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1. Introduction

3D recovery from a sequence of frames has been one of
the main efforts in computational vision. Unlike the case
of a single static image, the information contained in a
sequence is important because it allows the motion and
structure recognition of the objects in a scene. The purpose
of this technique is to build a 3D model from an object,
using data extracted from the analysis of a 2D representation
of such object. The implementation of a depth recovery
algorithm depends highly on the application to develop,
and the search of higher precision in 3D recovery has
led to the implementation of more complex and com-
putational demanding algorithms [1]. The main methods
for 3D recovery are stereo vision, shading, and motion
estimation. Stereo algorithms perform the calibration of two
or more cameras to then triangulate the computing points
of the scene [2]. Other methods try to recover the depth
information from the motion and intensity of elements in
the images. The methods based on correspondence try to
perform pairing between images features and then estimate
a single motion during the image sequence, to finally apply
triangulation, as the stereo algorithms do [2]. These methods
present good performance, but only when there is a cor-
respondence between features, which recover only disperse
surfaces.

Other techniques propose to perform a depth estimation
using operations that manipulate the changes in the intensity
of the image sequence and incorporate the information
in a Kalman filter [3]. The problem in correspondence
and intensity methods is that neither the features nor the
intensity of the images is constant or continuous, decreasing
the reliance of the results.

There are also other methods that compute the depth
from known objects in the scene. Other techniques for depth
estimation proposed to calculate the normal component of
the flow [4]. For its correct operation it is necessary to
know the trajectory followed between the camera and the
scenery [3]. Most of the algorithms impose restrictions as the
knowledge of the camera motion, its position with respect to
the scenery or complicated calibration techniques.

In the case of the optical flow approach, recovery can
be obtained by a camera without knowing its parameters.
Neither multiple cameras aligning nor previous knowledge
of the scene or the motion is necessary. All what is needed is
the relative motion between the camera and the scene to be
small.

The present paper introduces an FPGA-based processor
for the 3D recovery from the optical flow under a static
environment, so no object performs a movement in the
scene. The motion of the camera along each image of the
video sequence must be short, that is, a maximum of two



pixels per frame. The processor meets the constraint that it is
capable of operating in near video rate time, that is, 22 frames
per second (fps) for images with Video Graphics Array (VGA)
resolution: 640 x 480 pixels.

The paper is divided as follows. Section 2 includes an
analysis of related works in the field. Section 3 describes
the theoretical bases for the development of the research.
The functional description and interaction of the processor
blocks are discussed in Section 4. While in Sections 5 and
6, performance analysis and results of the architecture are
presented. Finally, conclusions and future work are presented
in Section 7.

2. Background

There have been several efforts to solve the problem of depth
recovery according to the characteristics and constraints
of the applications to develop. Fife and Archibald [5]
report an implementation for the navigation of autonomous
vehicles, using feature correspondence. For each frame in
the sequence, the system locates all the identified features
in the previous frame, and then update the actual position
estimation in the 3D space. This implementation was done
by reconfigurable computing and the use of embedded pro-
cessors. The performance obtained by this implementation
is 30 fps with a resolution of 320 X 240 pixels. The main
disadvantage of this architecture is that it only computes Z
(the depth) for specific points in the video sequence.

In [6], Diaz et al. present an FPGA implementation that
uses structured light. A code simplification is performed in
this work by looking for redundant operations. Moreover,
fixed point arithmetic is used under a format of 14 bits
for the integer part and 5 or 6 bits for the fractional one.
The processing time is around 20 seconds for images with
a resolution of 640 x 480 pixels.

Zach et al. [7] present a work for dense 3D recovery in
stereo images. Their implementation was built as a hardware-
software codesign: the hardware part of the system is based
on a pairing procedure to avoid the accuracy loss due to
the limited resolution in 3D processors. Once the pairing
is performed, depth recovery is obtained applying epipolar
geometry. The software section only performs the flow
control and the information transfer. A calculation of over
130,000 depth values per second running on a standard
computer is reported.

3. Theoretical Framework

3.1. Optical Flow. Optical Flow is the apparent motion of
patterns of objects, surfaces, and edges caused by the relative
change of position among the observer (a camera) and
the scene [8, 9]. There are, in the literature, comparative
works of hardware implementations for several optical flow
algorithms [10-12]. Basically, the majority of the optical
flow implementations are based on two types of algorithms:
gradient-based algorithms and correlation-based algorithms.

The gradient-based algorithms calculate the optical flow
with space-time derivatives of the intensity of the pixels in an
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FIGURE I: Basic operation of the correlation algorithms.

image, or through the filtered versions of the images (using
low-pass and high-pass filters) [13].

On the other hand, correlation-based algorithms work
by comparing windows or blocks: two consecutive frames
are taken from the video sequence, that are divided in
periodic and equal size blocks. These blocks can present
overlapping but always maintaining the same size. Given
the regularity of the operations, correlation-based algorithms
are better suited for hardware implementation. Figure 1
shows a graphical representation of the algorithms based on
correlation.

One of the simplest correlation metrics found in the
literature is the Sum of Absolute Differences (SAD) [14].
The main characteristics are its easy implementation and its
reduced use of hardware resources

x+N-1 y+N-1

SAD= Y > |L(mn) — I (m+dx,n+dy)|. (1)

m=x  n=y

3.2. 3D Recovery from Optical Flow. This section discusses
the equations that describe the relation among the depth
estimation and the optical flow generated by the camera
motion. The same notation found in [15] is used here. It
is also assumed that the camera motion is through a static
environment. The reference coordinate system is shown in
Figure 2.

The coordinate system X, Y, is fixed with respect to the
camera. The Z axis is located across the camera optical axis
so any motion can be described by two variables: translation

and rotation. T denotes the translational component of the
camera, while @ the angular velocity. Finally, the instant
coordinates of the point P in the environment are (X,Y,Z)
[15]. From these variables, (2) can be obtained, and from it
the value of Z can be calculated

o’ + p?

Z= (u—u)a+(v—v)p’

(2)
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FIGURE 2: Reference coordinate system.

where «, f3, u,, and v, are defined as
a=-U+xW,

B=-V+yw,

5 (3)
u, = Axy — B(x*+1) + Cy,

v, = A(y*+1) — Bxy — Cx.

Equation (2) calculates Z in terms of the parameters
of the translation and rotation components. As there is
no calibration on the camera, these parameters are still
unknown. Nevertheless, their values are useful only to scale
the value of Z and they do not affect the recovered structure.
Therefore, it is possible to assume constant values for each
of these parameters. The disadvantage of this consideration
is that only a relative value of the depth information can be
obtained.

4. Architecture

The proposed architecture has the purpose of recovering
the 3D information from the optical flow found in a
video sequence. The system presents a maximum reuse of
data and is optimized for minimum hardware resources.
Processing is achieved in a predictable time, that is, under
real-time constrains. The architecture meets the following
specifications: it works with images in 256 levels gray scale,
and a resolution of 640 x 480 pixels. The image rate
processing obtained 22 frames per second limited by the
FPGA platform capacity, and maintaining a low relative error
for the 3D recovery.

4.1. Description. The architecture is divided in three main
functional blocks: the first one is for the calculation of the
optical flow, the second one for the 3D recovery, and the last
one is dedicated to data routing. The general operation of the
design is as follows. The data corresponding to the pixels of
the reference and search windows from a consecutive image
pair in the sequence are sent to the system through a data bus.

FPGA

Out
router

> Z

. In
Sensor —9@9 router

FIGURE 3: General block diagram of the architecture.

Subsequently, the optical flow processing is carried out. Here
the motion vectors are obtained and then sent to the block
for 3D recovery. Finally, the obtained values are presented
to the real world, stored in external memories or sent to
another process through an output data bus. The read and
write addresses are generated by the routers that control the
data flow. The signals that control the architectures operation
are arranged in a control bus. The architecture is shown in
Figure 3.

4.2. Optical Flow Module. The Optical Flow Module operates
with a 4 X 4 pixels reference window and a 8 x 8 pixels
search window. These values are usually used in the literature
[14]. Due to the nature of (4), the Optical Flow Module can
be formulated as a window-based operator considering that
the coefficients of the window mask are variable and new
windows are extracted from the first image to constitute the
reference window. Once the processing in the search area has
been completed, the window reference can be replaced with
a new one, and the processing goes on the same way until all
data is processed.

The number of operations per second (OPS) for the
calculation of the motion estimation is given by

OPS =3 %2p*2p* Nh* Nv * f, (4)

where Nj, and N, are, respectively, the vertical and horizontal
of the image in pixels, p is the size of the search window, and
f represents the frames per second rate. For this particular
work, p = 8, f = 5, Nh = 640, and Nv = 480, the result
of (4) indicates a computational charge of 235,929,600
integer arithmetic operations per second. Thus, a sequential
approach or the use of a general purpose processor is
inadequate and insufficient for the motion estimation. The
Optical Flow Module is composed by a series of basic blocks
called Processing Elements (PEs). Each PE is in charge of the
subtraction operations among pixels and the absolute value
computation for the SAD equation. The block diagram of a
PE is depicted in Figure 4.

A Window Processing Module (WPM) is assembled
with 20 PEs working in parallel (Figure 4), where a set
of operations are performed at the same time in a single
clock cycle. The processing elements work in a systolic
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FIGURE 4: Block diagram of the Processing Element PE (basic building block). The Window Processing Module (WPM) integrates 20 PEs.
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Ficure 5: Computation of the correlation between the search and
the reference window with a WPM.

pipeline. When the window data moves through the buffers
to the next pixel location in the input image, several
pixels are overlapped with the previous windows. Therefore,
it is possible to use multiple instances of the WPM to
compute incrementally at several consecutive pixel locations
partial results of the window comparison operation. An
accumulator adds together the partial results until all the
data has been processed. Then, the accumulator is reset and a
new window comparison operation is started. In the current
implementation, the reference window is 4 X 4 pixels and the
search window is 8 X 8 pixels.

The WPM performs in four clock cycles the computation
of the correlation between the search and the reference
window, but with the advantage that while calculating the
correlation in the first position inside the search window, the
correlations corresponding to the adjoining three positions
of the reference window begin to be calculated (Figure 5).
The design uses data recycling, taking advantage of the same
information previously read from external memory more
than once, to perform several calculations in the same WPM.
The WPM is replicated 5 times to cover the whole search
window.

The optical flow module presents a maximum data
recycling, exploiting the vertical and horizontal overlap of the
reference window (Figure 6). In addition, the processing time
using this implementation is reduced 50 times with respect to
the sequential approach.

A full search in a window is processed in 8 clock
cycles and the full image in 2,386,432 clock cycles. The
motion vectors are calculated pixel by pixel, contrary to
other hardware implementations where the motion vectors
are obtained only for each reference window. In Figure 7, an
approximation of the performance, obtained experimentally,
of the architecture for the calculation of the motion esti-
mation through optical flow is shown. The necessary clock
cycles for the processing of the reference and search windows
can be seen in (a), while (b) shows the number of clock cycles
that are necessary for the processing of a full image. Both
quantities depend on the number of PE blocks used.

4.3. 3D Recovery Module. The implementation of equation
(2) can be achieved in two ways: the first one is to implement
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Ficure 6: Computation of the correlation between the search and
the reference window with 5 WPMs.
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FIGURE 7: Performance analysis of the Optical Flow estimation for
different PEs per WPM. The best area/performance compromise is
around 20 PEs per WPM.

the equation with fully combinational elements. This option
is inconvenient due to the complexity of the mathematical
operations, which can lead to a significant degradation of
the architecture performance. A more attractive option is the
implementation using a pipeline architecture approach.
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FIGURE 8: Average error as a function of the resolution used in
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The 3D Recovery Module has A,B,C, U, V, W, x, y and
motion vectors data as input. In the first pipeline stage, the
values « and f are calculated: these variables depend only
on the inputs. Part of the u, and v, values are calculated in
this stage too. The square values of & and  and other part
of u, and v, are calculated in the second stage. In the third
stage, the variables u,, v, and the equation numerator are
calculated. The fourth stage computes the denominator of
the equation. Finally, in the last stage, Z is obtained.

Figure 9 shows the pipeline stages of the design with
each of the intermediate modules. The operations in each
stage are performed in fixed-point arithmetic, with different
lengths for the integer and fractional part. Small errors
are introduced due to the limited fixed point precision
used for data representation in processing elements of the
architecture. Currently a quantitative estimation of the error
is being performed avoiding the excessive use of hardware
resources.

The depth value is obtained with a 9-bit representation.
Z uses 0 bits for the integer and 9 bits for the fractional
part. The graphic in Figure 8 shows the average error
when representing fractional values, using variables with
different resolutions. For each case, all the variables have
the same resolution, and their representation is always in
fixed-point arithmetic. All the bits in this representation
are used for the fractional part of the variables. The values
shown were obtained through hardware implementation
experimentation.

In Figure 8, it can be appreciated that the average error
drops as the resolution of the input variables is incremented.
This reduction is not linear, and the graphic shows a point
where such reduction is not significant, no matter the
increment in the number of bits of the input variables. 9 bits
were chosen as a good compromise between area and average
error.

Table 1 shows the calculation of depth in each of
the pipeline stages. Once the motion vectors have been
computed, the process in which the value of the depth is
obtained begins. The input values A, B, C, U, V, and W
simulate a translational motion of an object in the direction
of the X axis. The motion of the object is of one pixel per
image in the simulation.
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TaBLE 1: Calculation of the depth in the different stages of the pipeline.
Parameters  Pipeline cycle Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
A =0.00 o 0.50
B =0.00 B 0.00
C =0.00 1 yr+1 2.00
U =0.50 xX*+1 2.00
V = 0.00 y*x  1.00
W =0.00 o? 0.25
x = 1.00 B 0.00
y =1.00 A*(y*+1)  0.00
u = 1.00 ) B*(x*+1)  0.00
vy = 0.00 A*(x*y) 0.00
B*(x*y) 0.00
C*x 0.00
C*y 0.00
3 Uy 0.00
vy 0.00
4 (u—u)a  0.50
(v—=v)B 0.00
o+ 2 0.25
5 (u—u)a+(v—v,)p  0.50
z 0.50

4.4. Routers. The function of the Router units is to generate
the addresses for the data read and write operations. To
avoid a huge number of memory accesses, the routers store
several rows from the images before the execution of any
other action regarding the external memory. The In-Router
module is composed by 12 buffers that store the rows of the
images.

The block works as follows: eight rows from the current
image (frame 1) are read and stored (search window). Then,
four rows from the previous image (frame 0) are also read
and stored (reference window). These pixel rows are stored in
independent internal RAM memories (buffers). The router
feeds 12 pixels in parallel to the optical flow module. When
a full search window has been processed, a new pixel is

read from the external memory and then stored in the last
buffer. Each pixel of the actual address is transferred to the
past buffer. The generation of the new read addresses is
performed at the same time. The functional block diagram
with input and output variables can be seen in Figure 10.

The OUT-Router (Figure 11) performs the writing of the
architecture results to the external RAM memory. This block
is simpler than the In-Router and is composed by an address
generator and a register.

The Gen_Addr_Esc module controls the storage address
of the datum corresponding to the depth, obtained in the
Depth calculation module. The Register module put together
4 depth values calculated by the architecture in order to
align them for memory write. This concatenation has the
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purpose of storing a 36-bit value in each of the RAM
locations.

4.5. Final Architecture. The final version of the architecture
works as follows: in the first step, a pair of images from a
sensor or another process is stored in the external memory.
Next, a data array of the two images is read by the In-Router
module: 8 rows of the previous image and 4 rows of the
actual one. Once this is done, the data stored in the module
are addressed to the WPM elements blocks, for the motion
estimation. After being calculated, the motion vectors are
passed to the next module for the depth calculation. In
a parallel fashion, a new datum of the actual image and
another of the reference image are acquired, and the process
of the motion estimation is started.

After the computation of the depth has been performed,
the result is stored in the external memory, where the system
waits for the motion vectors for performing the process
once again. This is repeated until the two images have been
completely processed. When this is finished, a new pair of
images is stored in the external memory.

5. Performance Analysis

From the general description of the architecture, an estima-
tion of the performance of the architecture can be obtained.
The processing speed of the architecture can be estimated as

a function of the size of the image, the number of necessary
cycles for the processing of a reference window of n X n,
the number of PEs operating in parallel, and the number of
times the WPM are instantiated in the complete architecture.
The analysis is based on the critical path which is the slowest
module (the Optical Flow Calculation).

The number of clock cycles that are necessary to process
arow of the search window of m x m pixels with the reference
window of n X n pixels is given by the number of cycles
required to process a row of the reference window plus the
number of cycles that would take to process the positions
that the reference window occupies over the search window,
in a horizontal way. In order to compute the number of cycles
required to process a row of the search window, the following
is used:

(cyclesX Ve ) ( Vr,posjlor)
Vr,proc,par

cycles, ., = cycles, y,, + ,  (5)

where cycles, . is the number of cycles to process a row
of the search window, cycles,, is the number of cycles
to process a row of the reference window, V; poshor is the
number of positions that the reference window occupies over
the search window, in the horizontal direction, and V; jroc_par
is the number of windows processed in parallel.

The number of cycles that are necessary to process
a search window is the size of the reference window n,
multiplied by the number of cycles required in processing
a row of the search window by the number of positions
occupied by the reference window above the search window
in the vertical direction, divided by the number of processors
that work in parallel and the number of times that the PE
blocks array is repeated. Once the processing of the search
window is done, two data are read from the external memory;,
so this will add 2 more clock cycles. Equation (6) allows the
calculation of the number of cycles necessary to process the
search window:

n (cyclesmw) (Vr,pos,ver)
(PEpar) (WPMbpiocs)

cycles, y, = +cycles,..y»  (6)

where cycles, ,, is the number of cycles required to process a
search window, # is the size of the search window, cycles, .
is the number of cycles required to process a row of the
reference window, V; posver is the number of positions of
the reference window over the search window, PE,,; is the
number of processing elements working in parallel, and
WPMyjocks is the number of times that the PE array is
repeated.

Finally, (7) represents the total number of cycles nec-
essary to process a full image. This total is calculated
multiplying the number of cycles required to process the
search window by the number of search windows present in
the image, both in a horizontal and in a vertical way,

cycles, g = (cyclesva) (Imghor —m+ 1)
(7)
X (ImgVer -m+ 1).



TABLE 2: Synthesis results for the Optical Flow Calculation module.

Resources Usage

FFs 1,986 of 10,944
LUTs 5,192 of 10,944
Slices 3,519 of 5,472

Max. Operating Freq. 70 MHz

TaBLE 3: Synthesis results for the Depth Calculation module.

Resources Usage

FFs 68 of 10,944
LUTs 1,882 0f 10,944
Slices 983 of 5,472
Max. Operating Freq. 100 MHz

TaBLE 4: Synthesis results for the full architecture.

Resources Usage

FFs 2,177 0 10,944
LUTs 8,024 0f 10,944
Slices 4,739 of 5,472
Block Rams 12 of 36
Max. Operating Freq. 66 MHz

For validation in this work, the following values were
used:

(i) n =4,

(i) m = 8,
(iii) cycles, .y, = 4 cycles,
(iv) Vi poshor =
(V) Vi procpar = 4 windows,

m —n =8 — 4 = 4 positions,

(Vi) Vi posver = m —n+1=8 —4+1 = 5 positions,
(vii) PEpar = 4 PE blocks working in parallel,
(viii) WPMpjocks = 5 blocks of 20 PEs,

(ix) Img,,, = 640,

(x) Img,., = 480.

Replacing the values of cycles,y,,» Vr_pos_hor> and V; proc_par
in (5), the following equation is obtained:

(4)4) _
=

cycles,, =4+ 8cycles,, - (8)

Now the values of 1, cycles, v, , Vi pos_ver, WPMbiocks, and
PE,. are replaced in (6) to obtain the number of cycles
necessary to process the search window

cycles, y, = 4((5))((55)) +2 = 10cycles p/Vb. 9)

To obtain the total number of cycles necessary to process
an image, the values of m, cycles, y, , Img, ., and Img,, are
replaced in (7)

cycles = (10)(640 — 8)(480 — 8)

XImag

(10)
= 2,994,090 cycles p/frame.
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TABLE 5: Percentage of consumed resources of the FPGA device, by
the modules of the proposed architecture.

Module % resources
Optical Flow Calculation module 47
Depth Calculation Module 17
Routers and logic 9
Complete Architecture 73

FIGURE 12: Image from the used sequence.

For example, with a clock frequency of 50 MHz, the
architecture could process 16 fps for a 640 x 480 pixels
resolution image stream.

6. Implementation and Results

6.1. Architecture Implementation and Synthesis. The hard-
ware design was described in Handel-C 4, the design was
simulated in MatLab 7, and the synthesis design was carried
on with Xilinx ISE Project Navigator 9.1. The board used for
testing was an ML403 from Xilinx. The ML403 integrates a
XC4VFX12 FPGA of the Virtex 4 family. The memory ZBT
RAM was used to store the image.

Table 2 shows the consumption of hardware resources
used by the Optical Flow Calculation module. Table 3 shows
the use of resources of the Depth Calculation module. Table 4
refers to the resources usage of the full architecture, and
finally Table 5 shows the percentage of resources used the
modules and the complete architecture.

6.2. Results. An image sequence of a soda can was used to
test the architecture (Figure 12). The sequence simulates the
translational movement of the object on X axis by 1 pixel per
frame.

Figure 13 shows the results of the optical flow obtained
by the hardware module using the images sequence.

In the computation of optical flow, to try to summarize
the resulting quality of millions of motion vectors as only
a number is a complicated task, so several metrics were
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TaBLE 6: Comparison performance of the proposed architecture with other works.

Work FPS Resolution Implement platform Processed pixels/sec
Fife and Archibald [5] 30 320 x 240 FPGA 2304000
Diaz et al. [6] 0.05 640 x 480 FPGA 15630
Zachetal. [7] 2.46 640 x 480 HW/SW 755712
Proposed architecture 22 640 x 480 FPGA 6758400
0
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FiGure 13: Optical flow calculated for the sequence.

FIGURE 14: 3D recovery from optical flow for the can images.

evaluated. The first one is the error between the angle of
the vectors obtained by software simulation and by the
architecture [12]. The 100% of the vectors obtained by the
architecture are correct with respect to those of the software
implementation.

Figure 14 shows the results obtained by the processor for
the 3D recovery.

Figure 15 shows the error obtained in the calculation of
the depth against the resolution of the input variables. As
in the graphic of Figure 8, the curve decreases quickly for
the first values and then it stabilizes. At this point, the data
representation precision increment has a little effect in the
reduction of the error when calculating the 3D recovery.

Finally, the graphic in Figure 16 depicts the variation in
the number of used LUTSs of the device against the resolution
of the input variables. Contrary to the last two graphics, this
one presents an almost linear behavior. The consumption of
resources grows as the number of bits used in the variables is
incremented.

From the graphics, the number of bits for the input
variables can be selected. In Figures 8 and 15, it can be seen

Bit numbers used in the resolution of the input parameter

FiGure 15: RMSE error in the 3D recovery, as a function of the
resolution of the input variables A, B,C, U, V, y, W.
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F1Gure 16: Number of used LUTs against the resolution of the input
variables A,B,C, U, V, y, W.

that a resolution of 8 bits gives good results. Moreover, the
amount of resources used with this resolution is moderated.
It can also be seen that, when incrementing the number
of bits in more than 8, the reduction in the error of the
calculation of the 3D recovery is minimum. As a result of
these points, the selected resolution for the 3D recovery
based on the optical flow was 8 bits.

To measure the quality of the depth recovery, the RMSE
metric was used. The average error given was of 0.00105 for
several performed recoveries.

6.3. Discussion. The performance of the architecture is given
as a function of the number of processed images, the number
of operations performed in one second, and the number of
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computed depth values. The following show a quantitative
analysis of the architecture.

The processing time of the images in the architecture is
conditioned by the maximum operating frequency, which is
established as a function of the delays of the combinational
logic, the way in which the clock signal is distributed,
and the internal routing of the device. In the specific case
of the implemented architecture, the maximum operating
frequency is 66 MHz, which allows the processing of 22
frames per second, operating with 640 x 480 images. The
architecture has the capacity of processing 4, 915, 200 depth
values per second, with an average error of 0.00105.

Once the number of images per second that the design
can process is known, the number of operations per second
(OPS) performed by the architecture can be calculated. The
OPS is obtained by multiplying the number of fps, the
number of operations of the search window, and the amount
of search windows in the image

OPSsap = fps * (#operationsvb)

* (Imghor—m+1) * (Imgver—m-f—l), (1)
11
OPSsap = 16 % (3 % 16 % 25) % (640 — 8+ 1)

* (480 — 8 + 1) = 5.748 x 10°.

For the 3D recovery from the optical flow, the number
of operations is obtained by multiplying the number of
frames per second, the number of operations necessary to
calculate a single depth value, and the number of motion
vectors calculated for the image. Equation (12) allows the
calculation of the number of performed operations that have
to be completed for the 3D recovery through optical flow

OPS; = fps * (#operations,)

* (Imghor -m+ 1) (Imgver -m+ 1),
(12)
OPSz = 16(32)(640 — 8 + 1)

% (480 — 8+ 1) = 153.297 x 10°.

The architecture performs 7.904 GOPS (Giga Operations
per Second) in an integer representation for the optical flow,
and 210 millions OPS in fixed-point representation for the
3D recovery. Thus, the architecture performs a total of 8.115
GOPS during the full 3D recovery process.

Our results compares favorably (see Table 6) with other
implementations.

7. Conclusions and Future Work

The present work has discussed a parallel processor for
the 3D recovery through Optical Flow inside a video
sequence with real-time restrictions. The designs exhibit a
balance between area utilization and processing speed. The
implementation is capable of obtaining the optical flow from
image sequences with VGA resolution in a predictable time,
as it can process 22 fps.

International Journal of Reconfigurable Computing

It is possible to scale the proposed design so it can operate
over the 30fps or work with higher resolutions. This is
performed by adding the necessary Optical Flow modules to
process more search windows in a parallel fashion. In this
way it could be possible to exploit the overlap of the search
windows.

The computational load to perform the 3D recovery is of
about 8 GOPS, which is difficult to perform in a short period
(in the order of the milliseconds) with current sequential
processors.

The architecture presents a small size, it is possible to
implement it in systems where the space restrictions and the
power consumption are the main concern, as in the case of
mobile vision systems and in robotic vision.

Some points regarding future work are the following.

(i) Test different reference and search window sizes and
analyze the results.

(ii) Analyze other algorithms for optical flow and their
adaptation to the proposed architecture. The reuse
of the architecture modules would imply minimum
changes and a small or even null increment in the
complexity of the proposed architecture.

(iii) Incorporate predictive algorithms and their hardware
implementation to achieve a better 3D recovery.
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