challenge, for after comparing
with the C95 standard X-ray luminosity model, discrepancies of
up to two orders of magnitude have been found (Chu, Gruendl &
Guerrero 2003; Dunne et al. 2003).

Most analytical models for spherical bubbles on the sweep-up
phase (Castor et al. 1975; W77; Hanami & Sakashita 1987; Koo
& McKee 1992a,b; Garcı́a-Segura & Mac Low 1995) share the
following similarities.

(i) In all models, the compact outer shell is driven by the thermal
pressure of region C. There the shocked wind is isobaric (except
in a small zone near the secondary shock) and its pressure equals
that of the shocked ISM. Therefore, the pressure of the hot bubble
is only a function of time.

(ii) Similarly, it is demonstrated that the bubbles have a pseudo-
adiabatic interior because the characteristic cooling time of the
shocked superwind is larger than the bubble dynamical time-scale
(see e.g. Mac Low & McCray 1988 and Koo & McKee 1992a,b).
The prospective evaporation of cold gas from the external shell does
not modify this behaviour significantly, even after the evaporated
mass dominates the region.

(iii) Under this common premises, but considering different ad-
ditional physics, the authors determined the bubble geometrical
evolution and its energy budget, finding explicit expressions for the
principal and secondary shock positions, the pressure and the total
energy: Rp(t), Rs(t), PC(t) and EC(t), respectively.

(iv) With exception of the Koo & McKee model, which just con-
siders the intrinsic self-similar evolution of region C, the rest of the
models assumes that the thermodynamical structure is determined
by the thermal evaporation of cold material from the external shell.
The later process is governed by the classical thermal conduction
theory (Cowie & McKee 1977). The predicted temperature profile
is of the form

TC(r) = TCc

(
1 − r

Rp

)2/5

. (42)

(v) The density profile is derived from the isobaric condition
stated in (i):

nC(r) = nCc

(
1 − r

Rp

)−2/5

, (43)

where TCc and nCc are the extrapolated central temperature and
density. Note that the above profiles are spatially self-similar.

The points above imply that the dynamical evolution (linked to
the motion energetics) and the thermodynamical structure are to-
tally independent, regardless of the choice of the bubble model.
Each model assumes different physical conditions that lead to dif-
ferent evolutions: W77 considered constant energy injection rates
and ISM densities. They showed that if radiative cooling (when
the bubble interior departs from a quasi-adiabatic state) and dis-
tinct ambient pressures are incorporated into their model, the bub-
ble size can change but the self-similarity of the thermodynamical
profiles is not affected. Hanami & Sakashita (1987) and Garcı́a-
Segura & Mac Low (1995) assumed different ambient stratifica-
tions: they considered ISM densities that fall off as ρ0 ∝ r−ω and
ρ0 ∝ r−2, respectively. The later authors also incorporated variable
mechanical luminosities. Again, the geometrical expansion is dif-
ferent, but the shapes of the density and temperature profiles are not
disturbed.
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Figure 7. Solid lines: evaporatively averaged soft-band emissivities result-
ing from the C95 constant value and the SS00 tables (hydrogen: �XH,
metals: �XM). Here, T7 is TCc in units of 107 K and ZC = Z�. The lines
for the C95 model and �XM scale linearly with metallicity. The former was
extrapolated to the temperature range 106–2.5 × 108 K. The best-fitting
approximations to �XH and �XM are shown as empty squares. Significant
deviations from the C95 predicted values are observed as TCc → 106 K. The
deviations induced by the reverse shock when Rs/Rp = 0.6, 0.7 and 0.8 are
shown as dash–dotted lines cascading down from the respective averaged
emissivities. The axes marks are logarithmically spaced.

The coupling of the physics resulting from (iii) and (iv) is done
through TCc and nCc which inherit the time dependence of the geo-
metrical model, i.e. they depend on the derived Rp(t), Rs(t), PC(t) and
EC(t). They also enclose the efficiency of the evaporative process
given by the numerical value of the thermal conduction coefficient
(Spitzer 1956). It can be shown that as long as conditions (iv) and (v)
are satisfied, the X-ray emission and other integral properties like
the evaporated mass (which dominates in this zone) are indepen-
dent from the geometrical (dynamical) model. These considerations
are taken into account in the X-ray models here presented, where
they are used to derive properties that are valid for all evaporation-
dominated models. Such properties can be helpful to constraint the
related physics and serve as auxiliary tools at the time of analysing
the observations.

For simplicity and in order to explore the parameter space of
a specific model, we will consider that of W77, unless otherwise
stated. It that model, the leading and reverse shock positions and
the central temperature and density are given by

Rp = (67 pc)Ė1/5
38 n

−1/5
0 t

3/5
6 , (44)

Rs = (26 pc)

(
Ė3

38

n3
0V

5
8

)1/10

t
2/5
6 , (45)

TCc = (5.25 × 106 K)Ė8/35
38 n

2/35
0 t

−6/35
6 (46)

and

nCc = (1.63 × 10−2 cm−3)Ė6/35
38 n

19/35
0 t

−22/35
6 , (47)

where n0 is the particle number density of the ISM. For normal
OB associations, McCray & Kafatos (1987) have pointed out that
initially (at ages up to 5 × 106 yr) the injection of energy (a few
times ∼ 6 × 1035 erg s−1) is dominated by the most massive but
much less numerous O-type stars which blow bubbles with sizes
∼100 pc. At later times and up to 5 × 107 yr, the injection rates are

sustained by the supernovae explosions of B-type stars; specially,
after the most massive star have died. The supernovae inject energy
at a steady rate of N∗α × 1035 erg s−1 (where α is a constant of
the order of unity and N∗ is the total number of stars with masses
above 7 M�) and drive a new outflow over the previously injected
gas. For rich OB associations, the wind-dominated stage can be
as important as the supernovae-dominated one, i.e. for associations
or clusters with E38 � 1 (Abbott, Bieging & Churchwell 1981).
When these effects are enhanced, models like those of Hanami
& Sakashita (1987) and Garcı́a-Segura & Mac Low (1995) might
be more adequate to describe the evolution of the corresponding
superbubbles. Here, however, we follow McCray & Kafatos (1987)
and assume that the energy input rate remains constant through time
in order to analyse later the case of M 17.

3.1 X-ray luminosity

In its simplest form, the total X-ray luminosity of a well-developed
bubble with shell evaporation is

LXC,total = 4πn2
CcR

3
p�X(ϑcut, ZC; TCc), (48)

where

�X = 5

2

∫ 1

ϑcut

ϑ1/2(1 − ϑ5/2)2�X(ϑ, ZC; TCc)dϑ, (49)

ϑ = TC/TCc is the normalized temperature and ϑ cut = Tcut/TCc is the
normalized cut-off temperature. Generally, �X (on the integrand)
cannot be put in dimensionless form with respect to ϑ and, as a
consequence, it will depend on TCc as a parameter. The variable
�X(ϑcut, ZC; TCc) can be thought as an ‘evaporatively averaged’
X-ray emissivity. It is practically independent of the geometrical
evolution when Rs/Rp < 0.4 (see Fig. 7). This is what we call a well-
developed bubble and thus the upper limit of the integral in (49) is
justified. For 0.4 < Rs/Rp ≤ 0.6, there is just a slight geometrical
dependence for bubbles with TCc < 3 × 107 K. If this ratio increases
so does the later effect, specially in the ∼106 K temperature range.
Because in all current models bubbles get well-developed at early
times, we will just discuss that case.

In Paper I, the bubble X-ray luminosity was estimated using the
C95 model which assumes that for the Einstein satellite �X(T , Z) =
ZC�0 = 3Z × 10−23 erg cm3 s−1 on the temperature range 106–107

K. Therefore, one obtains that �X,C95 = ZC�0I (ϑcut) with I(ϑ) =
(125/33) − 5ϑ1/2 + (5/3)ϑ3 − (5/11) ϑ11/2. However, in some
cases, the differences that arise when one considers the more realis-
tic SS00 emissivity function can be substantial as shown in Fig. 7.
There the average of the SS00 emissivity given by equation (30)
displays separated the expected soft-band X-ray contributions from
hydrogen and metals. The corresponding X-ray luminosity is

LXC,total = 4πn2
CcR

3
p

[
�XH(TCc) + ZC�XM(TCc)

]
. (50)

The above formula is just corrected for the effect of the shape
of �X; the variables that depend on the geometrical evolution (Rp,
TCc and nCc) are still undetermined as functions of the problem
parameters (n0, Ė, V∞P) and time. Such functional relation is a
consequence of the assumed bubble model. However, a great ad-
vantage of equation (50) is that it just depends on variables that are
either directly observable or spectroscopically derivable. It is clear
that the key issue is to find relationships between the central val-
ues of temperature and density and their spectroscopic estimators
(Section 3.3).
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On the purely theoretical side, if one also assumes the geometrical
growth given by W77, an analogue to the C95 X-ray formula follows

LXC,W77 = (3.25 × 1035 erg s−1)�XĖ
33/35
38 n

17/35
0 t

19/35
6 , (51)

where �X is the average of the SS00 emissivity. Since it is smaller
(for all T) than the constant value assumed by C95, the bubbles
evolve even more adiabatically and the use of the W77 model is a
safe assumption. This ensures complete consistency with the emis-
sivity function that we are using and our aim of incorporating addi-
tional physics.

3.2 Surface brightness

For a single power-law X-ray emissivity, �X = �α(ZC)Tα , the
surface brightness was decomposed (Appendix B) into three com-
ponents: a temporal component related to an intensity amplitude,
AC(t); a weighting emissivity that implicitly varies with time be-
cause of its dependence on TCc, λα = �α,−23Tα

Cc (though λα =
λ0 = 3ZC is a constant for the C95 model) and a spatial profile
that slowly varies with time, SC(s) [or �(ϑ) as a function of the
normalized temperature]. In terms of these components, σ C(s, t) =
AC(t)λαSC(s). Their respective model-independent expressions are
given by equations (B1)–(B3).

For the W77 evolutionary model, the amplitude factor is given
by

AC(t) = (1.05 × 1031 erg s−1 pc−2)Ė19/35
38 n

31/35
0 t

−23/35
6 . (52)

Because of the thermodynamical structure self-similarity, the
shape of the spatial profile (SC) in terms of the bubble normal-
ized projected radius (s/Rp) depends solely on the instantaneous
value of the central temperature, not on the dynamical evolution.
This implies that for a fixed TCc such a shape is the same for all
bubble models accounting for shell evaporation. Note that λα is
also fixed for a given TCc and the prescription of a particular bubble
model merely implies a scaling of the intensity amplitude. Thus,
the results here presented are very general and can be applied to
the overall time evolution of a single object as well as to different
objects with distinct parameters at a fixed age. As we will see, the
form of the assumed X-ray emissivity will play an important role
in the subsequent discussion.

Approximations for SC as a function of temperature were imple-
mented in equations (C9) and (C11) for a single power-law emis-
sivity and the realistic SS00 emissivity, respectively. The first one
allows us a straightforward evaluation, while the last one, more
elaborated, is necessary for a more robust discussion. In terms of s
∈ [0, Rcut ], the former becomes

SC�(s, α; ξf, ξi) =
(

1 − s2

R2
p

)−1/2

×
[
(1 − ξ )

1+2α
5 FC,C(1 − s, 1 − ξ ; α)

]ξf=max
(

s
Rp

,
Rs
Rp

)
ξi= scut

Rp

, (53)

where the square-bracketed quantity written in terms of the dummy
variable ξ is meant to be evaluated at the indicated limits (as the
result of a definite integral would), � indicates that we used a
pseudo-triangle approximation (Appendix C), max (s/Rp, Rs/Rp)
incorporates the reverse shock position and FC,C(τ, τf ; α) given by
equation (C8) is an algebraic expression that involves the arcsin
function. The central value of the spatial profile is obtained by
evaluating the above equation at s = 0. The upper limit for ξ then

becomes max(0, Rs/Rp) = Rs/Rp and we have that

SC�(0, α; . . .) = 5

1 + 2α

[(
TRs

TCc

) 1
2 +α

−
(

Tcut

TCc

) 1
2 +α

]
, (54)

where TRs = TCc(1 − Rs/Rp)2/5 is the temperature at the reverse
shock position according to some specific bubble model. When Rs

is ignored (which is equivalent to putting Rs = 0) as in the C95
X-ray luminosity model, TRs/TCc in the previous formula becomes
unity.

As a first step, we obtain the surface brightness corresponding
to the C95 X-ray luminosity model. Theoretically, this model is
equivalent to considering that the X-ray emission is proportional to
the emission measure, i.e. LXC = ZC�0EMC(α = 0, �X = ZC�0).
According to this, while interstellar bubbles present a practically
flat profile, superbubbles driven by the most massive SSCs exhibit
a notable limb brightening near the contact discontinuity due to
their more powerful mass and energy injection rates, which trans-
late into higher central temperatures. This is shown in panel (a)
of Fig. 8. The same panel also shows the direction of the spatial
profile expected time evolution for a fixed set of model parameters.
As time progresses, the profile becomes flatter and weaker due to a
continuous and slow2 decrease in the central temperature. However,
the energy injection rate is not fixed as it increases by a factor of
3 after 3 Myr (Leitherer & Heckman 1995). This implies that a
slight limb-brightening increment is expected for both bubbles and
star clusters at this age, when the first supernovae start to explode.
These results derived from our analytics and the ones presented
below (Fig. 9) can also be used to reconstruct the simulated X-ray
brightness profiles of Wrigge et al. (2005) for the Wolf–Rayet bub-
ble NGC 6888. In their work, the Garcı́a-Segura & Mac Low (1995)
bubble model was used and the required X-ray properties were ob-
tained by ad hoc adjusting the thermal conductivity coefficient in
order to vary TCc. We remark that the different stratification of the
ISM that they considered does not produce a divergence from the
analytical shape of our spatial profiles, since as it was previously
stated, the thermodynamical configuration of region C is essentially
the same. There are, however, two conspicuous differences with re-
spect to the W77 model: in their case (i) the spatial profile evolves
faster (TCc ∝ t−2/7 and nCc ∝ t−12/7) and (ii) the predicted size of
the bubble is not the same.

In panel (b) of Fig. 8, the C95 model is compared with one
that assumes an emissivity of the form �X = ZC�αT1/2, i.e. a
bremsstrahlung-dominated emission, which is a commonly used
approximation. The main difference between them is that the sec-
ond one practically does not show any increment in surface bright-
ness near the contact discontinuity. This is in better agreement with
observations of the superbubbles associated with the Rosette and
Omega Nebulae (Chu et al. 2003; Townsley et al. 2001, 2003) for
which no limb brightening was detected. One then might suspect
that the sharp peak predicted from a constant emissivity could be
an artefact. If an emissivity that decreases towards the cut-off tem-
perature is assumed, equation (53) reveals that the brightness is
more similar to the central one. Furthermore, this also applies to the
projected temperature (Section 3.3).

To constrain the effect of �X, we considered the SS00 X-ray
emissivity function and obtained the surface brightness profile for
the set of objects shown in Fig. 8. This test sample well covers the
temperature range in which bubbles are observed, from (a) to (f)

2 It is slow except for exceptionally short times (t � 1 Myr) and low densities
(n0 < 1 cm−3).
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Figure 8. Panel (a): X-ray spatial profiles for the C95 X-ray model with ZC = Z�. The lines scale uniformly with metallicity. From top to bottom of the
panel, the central temperatures corresponding to the lines are 3.09, 1.83, 1.08, 0.64, 0.38 and 0.18, in units of 107 K. If one assumes the W77 model, these
temperatures might correspond to objects with the following parameters: lines (a)–(d), SSCs with masses of 107, 106, 105 and 104 M� an age t = 3 Myr, i.e.
Ė38 = 3000, 300, 30 and 3 (Leitherer & Heckman 1995), respectively; line (e), OB association with Ė38 = 0.3 and line (f), W77 ‘typical interstellar bubble’
blown by a star with Ė38 = 0.0126. For all cases, n0 = 10 cm−3 and V8 = 1. The reverse shock position is not included in the calculation. The top arrow
indicates the direction of the profile time evolution for a fixed set of parameters (E38, n0). The bottom arrows show how the profile varies with the energy
input rate, the ISM density and the central temperature. Panel (b): spatial profile for cluster c in panel (a) when a constant emissivity (α = 0, solid line) and a
bremsstrahlung-dominated one (α = 1/2, dotted line) are considered. The respective pseudo-triangle approximations (Appendix C) are marked with squares.
The reverse shock position was included in these models.
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Figure 9. Spatial profiles in the soft band for the sample shown in Fig. 8. Here, the SS00 emissivity was considered. The contributions from hydrogen (dashed
lines) and metals (dotted lines) were separated. The solid lines represent the sum of both contributions. The dark lines show the profiles when Rs is included
in the calculations. The red lines are obtained when the reverse shock position is neglected. Note that by our definition, the bubbles in panels (a) and (b) are
not well developed (i.e. Rs/Rp > 0.4). None the less, they have high central temperatures; thus, the position of the reverse shock does not affect their X-ray
luminosity significantly (see Fig. 7).

the central temperatures are TCc = {3.09, 1.83, 1.08, 0.64, 0.38,
0.18} × 107 K. For the current analysis, it is convenient to use
formula (C11) – which gives the spatial profile as a function of
temperature – together with Table D2. Alternatively, one can use
Table D3 to numerically integrate instead of summing up. For this
option, the sum symbols in (C11) are replaced by λ0 SC#(s) with
λ0 = 3, SC#(s) = (5/2�0)

∫ ϑcut

min(ϑs,ϑRs)(ϑ
2 − ϑ−1/2)�X(ϑ, ZC)[(1 −

ϑ5/2)2 − s2/R2
p]−1/2dϑ and �0 = 3 × 10−23 erg s−1. The results are

shown in Fig. 9. We have that in the soft band the surface brightness

profile evolves as follows: it begins in a limb-brightening mode
for the hottest bubbles (TCc > 107 K), later it passes through an
‘unstable’ almost flat mode that occurs when the central temperature
is close to TCc ≈ 6.5 × 106 K (where the X-ray emissivity has an
absolute maximum for Z � Z�), and it ends in a limb-darkening
mode (centre brightening) for lower central temperatures (TCc ≈
1–2 ×106 K). At early ages, t6 � 1, the limb brightening can be
extremely strong due to both an increase in the main peak nominal
value and the visual effect produced by the relative closeness of the
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reverse and leading shocks. This last effect would give the central
region a void appearance, if it were not for the contributions of
regions A and B.

Finally, we found that the surface brightness was much smaller
in the hard band. For stellar blown bubbles, the hard-band emission
was practically negligible. In shape, the profiles were similar to the
one shown in Fig. 12.

3.3 Projected temperature

As it was indicated in Paper I, most of the superbubble X-ray emis-
sion is in the soft energy band because of the contribution of the
outermost layers with temperatures in the range of T ≈ 5 × 105–
106 K. However, the projected temperatures can be fairly larger
and more similar to those near the centre of the superbubbles. In
some cases, they can be of the order of 1 keV. Superbubbles with
hot interiors (T ≈ 107 K) have already been reported by Townsley
et al. (2001, 2003) and Dunne et al. (2003). In Fig. 10, we present
the projected temperature curves corresponding to Fig. 9. It follows
that according to the models, the spectra of shell-evaporating super-
bubbles could be more adequately described by a two temperature
plasma model: a hot component to account for the central part and
most of the bubble area, and a warm one to account for the outer lay-
ers. These theoretical temperature maps are independent from the
speed of the geometrical evolution because they were derived from
a ratio, see equation (39). For the hottest bubbles (i.e. when TCc �
107 K), TX(0) is a good measure of the average projected temper-
ature inasmuch as their temperature maps are quite flat almost up
to the contact discontinuity. Likewise, for ‘warm’ bubbles (TCc ∼
106 K), the projected central value is a good approximation up to
half of the projected size. Because of this, in what follows we will
indistinctly refer to the average projected temperature and TX(0) as
TXC.

For the C95 model, the temperature map can be obtained from
formula (53) with α = 1 normalized by itself with α = 0. The cen-
tral value can be obtained in the same way from equation (54). Its
low and high temperature limits are noteworthy: TXC → (1/3)TCc

as TCc � Tcut and TXC → TCc as TCc → Tcut. Here, the temperature
shift is an exclusive consequence of the thermodynamical structure
established by evaporation. Our weighting scheme considers addi-
tionally the effect of �X and predicts a central temperature (see
Appendixes B and C):

TXC =

ϑf=ϑcut∑
α,ϑi,ϑf<ϑRs

(
1

3 + 2α
λα+1ξ

3
2 +α

)ξ=min(ϑi,ϑRs)

ξ=ϑf

ϑf=ϑcut∑
α,ϑi,ϑf<ϑRs

(
1

1 + 2α
λαξ

1
2 +α

)ξ=min(ϑi,ϑRs)

ξ=ϑf

, (55)

where ϑ i and ϑ f are normalized to TCC upper and lower temperature
limits for which the power law with index α is valid. For a realistic
emissivity, the intervals and indexes are indicated in Table D2. The
sum starts on the interval in which TRs falls. This means that the
reverse shock position is embedded in the formula; none the less,
given that the projected temperatures at intermediate projected radii
are alike to the one obtained at the centre when Rs is neglected
(Fig. 10), it is also useful to remove its effect. This is accomplished
by setting ϑRs = 1 (i.e. Rs = 0). Note that as the coefficients λα

depend on metallicity so does equation (55). The value of TXC for
different central temperatures and abundances is shown in Fig. 11.
The best-fitting equations are also displayed. Note that the value
of TXC decreases as the metal abundance increases. This occurs

because the emission at lower temperatures increases with the metal
abundance.

According to our analytics (i.e. no observational artefacts), TXC

just depends on the central temperature. Nevertheless, it should not
be assumed to be TCc, because it is only a fraction of the later. It
should not be taken either as a temperature similar to those of the
outer layers. This is particularly important for interpreting observa-
tions of hot bubbles with TXC ≈ 107 K (see Section 6.2).

4 BU B B L E S W I T H O U T EVA P O R AT I O N

If the ISM encircling the superbubble owns an intrinsic strong mag-
netic field, the supposed dissemination of cold material to the hot
bubble interior could be inhibited (Band & Liang 1988; Soker 1994;
Dunne et al. 2003). The magnetic field prevails even after the ma-
terial in question has been trapped in the cold outer shell and their
components tangential to the contact discontinuity could critically
hinder the evaporative process. In this case, the expression for the
X-ray luminosity during the sweep-up phase is very similar to equa-
tion (10) in Paper I, but with a coefficient of 8.05 instead of 9.5 and
the proper correction for the reverse and main shock positions with
respect to the superbubble completely adiabatic stage.

In this case, the integral that gives the surface brightness is ele-
mental:

σC,nev(s) = AC,nev(t)�X,−23(T C, ZC)

×
⎧⎨
⎩
(

1 − s2

R2
p

)1/2

− Rs

Rp

[
1 − s2

max(s, Rs)2

]1/2
}

,

(56)

where

AC,nev(t) = 2 × 10−23(1.454)2 (γ + 1)2Ė2

4π2μ2
n(γ − 1)2V 6

∞P

Rp

R4
s

= (1.80 × 1030erg s−1pc−2)
n0Ė38

V 4
8

t−1
6 , (57)

and we have used the Koo & McKee (1992b) average post-shock
density. In this case, the average temperature of the shocked gas
is close to the temperature at the star cluster surface, T C ≈ Tsc,
because a fraction of the thermal energy is used to displace the
outer shell of swept-up interstellar material. For very fast winds,
this hot plasma is expected to emit in the hard X-ray band. The
corresponding surface brightness spatial profile, SC,nev, is given by
the quantity between square brackets in equation (56). It is presented
in Fig. 12.

5 A COMPREHENSI VE X -RAY PI CTURE

In Paper I, we used the total X-ray luminosity to compare the emis-
sion of superwinds and their associated superbubbles. In this paper,
the corresponding X-ray models have been improved by refining the
analytics and incorporating explicitly a realistic emissivity function
that separates the contributions from hydrogen and metals. Here,
we give a description of how to proceed in order to obtain the theo-
retical X-ray picture. All the parameters appearing in our formulae
are expected to be derived observationally. The models can handle
observational artefacts as long as they could be parametrized as
power laws or series in the temperature, as in Mazzotta et al. (2004,
see Sections 2.3 and 3.3).

The theoretical diffuse X-ray luminosity of the star cluster core
can be obtained from equation (32) or (33). The theoretical X-ray
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Figure 10. Projected temperatures in the soft band for the bubbles shown in Figs 8 and 9. The hottest bubbles tend to present a more uniform profile. However,
the ratio of their projected temperatures to the central one is lower. In spite of this, in some cases their projected temperatures can be of the order of 1 keV.
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Figure 11. Bubble projected temperature in the soft band as a function of
TCc and metallicity. Dashed line: ZC = 0 Z�, solid line: ZC = Z� and dotted
line: ZC = 5 Z�. The reverse shock position was neglected. Analytical
expressions for the best-fitting lines (squares) to the hydrogen component
and the solar metallicity case are shown. TXC7 and T7 are the projected and
central temperatures in units of 107 K, respectively. As expected from the
shape of the emissivity function, the projected temperature decreases with
increasing metallicity.

luminosity of the free wind is ∼25 per cent that of the core and
its extension can be estimated from equation (A7). The superwind
X-ray surface brightness profile is given by equations (36) and (37)
which may be helpful to extrapolate the profile of the observed
diffuse emission. Estimators of the wind spectroscopic temperature
(TX) are given by equations (40) and (41). All the estimators yield
that for solar metallicity TX is very close to the core central temper-
ature, which is given by equation (21). The last estimator depends
explicitly on Z. As the polytropic index was left as a free param-
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Figure 12. Surface brightness spatial profile for a superbubble generated by
a cluster of 105 M� when no evaporation occurs. Here, t6 = 10 (Ė38 = 30),
n0 = 10 cm−3 and V8 = 1. The solid line traces the profile considering the
reverse shock position. The dashed line indicates how the inner region
would look if the reverse shock is neglected. A slight limb brightening near
the reverse shock is expected together with a smooth transition to a limb
darkening towards the contact discontinuity.

eter, these models admit a large variety of wind configurations, as
explained in Section 2.

The bubble X-ray luminosity can be obtained from equation (51)
if the W77 model is assumed; however, our approach is more gen-
eral. For bubbles, once that the observational data would have been
reduced and analysed, one of the first things to do for comparing
with any model that considers thermal evaporation from the outer
shell is to derive the theoretical central temperature, TCc, from the
one obtained for the observed spectrum. This can be done using the
formulae in Fig. 11 or equation (55). With TCc, the shape of the the-
oretical surface brightness profile is automatically known because
it depends just on the former. For a power-law X-ray emissivity,
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Figure 13. Combined X-ray surface brightness of regions A, B and C. In panels (a), (b) and (c), the superbubble is blown by a 1000 km s−1 wind generated
by a cluster with a radius of 1 pc and a mass of 105 M�. The ISM density is 10 cm−3 and Z = ZC = Z�. Panel (a) shows a shell-evaporating bubble with
Ė38 = 30 and t6 = 3 (Rp ≈ 161 pc and TCc ≈ 1.08 × 107 K). This bubble corresponds to line (c) in Fig. 9, and thus, it exhibits limb brightening near Rp.
In panel (c), the same Ė38 and t6 are used but evaporation is not present; hence, the bubble has the same size than in panel (a), but it is hotter and exhibits
limb darkening towards Rp. Its average temperature is T C ≈ 4.42 × 107K. Panel (b) shows the effect of age and the smaller energy deposition rate at early
times (Leitherer & Heckman 1995). The used parameters are Ė38 = 10 and t6 = 0.75. This produces a smaller bubble with Rp ≈ 56 pc; however, the bubble
temperature is very similar (TCc ≈ 1.06 × 107 K) to that of the bubble in panel (a). In panel (d), the surface brightness profile is almost flat because the ISM
has a larger density and the star cluster is more extended and less massive: the cluster has a mass of 104 M� and Rsc,pc = 10, V8 = 1, t6 = 3, E38 = 3, Z = ZC

= Z�, n0 = 100 cm−3, Rp = 64 pc and TCc = 7.3 × 106 K.

the surface brightness profile can be obtained from equation (53).
For a more general function, equations (C11) and (C12) can be
used. Particularly, we have calculated the profiles that correspond
to the X-ray emissivity tabulated by Strickland & Stevens (2000).
These profiles are shown in Fig. 9 and can be used as a reference.
Additionally, the derived value of TCc can be helpful to constrain
the parameter space of the bubble model that one is considering, or
well, to derive some parameters in order to compare them with the
observations. In this regard, TCc, the observed X-ray luminosity and
the model-independent X-ray luminosity given by equation (48)
can be used to compare the observationally derived electron density
with the one that follows from a shell-evaporating bubble model.
All of this can help to decide whether or not a specific model is
adequate to describe the observations.

The X-ray luminosity of bubbles without evaporation was given
in Paper I. The corresponding surface brightness is given by equa-
tions (56) and (57). The temperatures of their hot interiors are similar
to the temperatures at the edges of the star clusters that generate
them, equation (18).

The main conclusion of our previous paper was that in X-rays,
the superwind contribution dominates just for compact and pow-
erful SSCs while the bubble dominates in the rest of the cases.
Nevertheless, that conclusion was derived from the cumulative
X-ray luminosity, which is not directly observable, but estimated
from the photon counts on the detectors. What is directly observed
is the surface brightness. Even when the bubble could dominate
by cumulative X-ray luminosity; generally, its emission would be

diluted in a volume much larger than that of the SSC, and as a
consequence, its surface brightness would be smaller than that of
the superwind (as long as the objects could be spatially resolved).

In Fig. 13, we show the combined surface brightness of a fast
superwind (V8 = 1) and the bubble that it blows. Panels (a), (b) and
(d) correspond to an evaporative bubble, and panel (c) to a bubble
for which evaporation has been suppressed. In panels (a), (b) and
(c), the cluster mass is 105 M�, its radius is 1 pc and the ISM has
a density of 10 cm−3. Panels (a) and (b) represent the same bubble
at different age. Its relative surface brightness (with respect to that
of the wind) decreases as it expands. Since the surface brightness
of the superwind goes as Ė2 and that of an evaporative bubble goes
as Ė

19/35
38 (according to the W77 model), the later effect is enhanced

by the increment of Ė by a factor of ∼3 after 3 Myr (Leitherer
& Heckman 1995). Similar arguments apply for bubbles without
evaporation. The parameters used in panel (a) are the same that
were used in panel (e) of fig. 6 in Paper I, where it was shown
that the bubble dominates by total X-ray luminosity.3 Here, we
demonstrate that because of the core compactness, the superwind
dominates in the X-ray picture. In panel (c), the bubble has the
same parameters that in panel (a), but evaporation is not present.
The same dynamical model is assumed; thus, the bubble has also

3 The X-ray luminosity estimated in Paper I has to be corrected by a factor
of ∼2 to account for the SS00 realistic emissivity function. However, this
does not affect the current discussion.
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the same size, but it is hotter due to the thermalization process at
the reverse shock. Finally, in panel (d) we show the interaction that
results when the ISM has a larger density and the cluster has a larger
size and a smaller mass. For the assumed parameters, the bubble
dominates and the profile is almost flat.

Thus, for compact (when Rsc is up to several parsec) and pow-
erful (Ė38 � 1) clusters, the central emission is dominated by the
cluster wind (region A). Around the core, there is a still bright and
rapidly decreasing component due to the free wind (region B), but
most of the brightness at radii larger than a few times Rsc and up to
the reverse shock comes from background emission from the super-
bubble (region C), as the contribution from the free wind becomes
negligible in comparison. The rest of the projected emission (r ≥
Rs) comes from the superbubble itself and adopts the profiles shown
in Fig. 9 as it evolves with age.

For powerful but extended, or compact but less powerful, clusters,
the brightness transition from one region to the next is smoother
because the central peak produced by the wind emission becomes
smaller and wider. Additionally, high ISM densities also contribute
to smooth out the transition, since the brightness of region C depends
on n31/35

0 (W77). Only when this circumstances are enhanced, the
bubble surface brightness can be comparable to or even higher than
that of the superwind.

Nevertheless, there is an additional factor that one must consider.
If the evaporation process is inefficient, the bubbles will show limb
brightening, but the overall amplitude of their emissions will de-
crease (see Sections 3.2 and 6.2). In such a case, the corresponding
pictures would look similar to those shown in panels (a) and (b)
of Fig. 13. This means that if the integration times are not large
enough, the observed filling factors will be small, even for young
normal clusters (i.e. for clusters that do not qualify as SSCs). This
would translate into observing centre brightening or even an ap-
parent spatial disconnection between the X-ray emission and the
motion of the outer shell.

6 C OMPARISON W ITH OBSERVATIONA L
DATA

6.1 Nearby clusters

Here, we give a brief summary of the clusters analysed in Paper I.
In Table 1, we give the X-ray luminosities obtained from formula
(33) for the same sample. The first six columns indicate the ob-
served values. The last three give the results from our analytics.
The contributions from hydrogen (LXA,H) and metals (LXA,M) were
separated. The amplitude of the central surface brightness (AAB) is
given in the last column.

NGC 3603. Using colour–magnitude diagrams for the massive
stars contained within the core, Sung & Bessell (2004) determined
an age of τ SC ≈ 1 ± 1 Myr for this cluster. Given the remarkable

Table 1. Comparison with nearby clusters.

Object(a) T
(b)

c R
(c)
sc Ė (d) Z (e) L

(f)
XA,obs L

(g)
XA,H L

(h)
XA,M A

(i)
AB

(keV) (pc) (1038 erg s−1) (Z�) (1034 erg s−1) (1034 erg s−1) (1034 erg s−1) (1034 erg s−1 pc−2)

NGC 3603 3.1 ± 0.7 0.71 1.7 1 1.6 0.22 0.27 0.80
Arches 1.5 ± 0.2 0.20 1.1 4 2.0 − 4.0 0.41 3.90 430
Quintuplet 2.4 ± 0.5 1.0 2.6 1 1.0 0.71 1.02 1.44

(a): object name; (b): central temperature; (c) star cluster radius, (d): mechanical luminosity; (e) metallicity; (f): observed X-ray luminosity and (g)–(i):
predicted X-ray luminosity contributions from hydrogen and metals and amplitude of the central surface brightness. The respective units are indicated between
square brackets.

similarity of the spatial distribution of its stellar content with that
of R136, the core of 30 Dor in the LMC (Moffat, Drissen & Shara
1994), we adopt a mass of 1.7 × 104 M� (see Paper I). This corre-
sponds to an energy deposition rate of 1.7 × 1038 erg s−1 (Leitherer
& Heckman 1995). Moffat et al. (2002) studied the X-ray emis-
sion of this cluster and determined a core radius of 0.71 pc. They
reported a diffuse X-ray emission of 2 × 1034 erg s−1 in the 0.5–
10 keV band. Their best-fitted spectra have temperatures TkeV ≈
3.1 keV for the core and kT ≈ 2.1 keV for the outer region. They also
reported an approximately Gaussian-shaped X-ray surface bright-
ness, same that is in agreement with equation (36). The utility of
having theoretical estimations for the cumulative X-ray luminosity
and surface brightness profiles of star clusters is manifest from that
work: its authors used the exterior profile of the diffuse X-ray emis-
sion to extrapolate to that of the cluster core, where the high density
of point sources made less reliable its direct estimation; even after
the use of removal algorithms.

Arches cluster. The Arches cluster is a very compact and young
star cluster. Figer et al. (1999b) determined its age to be τ SC ≈
2 ± 1 Myr. Adopting a low-mass cut off of 1 M�, they estimated a
total stellar mass of MSC ≈ 1.1 × 104 M�. This corresponds to an
energy deposition rate of Ė38 = 1.1 (Leitherer & Heckman 1995).
The cluster radius is ∼0.2 pc (Figer, McLean & Morris 1999a). Its
X-ray emission was studied by Law & Yusef-Zadeh (2004), who
reported a total X-ray luminosity of (0.5–1.0) × 1035 erg s−1 with
Z = 4–5 Z�. Just 40 per cent of this is diffuse emission, being
the rest due to point sources. As in Paper I, we adopt the Law &
Yusef-Zadeh (2004) one-temperature plasma model; thus, TkeV ≈
1.5 keV.

Quintuplet cluster. For the 1 pc radius Quintuplet cluster, Figer
et al. (1999b) determined a mass of MSC ≈ 8.8 × 103 M� using
again a low-mass cut off of 1 M�. The cluster age has been es-
timated to be τ SC = 4 ± 1 Myr (Figer et al. 1999a). According
to the Leitherer & Heckman (1995) evolutionary models, at this
age, supernovae have already started to contribute to the wind en-
ergy budget. Hence, we adopt Ė = 2.64 × 1038erg s−1. Law &
Yusef-Zadeh (2004) studied the X-ray emission of this cluster with
the aid of Chandra. Their best-fitted spectrum for the cluster core
corresponds to a single-temperature solar-metallicity plasma with
TkeV = 2.4 keV. They observed an X-ray luminosity of ∼1 ×
1034 erg s−1.

Thanks to the additional physics synthesized in equations (32)
and (33), i.e. the direct incorporation of a realistic X-ray emissivity
function and the projected temperature, we reach a better agree-
ment between the theoretical and observed luminosities. Their ra-
tios are now reduced to factors of <2 for the case of the Arches and
Quintuplet clusters. A comprehensive interpretation of the X-ray
emission of these clusters can be found in Wang et al. (2006). For
the case of NGC 3603, the cluster wind X-ray emission accounts for
∼30 per cent of the observed one. This prediction agrees with the
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results obtained by Li et al. (2006). Their observed and simulated
intensity profiles also agree with the general form predicted by
equation (36), although each with different indexes α1 and α2. The
later difference is due to the exponential stellar distribution used
in their hydrodynamical model. However, our predicted bulk X-ray
luminosity is consistent with theirs within a factor of ∼2, since the
rapid decrease in the gas density warrants that most of the X-rays
come from within the star cluster core and its vicinity. Also, note
that, as they have pointed out, non-CIE effects become important in
the supersonic wind region.

The luminosity of the metals surpasses that of hydrogen for the
case of the Arches and Quintuplet cluster, whereas for NGC 3603
they are comparable. The effect of compactness and a relative lower
temperature can be appreciated in the case of the Arches cluster.
This object has a radius just 3.5–5 times smaller than those of the
other clusters in the sample, and its temperature is about 1–1.5 keV
lower. Comparatively, such differences do not affect too much the
X-ray luminosity, but they have an important impact on the sur-
face brightness: the Arches cluster diffuse X-ray emission is more
than two orders of magnitude brighter in projection than those of
NGC 3603 and the Quintuplet cluster, albeit its total bolometric
X-ray luminosity is just approximately three times larger. This later
factor is mainly due to the Arches higher metallicity.

6.2 Bubbles: the case of M 17, magnetically hampered thermal
conduction?

M 17 – also known as the Omega Nebula – is powered by a young
open cluster with an age of ∼1 Myr. The nebula has an overall
diameter of ∼10–12 pc, and coinciding with it, diffuse X-ray emis-
sion has been detected by Chandra (Townsley et al. 2003). Dunne
et al. (2003) have studied its properties using a previous data set
from a ROSAT observation. Their data sets have similar parame-
ters. The best-fitting spectra are described by a single temperature
plasma with Tspec ≈ 0.7 keV, Z = Z� and an rms electron density of
ne ≈ 9 × 10−2 cm−3. From the observed bubble size (they assumed
a filling factor f f = 0.5), expansion velocity and stellar content,
they derived that n0 ≈ 40–60 cm−3, Ė38 = 0.1 and t6 ≈ 0.13. Using
these parameters, they made a comparison with the W77 model.
They found that nCc ≈ 0.2–0.4 cm−3, TCc ≈ 5.0–5.6 × 106 K and
LXC ≈ (3–5) × 1035 erg s−1.

The predicted X-ray luminosity differs by a factor of 120–200
with the observed one, LXC,obs ≈ 2.5 × 1033 erg s−1. To explain these
discrepancies, Dunne et al. (2003) proposed the total inhibition of
the evaporative process by the strong magnetic field (100–500 μG)
that permeates M 17 (Brogan et al. 1999). They required the winds
to be significantly clumped and homogeneously mixed in order to
match the predicted post-shock temperature (8 × 107 K) with the
spectroscopically derived one. An alternative explanation is that
while the magnetic field might render the evaporation ineffective, it
would not be able to completely avoid it, allowing a smaller fraction
of cold gas to mix with the hot bubble interior. In this scenario,
the extrapolated central temperature of the bubble would be more
similar to the post-shock temperature. In fact, from our analysis, we
have that for their value of Tspec the almost central temperature of
the evaporative bubble is ≈2 × 107 K (see Fig. 11), which makes
the discrepancy with the full-evaporative case predicted TCc even
worse.

Nevertheless, if we ignore the particular prescribed dynamical
evolution and just consider a general shell-evaporating bubble, we
have that TXC ≈ Tspec. In such a case and according to Fig. 11
and equation (55), the value of TXC derived by Dunne et al. (2003)

would correspond to a bubble with TCc ≈ 4–5TXC (the upper bound
considers the reverse shock position). This increment of temperature
with respect to the one derived from the W77 model has to be
compensated by the same decrement in density. Since LX ∝ n2

Cc, this
would reduce the predicted X-ray luminosity by a factor of 16–25.
If additionally, we consider that the C95 X-ray model overestimates
the value of LX by a factor of ∼2 (for our derived TCc, see Fig. 7) with
respect to the averaged SS00 emissivity, we get a correction factor
of ∼32–50, which would bring LX acceptably close to the observed
value. The density near the centre would also be similar to the value
derived by Dunne et al. (2003). This would require a decrease in
the classical thermal conduction coefficient (Spitzer 1956) of about
two orders of magnitude. As it was indicated in Section 4, such
a drastic change is possible when strong (>1 μG) magnetic fields
are involved (see Markevitch et al. 2003, and references therein).
Such magnetic fields can hamper the thermal conduction process
and establish steeper temperature profiles. Note that this effect is
independent from the other observationally deduced parameters
(n0, Ė38 and t6) because the bubble size and internal pressure are not
affected by the correction factors introduced above (see Section 3).

The previous analysis remarks the relevance of the projected tem-
perature as a diagnostic tool, as well as the necessity of a broader-
scope assessment of the thermal conductivity efficiency for the case
of bubbles.

7 SU M M A RY

Our findings and their immediate consequences are as follows.

(i) A new and simple star cluster wind model has been developed.
Assuming a polytropic equation of state, we reproduced the effect
of radiative cooling on the hydrodynamical profiles, in consonance
with previous numerical calculations. Moreover, the door has been
left open to further applications like the parametrization of other
effects, the constraining of the parameter space through threshold
lines and the analysis of other branches of the solution.

(ii) The superwind X-ray luminosity has been calculated us-
ing a realistic X-ray emissivity that allowed the separation of
the contributions from hydrogen and metals. Good agreement was
obtained when we compared with observational data. Also, transfor-
mation laws to include very general emissivity functions and com-
pletely characterize the global properties of the models have been
given.

(iii) We have calculated the corresponding surface brightness and
shown that although the adiabatic superwind model predicts a very
extended X-ray emitting volume, the X-ray bright SSC cores are
expected to be observed surrounded by compact and faint haloes
(if their bubbles are not considered). The weighted temperatures
associated with the cluster cores were also obtained.

(iv) An analogue to the C95 X-ray luminosity model has been
obtained considering a realistic emissivity function. The model
is independent of the assumed dynamical evolution for bubbles
with Rs/Rp ≤ 0.4. Significant deviations were observed with re-
spect to the C95 model when TCc → 106 K. It was also found
that for underdeveloped bubbles (when the ratios of the reverse
and leading shocks are >0.4) with extrapolated central tempera-
tures on this range, the bubble X-ray luminosity can be drastically
reduced by the relative closeness of the reverse and main shock
positions.

(v) The X-ray surface brightness of evaporative bubbles has
been obtained in terms of elementary functions by introduc-
ing a pseudo-triangle approximation. It has been shown that
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limb-brightening, flat and limb-darkening modes are all possible
according to the value of the central temperature. Because we have
separated the self-similar spatial profiles from what we call an in-
tensity amplitude and a weighting emissivity factor, they are valid
for all evaporative models based on the classical thermal conduction
theory.

(vi) It has been demonstrated that moderately hot, well-
developed shell-evaporating bubbles (TCc ≈ 106 K) have X-ray
weighted temperatures somewhat similar to their central ones
(TXC ∼ 0.5–1TCc) in major fractions of their projected areas. On
the other hand, very hot bubbles (TCc � 107 K) are expected to have
point-wise projected temperatures of about 0.25–0.50 TCc. Never-
theless, the hottest bubbles can still have projected temperatures of
the order of 1 keV. Since TXC is a measure of the temperature at
which the plasma is emitting the most, it is important to account for
the difference between this and the actual temperature at different
radii. This can also be useful to evaluate the efficiency of the thermal
evaporation process.

(vii) We also studied the case of when the evaporative process
is totally inhibited. In this case, the bubbles have very hot interiors
since their temperatures are similar to the post-shock temperature.
Their surface brightness was also obtained.

(viii) We have assembled the X-ray brightness models and pre-
sented a very descriptive and comprehensive X-ray picture of the
interaction of the superwind with the ISM.

All these tools are expected to be helpful at the time of comparing
the models with the observations.
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APPENDI X A : SUPERWI NDS X-RAY
LUMI NOSI TY

It is convenient to initially adopt a constant X-ray emissivity
�X = �0 and express the integral (24) in terms of the velocity

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 394, 1284–1306
Downloaded from https://academic.oup.com/mnras/article-abstract/394/3/1284/1065354
by Instituto Nacional de Astrofisica, Optica y Electronica user
on 06 June 2018



X-ray emission from massive star clusters and bubbles 1301

instead of the radius. The related quantities will be labelled with the
subindex ‘0’.

A1 Initial formalism

Region A

Substituting (24) and (1) in (16) and introducing the variables x =
U′/U, z = −3(2η + 1)U and f = (1 − zx), we get that LXA0 =
XA(I1 + I2) with

I1 = 1

2
U 3/2

∫ 1

0
�0x

1/2f − 10
3 dx, (A1)

I2 = −2(2η + 1)U 5/2

∫ 1

0
�0x

3/2f − 13
3 dx, (A2)

and

XA = D5
1PĖ

2

πμ2
nV

6
∞PRsc

. (A3)

In what follows f will be called a ‘base’, for reasons that will
be evident in brief. The above integrals can be expressed in terms
of Gauss hypergeometric functions (see e.g. Whittaker & Watson
1996; Lebedev 1972):

2F1(a, b; c; z) = �(c)

�(b)�(c − b)

×
∫ 1

0
xb−1(1 − x)c−b−1(1 − zx)−adx,

(A4)

where � is the Gamma function. It follows that a1 = 10/3, b1 =
3/2, c1 = b1 + 1 and a2 = a1 + 1, b2 = b1 + 1, c2 = b1 + 2. Then,

LXA0 = XA�0U
3/2

[
1

2b1
F1 − 2

(2η + 1)

b1 + 1
UF2

]
. (A5)

Above, to simplify the notation we have used the label of each
family of indexes to make reference to the corresponding hyper-
geometric functions: F1 = 2F1(a1, b1; c1; z) and F2 = 2F1(a2, b2;
c2; z). We will keep this custom in what follows. Each U ∈ [0, 1/

(2η + 1)] yields the value of LXA0 at the radius indicated by (16).
Alternatively, one may use the temperature T = Tc(1 − U) ∈ [Tc,
Tsc] as the independent variable.

For η = 3
2 , the total luminosity can be approximated by

LXA0,total = (
1.12 × 1034 erg s−1

) �X,−23(T , Z)Ė2
38

Rsc,pcV
6

8(
9.63 × 1033 erg s−1

) �X,−23(T , Z)Ė2
38

Rsc,pcT
3

keV

,

(A6)

where we evaluated (A5) at U = Usc and took �0 = �X(T , Z). The
value of the emissivity function for the reference temperature T̄ is
taken from the SS00 tables.

Region B

For quasi-adiabatic superwinds, η ≈ 3
2 for r ≥ Rsc and U ∈ [Usc,

1). In principle, superwinds with V∞P of the order of 1000 km s−1

have very extended X-ray envelopes, since the connection between
temperature and radius is given by

R = D2

(
1 − T

Tc

)−1/4 (
T

Tc

)−η/2

. (A7)

Nevertheless, the outermost layers meagrely contribute to the
luminosity, since most of the emission from this region comes from
a compact shell of gas around the star cluster. Thus, it suffices
to estimate the external X-ray luminosity and surface brightness
of quasi-adiabatic superwinds because those of superwinds in the
radiative regime would be alike, despite the effective cropping of
their X-ray emitting envelopes by radiative cooling. Introducing the
variables x = U′/Ul and z = Ul , we find that

LXB0 = XB�0U
−3/4
l

[
η

2(b4 + 1)
UF3 − 1

4b4
F4

]Ul=U

Ul=Usc

, (A8)

with a4 = − η/2, b4 = 3/4, c4 = b4 + 1 and a3 = a4 + 1, b3 = b4

+ 1, c3 = b4 + 2 and

XB = Ė2

πD2μ2
nRscV

6
∞P

. (A9)

The velocity at the cut-off radius is Ucut = (1 − Tcut/Tc). For fast
winds Ucut ≈ 1. Accordingly, we can replace the hypergeometric
functions with their asymptotic limits using the Euler beta function
and the identity �(v)�(1 − v) = π/sin(πv):

limz→1− 2F1(a, b; c; z) = �(c)�(c − a − b)

�(c − b)�(c − a)

= �(c)

�(c − a)�(a)

π

sin(πa)
. (A10)

Then, for η = 3
2 , F3 and F4 can be substituted by

limz→1− F3 = 2−3/2π,

limz→1− F4 = 3(2−3/2π ).
(A11)

Combining these equations with (A8), we obtain that

LXB0 ≈ 1

4
LXA0. (A12)

This luminosity comes from a very large volume. Since radiative
cooling brings the X-ray cut-off temperature closer to Rsc, the actual
emitting region is more compact. Consequently, the contribution of
the free wind is smaller. This conclusion does not change when the
SS00 emissivity is considered, as can be shown using the transfor-
mation laws given below and consulting the numerical results of
Paper I. Because of this, we will focus on region A, but providing a
general formalism to account for region B if it is desired.

A2 Transformation laws

Before proceeding any further, we will establish laws for transform-
ing equations (A5) and (A8) such that they can handle more general
X-ray emissivity functions with explicit dependence on metallicity.
For this reason, �0 was kept intentionally inside of the integrals
(A1) and (A2). These laws can be used to calculate other integral
properties of the superwind such as its mass and energy within a
certain volume. The laws also apply for bubbles.

Let a′, b′, α and �a′ , �b′ , �α be arbitrary constants. The follow-
ing transformations apply to (A1) and (A2) and similar integrals
like those for region B and C:

Law I. If �X = �α f α then the transformation a → a −α applies
for the leading index and �0 → �α for each term.4

4 In the more general case, �X = �X(f ), the Einstein summation convention
can be applied to express the function as a series in f. Similar arguments are
valid for the other two laws.
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Law II. If �X = �αf
′a′

with f ′ = (1 − xz′) and z′ independent
from z, then 2F1 → FA, where FA is the Appell hypergeometric
function which has two bases (f , f ′) and two leading indexes (a,
−a′):

FA(a, −a′, b; c; z, z′) = �(c)

�(b)�(c − b)∫ 1

0

xb−1(1 − x)c−b−1f −af a′
dx.

(A13)

Again, �0 → �a′ applies for each term.
Law III. If �X = �b′xb′

then we need to use first the trans-
formations b → b + b′ and c → c + b′ and then �0 →
�(c − b)�(b)/�(c)�b′ for each term.

Since a, b and c, α and a′ are mutually independent, we can
apply the three laws simultaneously if it is required. Because all the
hydrodynamical variables are functions of f , f ′ and x (or u), these
laws suffice to calculate any integral property.

In this paper, we used them to calculate the X-ray emission as-
suming a realistic �X. This was done as follows: considering the
more general case �X = ∑

�αT
α , where �α are constants that

can scale with metallicity (see Table D2) and each α ∈ [−4, 4],
we applied Law II to the quantity between square brackets in (A5)
and proceeded to expand it rationally around U = 0 (after dividing
by Tα

c ) recurring to admissible hypergeometric transformations (see
the references in Section A1). We used a (0,2) Padé approximant
to make the rational approximation around 0. This warrants a co-
incidence of up to the second order with the Taylor expansion of
the original function and provides an accurate approximation for
large values of η, since Usc = 1/(2η + 1). To account for small
values of η and the effect of the exponents of the power laws, we
later introduced two curvature matching filters. The next expression
valid on U ∈ [0, 1/(2η + 1)] was obtained:

FA(η, α, U ) =
350 (1 − U )

α
30

[
1 + η2(8η+1)

5(2η+1) U 2
]4/10

9
(

350
3 + φ1U + φ2, U 2

) , (A14)

where

φ1(η, α) = 70(α + 28η + 14) (A15)

and

φ2(η, α) = 17α2 + α(501 + 952η) + 9528η(1 + η). + 2382.

(A16)

The quantity between parenthesis on the numerator of equa-
tion (A14) is a matching filter of the form (T/Tc)b that corrects
for the curvature introduced by α. Likewise, the quantity between
square brackets is a filter of the form [1 − g(η)Ub]c that corrects for
the curvature introduced by η > 0.3. The filter parameters were ob-
tained by minimization of the relative error of the approximation.
For the SS00 emissivity function, we always obtain an accuracy
better than 5 per cent. In general, the same applies for all emissivity
functions with α ∈ [−4, 4] provided that η ≥ 3/2. This ensures
a good coverage of the radiative wind case. For the most extreme
combination of parameters, we are considering, i.e. for η ≈ 0.3 and
α ≈ 4, the accuracy is ∼15 per cent.

From equation (A14) and Law II, it follows that the cumulative
X-ray luminosity is

LXA(η, {α}, U ) = XAU 3/2
∑

α

FA(η, α,U )�αT
α

c , (A17)

where XA is given by equation (A3).

APPENDI X B: EVA PORATI VE BU BBLES
SURFAC E BRI GHTNESS

Just for convenience, we assume initially an X-ray emissivity func-
tion with a power-law dependence on the temperature, �X = �α

Tα , where the constant �α might or might not scale with metallicity.
We then express all the relevant variables of the evaporative model
(Section 3) in terms of the ratio of the point-wise temperature Tc to
the central value: ϑ = Tc/TCc. From equations (46) and (47), one
has that r = Rp(1 − ϑ5/2), nC = nCcϑ

−1, s = Rp(1 − ϑ5/2
s ), scut =

Rp(1−ϑ
5/2
cut ) and Rs = R(1 − ϑ

5/2
Rs ). The surface brightness can then

be separated into a temporal amplitude, AC; a weighted emission
factor, λα and a spatial profile �(s) – between two reference points
si and sf –that implicitly but slowly changes with time, such that
σ C = AC(t)λα�(ϑ i; ϑf ) with

AC(t) = 2Rpn
2
Cc�1, (B1)

λα = �aT
α

Cc

�1
= �α,−23T

α
Cc (B2)

and

�(ϑs, α; ϑi, ϑf ) =
∫ ϑf

ϑi

(
5
2

)
ϑα(ϑ2 − ϑ−1/2)√

(ϑ5/2
s − ϑ5/2)(2 − ϑ

5/2
s − ϑ5/2)

dϑ,

(B3)

where �1 = 10−23 erg cm3 s−1. Note that ϑ i > ϑ f because the
bubble temperature gradient is negative.

The integral above can be expressed in terms of Appell hyperge-
ometric functions FA:

�(ϑs, α; ϑi, ϑf ) =
[

ϑ
1
2 +α

(2ϑ
5/2
s − ϑ5

s )1/2

×
(

ϑ5/2

b1 + 1
FA2 − 1

b1
FA1

)]ϑ=ϑf

ϑ=ϑi

,
(B4)

where b1 = 1
5 + 2

5 α, FA1 = FA[1/2, 1/2, b1; b1 +
1; ϑ5/2/ϑ5/2

s , ϑ5/2/(2 − ϑ5/2
s )], and similarly, FA2 = FA [1/2, 1/2,

b1 + 1; b1 + 2; ϑ5/2/ϑ5/2
s , ϑ5/2/(2 − ϑ5/2

s )]. For a single power-law
X-ray emissivity, the surface brightness spatial profile in terms of
the temperature is

σC(ϑ, t) = AC(t)λα�[ϑs, α; min(ϑs, ϑRs ), ϑcut]. (B5)

In terms of the projected radius s, we have that

σC(s, t) = AC(t)λαSC[s, α; max(s, Rs), Rcut]. (B6)

In the last formula, we used the transformations indicated at the
beginning of this appendix to go back to the spatial coordinate; thus,
�(ϑ s . . .ϑ ref ) → SC(s, . . . , sXref). For the singular cases – when
both arguments of the minimum or maximum function are the same
– we define min(a, a) = max(a, a) = a. For a realistic emissivity
expanded as a power series, equation (B5) immediately transforms
into

σC(ϑs, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AC(t)
ϑf=ϑcut∑

α,ϑi,ϑf<ϑRs

λα ×

�[ϑs, α; min(ϑi, ϑRs ), ϑf ], ifs ≤ Rs;

AC(t)
ϑf=ϑcut∑

α,ϑi,ϑf<ϑs

λα ×

�[ϑs, α; min(ϑs, ϑi), ϑf ], otherwise;

(B7)

here, ϑ i and ϑ f are, respectively, the upper and lower temperature
limit for which the power law with index α is valid.
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Equations (B4)–(B7) and their analytical properties are enough
to calculate the surface brightness spatial profile. Nevertheless, we
still need closed algebraic formulae for evaluating them swiftly and
accurately. They are obtained in the next appendix.

APPENDIX C : H YPERGEOMETRIC
PSEUDO-TRIANGLES

Consider the negative of the quantity between the big parenthesis
in equation (B4) evaluated separately at the end points while con-
sidering a single power-law emissivity and ignoring temporally the
reverse shock position:

Fc(ϑ, ϑs; α) =
(

5

1 + 2α
FA1 − 5

6 + 2α
ϑ5/2FA2

)∣∣∣∣
ϑf

ϑs

, (C1)

where ϑ f is a reference temperature below ϑs(rf > s). For a single
power law rf = Rcut. We get then a pair of functions that we express
in terms of the variable τ = ϑ5/2

s = (
1 − s/Rp

)
FC,H(τ ; α) =

5
1+2α

FA1

(
", 1, τ

2−τ

)
− 5

6+2α
τFA2

(
", 1, τ

2−τ

)
,

(C2)

FC,C(τ, τf ; α) =
5

1+2α
FA1

(
", τf

τ
, τf

2−τ

)
− 5

6+2α
τfFA2

(
", τf

τ
, τf

2−τ

)
.

(C3)

At τ = τ f , the two functions above take the same value, since τ f

is the cut-off value for the emission with temperature slope α. By
symmetry, the functions in question also take the same value at the
limit τ → 1−. The simplest way to prove this is to find the primitive
function of the integrand in equation (B3) in spatial coordinates and
carry out a comparison with equation (B4). Proceeding this way,
one can find that

FC,H(1−; α) = FC,C(1−, τf ; α) = 1

b1
= 5

1 + 2α
. (C4)

Thus, equations (C2) and (C3) form a closed path: a pseudo-
triangle. This is per se a very interesting property from both the
physical and mathematical point of view, which complete study we
reserve for a later time. Here, we give just a brief discussion that
is general enough to solve the (super-) bubble surface brightness
problem. The actual shape of the triangles depends on τ

2/5
f = ϑ f =

0 0.2 0.4 0.6 0.8 1
2

3

4

5

6

τ

F
C

,H
, 
F

C
,C

Figure C1. Hypergeometric pseudo-triangles. The hypotenuse FC,H is
given by equation (C2). The function FC,C , that corresponds to the catheti,
is given by equation (C3). Top panel: TCc = 1.68 × 107 K, α = 0 (C95
model). Bottom panel: TCc = 6.4 × 106 K, α = 1/2 (bremsstrahlung).
Solid lines: actual hypergeometric functions. Dashed lines: pseudo-triangle
approximations.

T f/TCc. For TCc � 10 T f , there is practically no curvature, whereas
for TCc ≈ T f the catheti are deformed (Fig. C1). For the range
of α that we are considering (see Table D2), a series expansion
shows that the hypotenuse is always, for any practical purpose, a
straight line. A convenient point that one can use to trace it is 0+.
There, the second term in (C2) vanishes. After working with its
integrand, the first term on (C2) can be reduced to (1/b1)

√
π�(b1 +

1)1F2[1/2, b; b + 1/2; τ/(2 − τ )]/�(b1 + 1/2). At the limit τ →
0+, the previous Gauss hypergeometric function reduces to unity.
As a consequence, FC,H takes the value

FC,H(0; α) = √
π

�
(

1+2α

5

)
�
(

1+2α

5 + 1
2

) . (C5)

The function G(x) = �(x)/�(x + 1/2) can be approximated on
the interval (−1/2, 1) by the following (1,2) Padé approximant
around 0:

G(x) = �(x)

�(x + 1
2 )

≈ [π 2 + 3 ln(4)2]x + 6 ln(4)√
πx{[π 2 − 3 ln(4)2]x + 6 ln(4)} . (C6)

For the case under study, when x falls out of this range, it can
always be mapped back using the relation �(x + 1) = x�(x). The
equation of the line that traces the hypotenuse is

FC,H(τ ; α)≈ √
πG

(
1+2α

5

)
+
[

5

1+2α
−√

πG

(
1+2α

5

)]
τ. (C7)

The slope of this line, m, just depends on α. For α = 0, it reduces
to m(0) ≈ −π/2 = −arccsc (1) = −arcsin (1−1). This hints that
a secant-like approximation can be used to obtain an expression
for the catheti. Because we have a closed path, a single secant
approximation on τ ∈ [τ f , 1] just recovers the expression for the
hypotenuse. We consider a multisecant approximation of the form
sin(β) ≈ sin{[FC,C − 5/(1 + 2α)]/(1 − τ )} = g(τ ), where g(τ )
accounts for the variable angle β that the catethi subtends with the
negative direction of the τ -axis. Consistency requires the closure of
the path to be conserved; thus, it is obligatory that g(τf ) = sin(−m).
Taking into account the catheti dependence on τ f/τ , g(τ ) can be
written as g(τ ) = h(τ f/τ ) sin(−m), where h(τ f/τ ) is a function
that satisfies h(1) = 1. Many of such functions exist, for instance,
any of the form h(τ f/τ )/h(1). Equation (C3) diverges as ∼τ f/τ as
τ → 0, so we use h(τ f/τ ) = τ f/τ . This is equivalent to a first-
order approximation. It suffices for the present discussion. Thus,
the expression for the catheti is

FC,C(τ, τf ; α) ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

5
1+2α

+ (1 − τ ) arcsin
[

τf
τ

sin(−m)
]
,

if abs(m) ≤ π

2 ;
5

1+2α
+ (1 − τ )

× {
τf
τ
π − arcsin

[
τf
τ

sin(−m)
]}

,

otherwise;

(C8)

where the last case separation is necessary to take the correct value of
the arcsin function, specially when machine evaluated. For a single
power-law emissivity, equations (B4) and (B5) and the expressions
for the hypotenuse and the catheti give the next approximation for
the spatial profile as a function of the normalized temperature

�� (ϑs, α; ξf, ξi) = (2ϑ
5
2

s − ϑ5
s )−1/2

×
[
ξ

1
2 +αFC,C

(
ϑ5/2

s , ξ 5/2; α
)]ξf=min(ϑs,ϑRs )

ξi=ϑcut

, (C9)

where the dummy variable ξ is meant to be evaluated at the indicated
limits as the result of an integral would and min(ϑs, ϑRs ) brings the
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reverse shock position back into the game. In terms of the projected
radius, the profile is

SC�(s, α; ξf, ξi) =
[

1 −
(

s

Rp

)2
]−1/2

×
[
(1 − ξ )

1+2α
5 FC,C[1 − s, 1 − ξ ; α]

]ξf=max
(

s
Rp

,
Rs
Rp

)
ξi= scut

Rp

. (C10)

The expression that corresponds to a realistic emissivity (see
Fig. D1 and Table D2) parametrized as piecewise continuous power
laws is obtained from equation (B7):

σC(ϑs, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AC(t)
ϑf=ϑcut∑

α,ϑi,ϑf<ϑRs

λα ×

��[ϑs, α; min(ϑi, ϑRs ), ϑf ], if s ≤ Rs;

AC(t)
ϑf=ϑcut∑

α,ϑi,ϑf<ϑs

λα ×

��[ϑs, α; min(ϑs, ϑi), ϑf ], otherwise;

(C11)
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Figure D1. Comparison of the SS00 X-ray emissivity tables for hydrogen (solid lines) and metals (dashed lines) with the fitted approximations (squares). Top
panels: rational approximations. Bottom panels: power-law approximations. Panels (a) and (c): emissivities in the soft band. Panels (b) and (d): emissivities in
the hard band.

or, in terms of s

σC(s, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AC(t)
sf=Rcut∑

α,si,sf>Rs

λα ×

SC�[s, α; max(si, Rs), sf ], if s ≤ Rs;

AC(t)
sf=Rcut∑
α,si,sf>s

λα ×

SC�[s, α; max(s, si), sf ], otherwise.

(C12)

These formulae give the surface brightness spatial profile for all
evaporative bubble models. They can also be used to calculate the
weighted temperature, as we show in Section 3.3.

APPENDI X D : AUXI LI ARY TABLES AND
FI GURES
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Table D1. List of relevant symbols.

Symbol (page) Meaning Symbol (page) Meaning

Indexes ‘A’, ‘B’ and ‘C’ Properties at regions A, B and C, respectively Index ‘X’ A property in the X-ray band
Index ‘sc’ Values at r = Rsc index ‘c’ Central values
Index ‘H’ Contribution from hydrogen index ‘M’ Contribution from metals
Index ‘7’ Temperature in units of 107 K �∗ �∗ = {Rsc, qe, {qm, V∞P}}
A (6) Surface brightness amplitude Ė(3) Mechanical luminosity
Ė38 (2,5) Ė in units of 1038 erg s−1 F (18) Gauss hypergeometric function 2F1

FA (19) Appell hypergeometric function k (3) Boltzmann constant
K (3) Polytropic proportionality constant LX (5) Cumulative X-ray luminosity
Ṁ(3) Mass deposition rate n (5) Particle number density
n0 (9) ISM particle number density P (3) Pressure
qm (3) Mass deposition rate per unit volume qe(3) Energy deposition rate per unit volume
r (3) Radial coordinate rd(6) Angular diameter distance
R (3) A normalized radius: R = r/Rsc Rsc(3) Star cluster radius
Rsc,pc (2,5) Star cluster radius in parsecs Rcut (6) X-ray cut \ ,- \ , off radius
Rp (9) Principal shock position Rs (9) Reverse shock position
s (6,7) Projected radius S (10,21) Surface brightness spatial profile
t (9) Time t6(2,9) Time in Myr
T (3) Temperature TX (7) X-ray weighted temperature
TkeV (4,5) Superwind central temperature in keV TRs (10) Temperature at R+

s
Tcut (6) X-ray cut-off temperature Tspec (7) X-ray spectroscopic temperature
u (3) Velocity U (3) Squared velocity: u2

V∞A(3) Adiabatic terminal speed V∞P (3) Polytropic terminal speed
V8 (2,5) V∞P in units of 1000 km s−1 Vsc (3) Star cluster volume
X (5) X-ray luminosity scaling factor Z (5) Metallicity
α (5) X-ray emissivity temperature slope γ (3) Adiabatic index
� (18) Gamma function � (10,21) Pseudo-triangle approximation
ε (3) Total energy per unit mass εBP(3) Region B ε in the polytropic case
η (3) Polytropic index λα (10,20) Weighting X-ray emissivity factor
�X (5) X-ray emissivity function �X,−23(2) �X in units of 10−23 erg s−1 cm3

�α (5) X-ray emissivity proportionality constant (�X = ∑
�αT α) �X(9) Evaporatively averaged �X

μi (4) Mean mass per particle for a ionized gas μn (5) Mean mass per particle for a neutral gas
ρ (3) Density σ (6) X-ray surface brightness
ϑ (9) Region C normalized temperature ϑcut (9,20) Region C normalized Tcut

θ (6) Object subtended angle � (20) Surface brightness profile in terms of ϑ

τ (20) ϑ5/2 F (5,19,20) Combination of hypergeometric functions

The page in which each symbol appears for the first time together with pages that contain important related formulae is indicated between parentheses. The
list is not exhaustive, but provides the definition of all relevant symbols. A description of the most used indexes is also given. The physical properties of each
region (as they are defined in Fig. 1) are labelled with the subindexes A, B and C, except when no place for confusion exist. The same applies for the subindex
X, which designates an X-ray property.
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Table D2. Fitted X-ray emissivity function – power laws.

Band Component Temperature Parameters Fitting details
(×107 K)

Soft Hydrogen 0.05–0.1 �0 = 0, �α = 5.12 × 10−27, α = 4 R2 = 0.991, erms = 0.0014
0.3–2.0 keV . . . 0.1–0.75 �0 = −0.0329, �α = 0.3802 × 10−7, α = 1 R2 = 0.998, erms = 0.003049
. . . . . . 0.75–3.5 �0 = 0.590, �α = −18700, α = − 0.69 R2 = 0.9993, erms = 0.001659
. . . . . . 3.5–25 �0 = 0.488, �α = − 4.15 × 10−10, α = 1 R2 = 0.9802, erms = 0.003738
. . . Metals 0.05–0.1 �0 = 0, �α = 3.70 × 10−25, α = 4 R2 = 0.995, erms = 0.007
. . . . . . 0.10–0.75 �0 = 4.09, �α = −5630, α = −0.53 R2 = 0.987, erms = 0.090
. . . . . . 0.75–25 �0 = 0.201, �α = 1.01 × 1011, α = −1.54 R2 = 0.9993, erms = 0.0176
Hard
2.0–8.0 keV Hydrogen 0.05–0.5 ≈0
. . . . . . 0.5–1.1 �0 = 0, �α = 1.2 × 10−21, α = 2.767 R2 = 0.9961, erms = 0.0008925
. . . . . . 1.1–8.5 �0 = − 0.365, �α = 2.238 × 10−4, α = 0.4621 R2 = 0.9944, erms = 0.0143
. . . . . . 8.5–25 �0 = 0, �α = 0.0318, α = 0.1667 R2 = 0.9274, erms = 0.01013
. . . Metals 0.05–0.5 ≈0
. . . . . . 0.5–1 �0 = 0, �α = 1.54 × 10−21, α = 2.835 R2 = 0.9951, erms = 0.00194
. . . . . . 1–8.5 �0 = 1.208, �α = −63.1674, α = −0.2513 R2 = 0.9951, erms = 0.00194
. . . . . . 8.5–25 �0 = 0, �α = 8.7793, α = −0.1502 R2 = 0.9799, erms = 0.003425
Both�� Hydrogen �0.9 �H = 1.23 × 10−4, αH = 1

2 R2 = 0.96, erms = 0.04
. . . Metals . . . �M1 = 4.49 × 1017, αM1 = − 5

2 R2 = 0.98, erms = 0.04
�M2 = 0.79, αM2 = 0

Power laws fitted to the SS00 emissivity tables. On each temperature interval, a normalized X-ray emissivity of the form �X,−23 = �0 +
�αTα was fitted. For the metals, the values of �0 and �α scale linearly with Z. The mean square errors correspond to the dimensionless
�X,−23, thus they are also in units of 10−23 erg s−1 cm3. The curves were fitted considering piecewise continuity as a requirement.

Table D3. Fitted X-ray emissivity function – rational functions.

Band Component Temperature Fitted �X,−23 Fitting details
(×107 K)

Soft Hydrogen 0.05–25
0.2442T 5

7 + 10.13T 4
7 + 7.54T 3

7 − 1.079T 2
7 + 0.05112T7 − 0.00083

T 5
7 + 17.91T 4

7 + 21.08T 3
7 + 16.68T 2

7 + 1.063T7 + 0.1009
erms = 1.40 × 10−6

0.3–2.0 keV Metals 0.05–25
21.57T 4

7 − 1.817T 3
7 + 38.26T 2

7 − 0.7704T7 − 0.04085

T 5
7 + 83.31T 4

7 − 129.7T 3
7 + 91.13T 2

7 − 19.09T7 + 1.953
erms = 3.40 × 10−6

Hard Hydrogen 0.2–0.5
0.07841T 5

7 + 0.2146T 4
7 − 0.1441T 3

7 + 0.02784T 2
7 − 0.00113T7 − 0.0001026

T 5
7 + 0.891T 4

7 + 0.2492T 3
7 + 1.052T 2

7 + 1.475T7 + 1.06
erms = 3.46 × 10−6

2.0–8.0 keV . . . 0.5–25
0.5726T 4

7 + 40.17T 3
7 − 46.13T 2

7 + 19.07T7 − 2.812

T 4
7 + 39.6T 3

7 + 114.8T 2
7 + 224.1T7 − 17.12

erms = 1.09 × 10−4

. . . Metals 0.2–0.5
0.2084T 3

7 − 0.1051T 2
7 + 0.01765T7 − 0.0009808

T 2
7 − 0.16T7 + 0.3066

erms = 3.57 × 10−6

. . . . . . 0.5–25
0.3816T 5

7 + 1.457T 4
7 + 6.059T 3

7 − 0.1862T 2
7 + 3.877T7 − 1.478

T 5
7 − 2.751T 4

7 + 32.31T 3
7 + 31.5T 2

7 − 81.11T7 + 108.5
erms = 2.30 × 10−6

Emissivity function used for numerical calculations. For T7 < 0.2, the emission on the hard band is negligible since it is several orders of magnitude (≥
4) smaller than the emission at the cut - off temperature in the soft band. Computationally, the evaluation of the rational approximations is faster than
interpolating from the tables. For all cases, R2 ≈ 1 within the used precision. The mean square errors correspond to the dimensionless �X,−23. In order
to obtain this table, we associate with each temperature Ti in the SS00 tables a function ei = 1

2 (�X(Ti) − Rjk({a}, {b}; Ti)2, where Rjk is a (j, k) Padé
approximant. Then, we defined E = E (e1, e, 2, . . .) and solved the associated non-linear least-squares problem min || E||2≡ min(

∑
i e

2
i ) using the trust

region method described by Byrd, Schnabel & Shultz (1988) and Dennis & Schnabel (1996). A similar process was carried out for Table D2. In the present
case, the values of j and k were successively increased. The most compact approximations with R2 > 0.9 and the lowest rms errors were selected in the end.
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