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Abstract: A hardware architecture that implements an adaptive fil-
ter based on energy analysis of radar echoes to improve the detection of
the Constant False Alarm Rate (CFAR) algorithm is presented. Signal
processing based on energy analysis emphasizes the edge of the echoes
improving the performance of the detection process. The energy fil-
ter coefficients and CFAR parameters are calculated adaptively by the
architecture, reconfiguring the block of coefficient weights according
to environment conditions. The architecture accelerates the data pro-
cessing by a pipeline structure and sliding window for the coefficients
convolution with data, resulting in high performance operation. Re-
sults of implementing the architecture in a FPGA device are presented
and discussed.
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1 Introduction

The main problem in radar surveillance is to detect the presence of targets
in echo signals with added sea clutter. The sea clutter is the term used to
describe radar returns caused by reflections in the ocean waves and other
atmospheric phenomena. Sea clutter signals can be as strong as the signals
returned from the desired target, and can be modeled by means of a probabil-
ity density function (pdf) such as Weibull or K. Eq. (1) describes the Weibull
probability density function, that is an adaptive clutter model, where a is a
shape parameter, and b is a scale parameter [1]. The parameters of the pdf
distribution that models the sea clutter vary according to the sea state. The
sea state can be classified in twelve levels according to the Beaufort/Douglas
scale that takes into account wind speed and weaves height. Eq. (2) describes
the K pdf, where a is a shape parameter, b is a scale parameter, Γ(.) is a
function gamma and K(.) is a Bessel function [1].
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In radar signal processing, the detection process carries out the separation
of the targets and sea clutter, this process is usually performed by an adaptive
algorithm named CFAR (Constant False Alarm Rate) [2]. In the literature,
multiple variants of this algorithm have been reported, each one designed to
detect targets in specific environment conditions. In real applications, these
conditions are changing constantly thus it is necessary to adjust the CFAR
algorithm and its parameters according to current environment conditions.

Radar returns are composed of target reflections plus sea clutter that
can be described as a transient signal in the time domain or as a wide band
signal in the frequency domain [3]. Time-frequency and Time-scale analysis
are recommended to detect and locate fast transitions in the radar signals
such as targets present in clutter. The CFAR algorithm represents only a
time scale analysis therefore his performance is poor in presence of changing
sea clutter. In this work a complement for the CFAR algorithm is presented,
a time frequency analysis of radar returns. This analysis is carried out by an
adaptive gradient filter or adaptive textural energy filter that empathize the
presence of targets. The filter is implemented in a custom architecture that
calculates the filter coefficients according changes in the environment.

2 Energy-CFAR filter

The complement for the time-scale analysis is the time frequency analysis that
is carried out by the Fast Fourier Transform (FFT), which results in a slow
and sometimes deficient signal processing in presence of sea clutter. However,
some general statements can be made about the relationship between the
frequency components of the FFT and spatial characteristics of radar signals.
The frequency is directly related to rate of change and we can associate this
property with patterns of intensity variations as a texture in radar signal.
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Fig. 1. Proposed Adaptive Energy-CFAR Filter

In this sense the texture energy measures developed by Laws in [4] can be
used for enhancing echoes from targets. The energy measure is computed
by first applying small convolution kernels to raw radar data X[n], and then
performing a windowing operation. The kernel uses a five order window
hamming for confining the spectrum in the main lobe of radar signals.

This first evaluation is carried out by a FIR filter implemented in a direct
form. A windowing operation generates an energy map. In this process ev-
ery sample of radar data is replaced with a Texture Energy Measure (TEM).
This is carried out by looking in a local neighborhood around each sample
and summing together the absolute values of the neighborhood samples. This
operation enhances de targets edge increase the performance of target detec-
tion of the CFAR algorithm. Eq. (3) describes how to calculate the energy
map. Fig. 1 shows a block diagram of proposed adaptive Energy-CFAR filter.

Ynew[n] =
i=7∑

i=−7

|Yold[n + i]| (3)

The Energy FIR filter coefficients C[n] are updated dynamically according
the environment changes by the square error (MSE) algorithm described by
Eq. (4).

Ci[n + 1] = Ci[n] + ηe[n]X[n] (4)

e[n] = T [n] − SC[n] (5)

Where e[n] represents the error obtained as described by Eq. (5), η is
an adjustment parameter that depends on the radar signal power, X[n] is
raw radar data, T [n] represents the Energy-CFAR filter output and SC[n]
represents the sea clutter according to environment conditions. SC[n] is
obtained by the sea clutter model described by Eqs. (1) and (2) using specific
shape a and scale b parameters. The selection model is obtained by sea state
SS value. These parameters are calculated by a method and architecture
described in [5].

3 Energy-CFAR architecture implementation

A block diagram of the processing element (PE) for the FIR filter is shown
in Fig. 2 (a). This PE can be easily extended to increment the filter order
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Fig. 2. Components of the proposed architecture (a)
PEFF, (b) PEEM, (c) PEUC, (d) Data depen-
dencies and latency

and takes advantage of the raw radar data dependencies and the shift regis-
ter characteristics to evaluate the convolution of raw radar data with filter
coefficients on the as is shown in the Eq. (6). Fig. 2 (d) shows the data
dependencies and latency for this PE.

Y [i] = C1X[i] + C2X[i − 1] + · · · + CiX[1] (6)

A block diagram of the PE of the Energy Map module is shown in
Fig. 2 (b). This PE takes a neighborhood of 15 samples to evaluate the
energy of the central sample according to Eq. (3). In order to increase the
number of samples evaluated, this PE can also be easily extended. A block
diagram of the PE of the Adaptive Weights Calculator module is shown in
the Fig. 2 (c). This PE updates the coefficients and is cloned N -times, where
N represents the order of FIR filter; Finally the Sea Clutter generator is
implemented Look Up Tables (LUT) that record sea clutter data obtained
by the model of the Eqs. (1) and (2). The architecture of the used CFAR
module is described in [6].

4 Results and discussion

The proposed architecture was validated using two data sets. The first data
set is a real range profile (targets plus sea clutter), obtained with an X band
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radar (9 GHz) with 30 dB of gain and figure of merit of 3 dB. The data
were digitized at 100 MHz and 8 bits. The second data set is a synthetic
range profile, the sea clutter is generated with a Weibull and K pdf models,
with 256 amplitude levels (8 bits) and thermal noise of 316 mv average. The

Fig. 3. Output of Energy-CFAR, (a) synthetic targets,
(b) targets plus Clutter (SS 5), (c) output
with typical CFAR algorithm, (d) output with
proposed Energy-CFAR architecture, (e) perfor-
mance of proposed architecture VS typical CFAR
variants
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synthetic targets were created with 10 to 50 m2 of radar cross section (RCS)
and amplitude level between 5 and 20 dB.

Fig. 3 shows the outputs obtained after processing the range profile with
the proposed architecture. Fig. 3 (a) shows targets with amplitude of 5, 3,
12, 10 and 15 dB and 20, 10, 20, 10 and 12 m2 of RCS respectively. Fig. 3 (b)
shows a range profile composed with targets plus sea clutter (sea state 5)
generated with K pdf. In Fig. 3 (c), the output of CFAR algorithm without
energy filter is shown. Note that two targets are lost, additionally it presents
excessive false detections. Fig. 3 (d) shows the results obtained with the
proposed energy-CFAR architecture. The targets are enhanced; this avoids
the loss of targets while the clutter is minimized decreasing false detections.
In Fig. 3 (e), a comparison of the performance of multiple CFAR variants
is shown. The solid line is an ideal CFAR without clutter, the other lines
represent the outputs of proposed Energy-CFAR, trimmed mean-CFAR (TM-
CFAR), order statistic-CFAR (OS-CFAR) and cell averaging-CFAR (CA-
CFAR) [2]. The curves show that processing range profiles with Energy-
CFAR yield better performance than the other variants.

For testing and validation, the architecture was implemented in VHDL
language and synthesized for a Virtex 2 XC2V1000 Xilinx FPGA using the
Xilinxs ISE 9.2 development tool. The maximum operational frequency as
reported by the tool is 150 MHz with a maximum throughput delay of 20 ns.
The occupied area for the selected FPGA device is just 30%.

5 Conclusions

A hardware architecture of an adaptive filter, based on energy analysis for
radar targets detection was described. The energy analysis used by proposed
Energy-CFAR architecture results better performance that other CFAR vari-
ants reported in literature. The processing time obtained by the FPGA-based
hardware implementation shows that this module is suitable for being used in
modern radar processing systems. The simple design leads to a fast yet small
architecture. Finally, the proposed design allows to an easy configuration of
the adaptive filtering in order to adjust the system according to changing
environment conditions.
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