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Applications of wireless communications networks are emerging continuously. To offer a
good level of security in these applications, new standards for wireless communications
propose solutions based on cryptographic algorithms working on special modes of opera-
tion. This work presents a custom hardware architecture for the AES-CCM protocol (AES-
CCMP) which is the basis for the security architecture of the IEEE 802.11i standard. AES-
CCMP is based on the AES-CCM algorithm that performs the Advanced Encryption Standard
(AES) in CTR with CBC-MAC mode (CCM mode), plus specialized data formatting modules,
providing different security services through iterative and complex operations. Results of
implementing the proposed architecture targeting FPGA devices are presented and dis-
cussed. A comparison against similar works shows significant improvements in terms of
both throughput and efficiency.

� 2010 Published by Elsevier Ltd.
1. Introduction

Security is an important characteristic in recent wireless communication networks. Security standards on these networks
define security architectures based on cryptographic algorithms, e.g. the IEEE 802.11i-2004 and IEEE 802.16e-2005 standards
describe a set of algorithms to be used, where the Advanced Encryption Standard (AES) plays a very important role.

The security architecture of the IEEE 802.11i standard is based on the AES-CCM protocol (AES-CCMP), which in turn is
based on the AES-CCM algorithm that performs the AES block cipher in CCM mode, see Fig. 1. The IEEE 802.11i-2004 stan-
dard replaces Wired Equivalent Privacy in the original IEEE 802.11 standard with the AES-CCM. Traditionally, two different
cryptographic algorithms are used to provide privacy and authentication, but AES-CCM algorithm provides these two secu-
rity services with the same algorithm, using the AES block cipher and the same key. CCM (CTR with CBC-MAC Mode) uses the
CTR (Counter) mode and CBC-MAC (Cipher Block Chaining – Message Authentication Code) mode. Privacy is provided by this
algorithm in CTR mode, requiring a value that ensures uniqueness. The authentication is performed by the algorithm in CBC-
MAC mode and additional capabilities; CBC-MAC is an integrity method that ensures that every cipher block depends on
every preceding part of the plain text, where ciphering two identical blocks results in different cipher blocks.

The use of cryptographic algorithms in demanding applications that transmit great amounts of data requires computing
complex operations, which may result in system bottlenecks. These algorithms protect data transmissions at the expense of
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Fig. 1. Security architecture based on the AES-CCM Protocol for IEEE 802.11i-2004 networks.
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high computational costs, thus architectures with high throughput are required, at least 1 Gbps, for future data transmis-
sions such as in the new wireless networks [1]. Those networks aim applications that require transmitting high quality
TV, movies in DVD, and great amount of digital files using personal computers, among others. Based on the fact that hard-
ware implementations of cryptographic algorithms usually have better performance than their corresponding software
implementations, this work presents a custom hardware architecture for the AES-CCMP. A careful analysis of the algorithm
allowed exploiting parallelization of some processes and the design of highly specialized processing modules in order to
achieve the highest throughput/area ratio when compared against similar works.

The proposed hardware architecture is implemented in FPGA devices to examine hardware resource requirements and to
report throughput and efficiency, and also to validate its operation. The aim is to provide high throughput, using an iterative
architecture in order to improve its efficiency.

In Section 2, details of the AES-CCM Protocol and IEEE 802.11i-2004 networks are presented, together with a brief
description of the AES block cipher and AES-CCM algorithm. In Section 3, the proposed hardware architecture and its spe-
cialized modules are described, and in Section 4, implementation results of this architecture and comparisons against related
work are depicted. Finally, in Section 5, conclusions are drawn.

2. AES-CCM protocol (AES-CCMP)

Cryptographic algorithms usually focus on offering one of the four basic security services of confidentiality, authenticity,
integrity, and non-repudiation. Each algorithm, either symmetric, asymmetric, or hash functions, operates a set of mathe-
matical rules that are used for ciphering and deciphering. Recent developments in cryptanalysis techniques and collision at-
tacks have motivated the development of new algorithms and modes of operation to ensure a high level of protection. One
mode of operation proposed for the security architecture in wireless communication networks is known as CCM, which is
used for cryptographic block ciphers, being AES cipher the most widely used for authentication and confidentiality services.
The security characteristics of the AES block cipher in CCM mode are used in the AES-CCM protocol [2] to provide data con-
fidentiality, integrity, and replay-attack protection, operating on the plaintext MPDU (Medium-Access-Control Protocol Data
Unit), see Fig. 1. MPDU contains several fields, including, the payload, the length of payload, and the header of MAC (Medium
Access Control) layer.

In general, the security architecture based on AES-CCMP ciphers data input (plaintext MPDU), using the AES-CCM algo-
rithm, to produce the data output (Cipher MPDU) and value MIC (Message Integrity Code) U. For this, AES-CCMP disassem-
bles each packet of the plaintext MPDU in different elements such as KeyID, packet number (PN), address 2 (A2), priority
octet, Medium-Access-Control header and payload. Reuse of a PN with the same temporal key voids all security guarantees.
A temporal key (TK) is required for every ciphering session. The payload, TK, Nonce value and additional authentication data
(AAD) are input to the AES-CCM. It outputs the cipher data and the value MIC U that are used together with the CCMP and
MAC header to build the Cipher MPDU. That means that a new packet is formed from a CCMP Header as well as a Nonce value
(unique for each frame protected by a given TK and a 48-bit PN) and AAD.

The AES-CCM algorithm executes two related processes: generation-encryption and decryption-verification. For the pur-
poses of this research, which is focused on the reconfiguration of a transmission platform, the generation-encryption process
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is considered for designing the architecture. The results of this platform will help to design the receiving counterpart, where
only small changes must be considered in the cryptographic process. AES-CCM is based on two modes of operation, see
Fig. 2: CBC-MAC and CTR modes. CBC-MAC process is applied to the payload, the data associated AAD, and the nonce to gen-
erate a intermediate value MIC T, whereas CTR mode is applied to the MIC T and the payload to obtain the ciphertext (Cipher
MPDU) and value MIC U.

For AES-CCMP, these two modes use AES block cipher as the main module, working in cascade, where AES-CBC-MAC gen-
erates an intermediate value MIC T for AES-CTR, which then generates the cipherdata and the final value MIC U. AES-CBC-
MAC works sequentially and it cannot be parallelized. AES-CBC-MAC is used if there is an exact number of blocks and hence
requires padding. To calculate a value MIC T, see Fig. 3, AES-CBC-MAC algorithm parses data input into 128-bit blocks and
uses the following process:

(1) Ciphers an initial 128-bit block (Block 1) with AES block cipher and the data integrity key (TK). This produces a 128-bit
result or cipherdata output (X1).

(2) Performs an exclusive OR (XOR) operation between the result of step 1 and the next 128-bits block over which the MIC
T is being calculated.

(3) Ciphers the result of step 2 with the AES algorithm and TK, resulting in a cipherdata of 128 bits.
(4) Performs an XOR operation between the result of step 3 and the next 128-bit block.
(5) Repeats steps 3–4 for the remainder 128-bit blocks. After processing all data blocks, the high-order 64 bits of the final

result are the MIC value T.

When ciphering two identical input blocks, CTR mode produces different cipher blocks, which is based on a nonce value
rather than starting it from a fixed value. This mode provides authentication by adding extra capabilities. Some properties
of CTR is that ciphering can be done in parallel, decryption is the same process as encryption, and the message is not required
to break into an exact number of blocks [3]. The AES-CTR algorithm uses the following process, see Fig. 4, where it is nec-
essary to parse the data input:

(1) Ciphers a starting 128-bit counter (A0) with AES and TK. This produces a 128-bit result or cipherdata output S0.
(2) Performs an XOR operation between the result T of the CBC-MAC process, and the first 64-bit block of the data (S0’).

This produces the 64-bit cipherdata block U.
(3) Increments the counter and ciphers the next 128-bit counter value with AES and TK. This produces a 128-bit result S1.
(4) Performs XOR between the result of the step 3 and the next 128 bits of the data B1. This produces the second 128-bit

encrypted block C1.
(5) Repeats steps 3–4 for the remainder 128-bit blocks. AES-CTR repeats steps 3–4 for the additional 128-bit blocks in the

data until the final block is processed. Additionally, for the final block the ciphered counter is XORed with the remain-
ing bits, producing cipherdata of the same length as the last block of data. If the last input block is smaller than 128
bits, the XOR operation is performed with the same number of bits as the block size.

As it was mentioned, AES-CBC-MAC and AES-CTR modes use the AES block cipher as their main module. The AES is a sym-
metric block cipher that can process data blocks of 128 bits and it uses cipher keys of 128, 192, and 256 bits, see Fig. 5 [4]. All
AES processing in CCM encryption uses AES with a 128-bit key and a 128-bit block size. AES executes an initial round fol-
lowed by 10 rounds. These last ten rounds have four main operations (also called transformations):

(1) byte-to-byte substitution (SubByte),
(2) rotation of rows (ShiftRow),
(3) mixing of columns (MixColumn), and
(4) addition of round key (AddRoundKey).
Fig. 2. Block diagram of the AES-CCM algorithm.



Fig. 3. Block diagram of the AES-CBC-MAC algorithm.

Fig. 4. Block diagram of the AES-CTR algorithm.
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Other operation is key expansion, which computes a key schedule or a 128-bits key in each round. This operation generates a
round key for every round, taking a 128-bit input key, executing lineal operations and substitutions, and outputting a 128-bit
expanded key.

The non-linear byte substitution and key expansion operations require S-box substitution, where one byte is substituted
and determined by the intersection of the row and the column.

Each input block (key and data) is grouped and operated as an array of bytes, termed the state array, which changes dur-
ing the eleven rounds. The state array has a dimension of 4 � 4 (four rows and four columns) or (8 bits) (16) = 128 bits [4].
The basic unit is a byte and all bytes are interpreted as finite field elements, which are added and multiplied. In polynomial
representation, these operations are computed in Galois Field GF(28). In this context, results of the operations are ensured as
a binary polynomial of degree less than 8, and are represented by a byte [5]. In general, to cipher a data block, firstly, an
initial round is executed by computing an XOR operation between key and data block, next, nine rounds are computed by
executing four transformations, and finally, a last round is executed omitting the third transformation.

3. Proposed hardware architecture

The aim of this work is to propose a fast yet simple iterative AES-CCMP hardware architecture with low hardware require-
ments for the IEEE 802.11i-2004 security standard. The main contribution is an architecture design that achieves high per-
formance by combining several design techniques, exploiting module parallelism and simplifying the global control strategy.
The methodology followed for the architecture design consisted on firstly modeling the AES-CCMP in software to fully
understand the algorithm and also to create the test data for validating the corresponding hardware modules. After that,
a straightforward hardware architecture was designed and implemented with the aim of providing a baseline architecture
to evaluate improvement strategies. This also allowed identifying processing bottlenecks, critical paths and potential for



Fig. 5. Block diagram of the AES algorithm.
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hardware reutilization. Some techniques, such as loop unrolling, pipelining, and the use of embedded hardware resources
[6], allowed reducing the critical path. The focus was on achieving higher throughputs and to require lower hardware re-
sources, which results in high throughput/area ratio. After simulations, potential modules that could be parallelized were
identified as well as a strategy for balancing the processing workload among the more complex modules. The complete func-
tionality of the architecture was tested using the test vectors available in the standards FIPS 190-7 (AES), NIST SP800-38C
(AES-CCM) and IEEE 802.11i-2004 (AES-CCM Protocol).

The AESCCMP hardware architecture is illustrated in Fig. 6. All the operations are processed by this architecture, see Fig. 1,
except Increment PN and Construct CCMP Header blocks that are executed before AESCCMP hardware architecture process-
ing begins. The AESCCMP hardware architecture is constituted by specialized modules to format data (Format_N&Q, For-
mat_AAD, Format_Payload, and Format_CB), to execute AES-CCM algorithm (AESCCM) and main control (Control_CCMP).
Each module that formats data, excepting the first module, has its own control sub-module. Sub-modules AESCBCMAC
and AESCTR execute AES-CBC-MAC and AES-CTR algorithms in parallel. The critical path of the AES-CCMP hardware archi-
tecture is located at the AESCTR module. This was the shortest critical path that was achieved by balancing the processing
workloads by placing some registers and converting the general control for the architecture into a simplified general control
and local controls for each one of the main modules.

As previously mentioned in Section 2, the packets of plaintext MPDU are ciphered by AESCCMP architecture for providing
packets of ciphertext MPDU with the value MIC U. The general internal operation is performed on data that come from one of
two possible sources of data. The first source of data selects one 128 bit data block from three different data sources
(PAY_N&Q, PAY_AAD, or PAY_PAY) to compute the value MIC T in the AESCBCMAC sub-module, whereas the second data
source takes the value CB to compute cipher data and MIC U in the AESCTR sub-module. After processing all data blocks,
the AESCCM module generates the cipherdata Cipher_MPDU and U value. The next three sub-sections describe the special-
ized modules of the AESCCMP hardware architecture: AESCCM main module (subsection 3.1), modules for the construction
of data blocks (subsection 3.2), and the main control module (subsection 3.3).

3.1. AESCCM Module

The AESCCM module uses AESCBCMAC sub-module in conjunction with AESCTR sub-module to produce a value MIC U for
authentication purposes, linking together encryption and authentication under a single key. According to [3], the two CCM
parameters (M and L) take values of 8 and 2, respectively. The general operation of the AESCCM module is divided into these
two sub-modules, where the first sub-module is required to calculate the authentication field value T, and the second sub-
module computes the cipher_MPDU and value MIC U, considering the CCMP encapsulation. The plaintext message input is
divided into 128-bit data blocks BX, and they are used for processing in the two sub-modules, whereas counter blocks are
used only for AESCTR sub-module.

As this block performs the more complex processes of the AES-CCM Protocol, special care was taken when designing this
module in order to avoid a processing bottleneck. The architecture of the AESCBCMAC sub-module consists of the AES_Ci-



Fig. 6. Block diagram of the AESCCMP architecture.
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pher component, which performs the AES algorithm. The main function of this sub-module is to compute the T value, which
is done by an iterative non-pipelined AES component, where it is necessary to process all 128-bit data blocks before obtain-
ing T. In general, each 128-bit data input block of the AES_Cipher is processed during 10 clock cycles. AESCBCMAC operates
differently the first data input block to the remaining data blocks. In the first data block and considering the multiplexer
component, this data block (input BX) is fed to the data input, and processed directly by the AES_Cipher component. In
the next data blocks and considering the control signal SEL, the output YK is feedback and combined with BX through
XOR gate, thus this new data block is processed by the AES_Cipher. This process is used for all messages, which are divided
into 128-bit data blocks. Finally, after processing all data blocks, the output T is obtained by selecting eight bytes from the
bus YK.
Fig. 7. Block diagram of the AESCCM module.



Fig. 8. Block diagram of the AES_Cipher component.
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AESCCM module generates the two main outputs, MIC value U and cipherdata (Cipher_MPDU). For computing the value
U, the bus T and the cipher output SX of the first block CB are combined by the XOR gate, and the output of this gate is the bus
U. To compute the cipherdata Cipher_MPDU, AESCTR module executes AES-CTR process for each following 128-bit CBs, and
their outputs SX and data input blocks BX are combined by an XOR gate. The output of this gate is the Cipher_MPDU. Reg-
isters are added for synchronizing the data. More details of the AES-CCM module implementation as well as a performance
evaluation are reported in [7] and [8] (see Fig. 7).

Both the Authenticator and Cipher sub-modules have a common component named AES_Cipher, which computes the AES
algorithm. All processing within CCM uses AES with 128-bit key and 128-bit block size. The block diagram of the AES_Cipher
component is shown in Fig. 8.

AES_Cipher performs the AES algorithm, ciphering the input data (plaintext) with a 128-bit key, during 10 clock cycles, to
obtain the output data (cipherdata). The main sub-components of the AES_Cipher are: (1) AES_Control, which outputs con-
trol signals and organizes the dataflow, (2) AES_GenKey, which outputs the round keys, and (3) AES_Round, which ciphers
the data. The initial round is computed by the XOR gate, and the following 10 rounds are executed by the AES_Round sub-
component. AES_Round covers the four transformations defined in [4], see Fig. 5. The AES_Cipher component computes
operations over Galois Fields through combinational and sequential hardware elements.

In its architecture, the initial round is executed by combinational elements, whereas the other rounds are executed by
sequential elements. Thus, this architecture requires only 10 clock cycles to compute AES algorithm for each 128-bit data
block. Adding a gate for computing the initial round and balancing sequential and combinational elements enable to reduce
critical path, and to decrease the latency. The implementation results show an improved performance, more details have
been reported in [9].

The round keys are added in AES_Round sub-component and the intermediate cipher data are feedback to the same sub-
component until the final cipher data are obtained. The AES_GenKey sub-component is the key-expansion operation, which
outputs a 128-bit key every round. The AES_Control component is a 12-state FSM (Finite State Machine), and it controls the
dataflow. Multiplexers, registers, and control signals are established by this component. Internally, S-boxes and XOR gates
compute the round keys. AES_Round computes sixteen S-box operations, whereas AES_GenKey computes four S-boxes,
which are implemented using dual-port memories, requiring only half of the amount of memories: 10. Because two AES_-
Cipher components are used, the two processes can be executed in parallel, and it is required 20 dual-port memories.
3.2. Data-input formatting

The AESCCMP architecture constructs data blocks through four sources from the specialized modules: (i) Format_N&Q,
which generates the initial data block (Fig. 9a), (ii) Format_AAD, which formats the AAD (Fig. 9b), (iii) Format_Payload, which
constructs data blocks from payload (Fig. 9c), and finally, (iv) Format_CB, which constructs counter blocks from the counter
and nonce for the CTR process (Fig. 9d).

In general terms, for the CBC-MAC process, IEEE 802.11i-2004 specifies that AES-CCMP increments PN, obtaining a fresh
PN for each MPDU, and the CCM initial block is constructed from this PN, from the MPDU data length (Q), and from other
defined bits. The next two data blocks are formatted and constructed from AAD, whereas the remainder data blocks are con-
structed from the payload. For this last process using the nonce, a counter is initialized and the counter blocks (CBs) are con-
structed. These, the payload and the value T are the inputs for the CTR process that obtains the ciphered data and the final
value MIC U.



Fig. 9. Block diagram of the modules: (a) Format_N&Q, (b) Format_AAD, (c) Format_Payload and (d) Format_CB.
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AESCCMP architecture executes the CBC-MAC and CTR processes in parallel form, where AESCBCMAC sub-module takes
data input from the three first different sources, formatting and multiplexing to calculate the value T.

The first source of data comes from Format_N&Q, which generates the initial data block.
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The second source is obtained from the Format_AAD module, where two 128-bit data blocks from input ADD are formed.
In this module, the key element is the control that enables data formatting from a variable source. For this, it is important to
consider that ten clock cycles are used for processing an initial data block; therefore, the input bus for AAD is selected with a
16-bit size. This decision considers the data rate in the other modules, such as AESCCM, enabling to use less hardware re-
sources and forming 128-bit data blocks. The variable source is due to the AAD is constituted by several fields with length
in octets, see Fig. 10. The construction of the data block PAY_AAD, see Fig. 9 (b), requires to modify certain fields (FC and SC)
of the data input AAD, and other fields (A4 and QC) can be in attendance or not. This generates a variable size of the AAD,
hence two 128-bit data blocks including padding bits are required. Some bits of the FC and SC fields are modified, and A4 and
QC fields are optional. This produces the variable length of the AAD, presenting the particular control unit a complex oper-
ation based on a finite state machine, see Fig. 11a. This control considers four possible inputs to AESCBCMAC, see Fig. 9a: (i)
modified FC, (ii) modified SC, (iii) zeros (padding bits), and (iv) the AAD. Moreover, Format_AAD considers inclusion or not of
the A4 and/or QC fields, according to signals Flag_A4 and Flag_QC, respectively, which indicates the presence of these fields.
For example, if A4 and QC are present, then AAD has a length of 240 bits, see Table 1.

For the third source, Format_Payload module constructs 128-bit data blocks from the payload that are processed during
10 clock cycles in AESCCM module, enabling a 16-bit bus for producing and formatting a 128-bit data block. The length Q has
a variable value, and it indicates the number of 128-bit data blocks. The padding bits are set to zeros. The 16-bit input In_FA
is divided into two bytes, see Fig. 9b. The particular control unit Control_FormatPayload, see Fig. 11b, selects these data input
for constructing of the data blocks.

Finally, AESCTR sub-module takes data input from one source generated by Format_CB module, initializing the counter
Counter_16Bit, and using the nonce. The counter blocks are generated, and these, together with the value T and the format-
ted payload, are data inputs for AESCTR. They are ciphered, obtaining the cipherdata and the final value MIC U. The associ-
ated control unit is simple, see Fig. 11c. It is a FSM with four states, which counts ten clock cycles to indicate that Format_CB
has a valid output.

3.3. Main control module

There is a complex dataflow required to manage four sources of data blocks, several specialized modules, particular con-
trol units, and data storage. Several processes are executed in parallel, registering data from the initial clock cycles to final
ones to compute value MIC U, or delaying data input blocks to compute cipher data blocks, or coordinating the starting o
finishing of processes. The Control_CCMP module allows controlling this dataflow, by managing the parallelization and syn-
chronization of the processes that execute both CBC-MAC and CTR processes. The control is based on a FSM, see Fig. 12. A
way to simplify the design of the main control is made possible due to the states of the particular control units (see Sec-
tion 3.2) that are reused for establishment of control signals.
4. Implementation results and comparisons

The architecture was modeled in VHDL and simulated using FPGA-Advantage 6.3. Synthesis results for the AESCCMP
architecture are presented in this section. For the purpose of validation and prototyping, the AESCCMP architecture was syn-
thesized, mapped, placed and routed for the Xilinx’s Viterx-4 LX FPGA device using the Xilinx’s ISE 9.1 design suite. Also, in
order to fairly compare against similar works, the architecture was also implemented targeting Xilinx Virtex-II and Spartan-3
FPGA devices. The implemented architecture was simulated and verified considering real-time operation condition by using
the design conformance test data, provided with the IEEE 802.11i standard. Two metrics are considered for evaluating this
architecture and to compare it fairly against similar works, they are throughput (see Eq. (1)) and implementation efficiency
in terms of throughput/area and in terms of throughput/frequency that gives a clear idea of the general performance of the
architecture.

The following assumptions are considered for computing the throughput:

(1) in this security architecture, the message has a maximum size of 1024 bytes, thus 64 data blocks of 128 bits are
obtained,

(2) AAD has a maximum size of 32 bytes, thus two data blocks are constituted, and
(3) initial data block is formed by Q and N values, see Section 3.2.

The hardware architecture processes 67 data blocks (64 for the message, 2 for AAD and 1 for the initial data block), but the
initial data block is considered overhead, so only 66 data blocks have effective bits, i.e., (66) (128 bits) = 8448 bits.
Fig. 10. AAD construction [2].



Fig. 11. Finite state machines used for control units: (a) Control_FormatAAD, (b) Control_FormatPayload and (c) Control_FormatCB.
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These data blocks for authentication (initial block, AAD, and message) and ciphering (CBs and message) are processed in
parallel, so, it is necessary to process 67 data blocks, requiring (67) (10 clock cycles) = 670 clock cycles. The 10 clock cycles



Table 1
Possible values of the AAD.

Condition AAD (bits) Padding bits

A4 & QC (F_A4 = 1, F_QC=1) 240 16
A4 (F_A4 = 1, F_QC = 0) 224 32
QC (F_A4 = 0, F_QC = 1) 192 64
Neither (F_A4 = 0, F_QC = 0) 176 80

Fig. 12. Finite state machine used in the Control_CCMP sub-module
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are used for ciphering by the AES_Cipher modules. An extra clock cycle is used for loading the initial data block, whereas the
next data blocks are loaded during the processing of the previous data block.

Finally, the throughput is computed by Eq. (1), where Clock_frequency is obtained by implementing in the different FPGA
technologies.
Table 2
Implem

Para

Perio
Cloc
Slice
LUTs
BRAM
Thro
Pow
Throughput ¼ ðPlain data block size � Clock frequencyÞ=ðClock cyclesÞ ð1Þ
Table 2 shows implementation results of the AESCCMP_Architecture for the three selected FPGA devices, achieving the max-
imum operating frequency and throughput in the Virtex-4 FPGA. A comparison against related works is presented in Table 3.
The architecture presented in [10] reports an AESCCMP architecture with a throughput of 0.127 Gbps, running at 63.7 MHz.
This architecture has been designed focusing on efficiency and low power consumption. In [11], authors present an AES
architecture with CCMP and OCB modes, which is implemented in a Xilinx VirtexE FPGA, reporting 0.243 Gbps at 50 MHz.
To process 2312 bytes, MIC generation needs 1 clock cycle; counter initialization needs 1 clock cycle, and CTR encryption
needs 145 clock cycles. Smyth et al. [12] reports a security processor, which is designed to offload cryptographic processing
from the host microprocessor achieving a throughput of 0.275 Gbps. Bae et al. [13] reports a hardware architecture operating
with a clock frequency of 50 MHz, which ciphers a block every 44 clock cycles. Commercial platforms are reported in [14–
16]. Quatech, Inc. [14] presents a radio platform, which supports AES/CCMP, WPA, and WEP security mechanisms with a
maximum data rate of 0.054 Gbps. Hi/fn, Inc. [15] reports a security processor, reporting a maximum data rate of 0.275 Gbps.
RadiSys Corporation [16] presents a processor with multiple security mechanisms, encountering AES-CCMP. Specific charac-
teristics are not provided, and it is reported that the processor has the capability of cipher/decipher data up to 2 Gbps, but
this datasheet does not specify if AES-CCMP process reaches 2 Gbps. Finally, an additional work in [17] reports an AES-CCMP
hardware architecture, although details about the design, its implementation and the comparison are only presented for the
AES hardware architecture, thus, it is not included in Table 3.
entation results of the AESCCMP for three different technologies.

meter/device AESCCMP Virtex-4 LX XC4lX100 -11 AESCCMP Virtex-II XC2V2000-6 AESCCMP Spartan-3 XC3S4000-5

d (ns) 6.711 8.483 11.863
k (MHz) 149.00 117.88 84.29
s 1921 1609 1640

3186 2511 2499
20 20 20

ughput (Gbps) 1.876 1.484 1.061
er consumption (mW) 1022 618 746



Table 3
Implementation results of the AES-CCMP hardware architectures.

Work-device FPGA resources (Slices,
BRAM)

Clock frequency
(MHz)

Throughput
(Gbps)

Efficiency (Mbps/
Slices)

Efficiency (Mbps/
MHz)

[10] – Spartan-3 523 63.70 0.127 0.243 1.993
[11] – VirtexE 3750 50.00 0.243 0.064 4.860
[12] – Virtex-II 3474, 15 BRAM 80.30 0.275 0.079 3.424
[13] – Stratix 5605 logic cells 50.00 0.285 0.052 Gbps/ logic cells 5.700
[14] – ASIC module – – 0.054 – –
[15] – Processor – 66.00 0.275 – 4.166
[16] – Processor – 1500.00 >2 – 1.333
This work – Virtex4-

LX
1921, 20 BRAM 149.00 1.876 0.976 12.590

This work – Virtex-II 1609, 20 BRAM 117.88 1.484 0.922 12.589
This work – Spartan-3 1640, 20 BRAM 84.29 1.061 0.646 12.587

576 I. Algredo-Badillo et al. / Computers and Electrical Engineering 36 (2010) 565–577
In spite of several works from Table 3 presume diminishing or requiring low power consumption, none of them report it
explicitly except for [16] that is a commercial processor, however, the reported power consumption includes all its ports,
ciphering algorithms, LEDs, central and secondary processors and daughter board. As no comparison can be performed in
that terms, the power consumption of the architecture reported in this paper is given in Table 2.

As seen in Table 3, there are few reported implementations of AES algorithm in mode CCMP. These have a throughput
inferior to 1 Gbps, where Bae et al. [13] reports the higher throughput of 0.285 Gbps. Aziz et al. [10] uses fewer slices with
a low throughput, although a design using more FPGA logic rarely has a proportional throughput. The other works report
processors, which have a low throughput with a high flexibility. Another metric included in Table 3 is the implementation
efficiency, which is commonly used to report results of cryptographic hardware implementations and is defined as the ratio
between the reached throughput and the number of slices that each implementation consumes [18]. Efficiency can also be
defined as the ratio between the reached throughput and the frequency [19]. As seen in the table, our AESCCMP implemen-
tation achieves significant improvement in efficiency, measured in terms of both Mbps/slice and Mbps/MHz.
5. Conclusions

Hardware implementations are required to support new wireless communication applications with great levels of secu-
rity, where these applications have high data transmission rates. In the design of cryptographic hardware architectures,
rarely there is a proportional throughput when using more hardware resources, but these should apply a complementary
design, utilizing hardware advantages and certain approaches. An efficient iterative hardware architecture of the IEEE
802.11i-2004 security architecture was presented in this paper, using lower hardware resources and reporting the highest
throughput and efficiency, results that can be reviewed in the comparisons.

The proposed architecture supports AES-CCM protocol, which is constituted from AESCCM module and data formatting
modules. The general approach used in this work aimed to obtain an iterative architecture with low hardware resources uti-
lization, obtaining an AESCCMP hardware implementation with a high performance and a balanced ratio of hardware re-
sources and throughput. Trade-off analysis about parallelization of data buses and modules was made and a common
module was identified, enabling the proposed designs to achieve a high throughput. The specialized modules are based
on computing AES algorithm in different modes of operation and formatting of data input, and custom particular control
sub-modules are designed for each specialized module, having a simple main control, local hardware resources and a short
critical path. The implementation results were presented and compared with related designs, showing that the proposed
AESCCMP design reports the highest efficiency and the highest throughput with lower resources requirement than the re-
lated works, enabling to a wide margin to decrease the clock frequency and the power consumption, taking advantage of
the parallelization for wireless communications.
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