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1. Introduction

A supervised classifier finds the relationship between a query
object and a given set of predefined classes, based on a training
sample, often using certain similarity or dissimilarity measure
between object descriptions. Objects appear in the training
sample described in terms of numerical features, non-numerical
features, or both. In some applications, we also need to include a
special symbol (usually “?”) to represent missing values. Some
authors [1,2] use the term mixed and incomplete data for domains
with mixed feature descriptions and missing values.

For many learning tasks, a high accuracy is not the only sought
after characteristic of a supervised classifier; the classifier should
also be easily understood by humans. “Symbolic” learning
systems [3-6] are usually much more amenable to human
comprehension than classifiers that use complex mathematical
models, like neural networks and support vector machines [7]. In
many domains the lack of comprehensibility is an important
drawback, that may cause a reluctance to use the model. For
example, when credit has been denied to a customer, the equal
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credit opportunity act of the US requires that the financial
institution provide the reasons why the application was rejected;
indefinite and vague reasons for denial are not legal [8]. In some
other fields, like medical diagnoses and mineral prospection,
clarity and explainability are key constraints.

Higher classification accuracies are usually obtained at the
expense of classification comprehensibility:

e In neural networks (NN) [9], after training a classifier, the user
obtains the connection weights, but those weights do not have
a clear interpretation in terms of features or feature value
relations. Moreover, when classifying with the trained NN, the
level of output neurons brings almost no support of the result.
So, neural networks are limited in this respect, since they are
usually difficult to interpret after training [7].

e In k Nearest Neighbors [10], the user could know the objects
that determine the classification, but he needs a deep under-
standing of the distance function and the representation space
in order to obtain a result interpretation.

e In a support vector machine classifier [11] is described as a
complex mathematical function, which is rather incompre-
hensible for humans [8].

In most comprehensible classifiers [3-6], the user can under-
stand the model found by the classifier in the training stage. This
understanding is very useful to explain the classification results.
For example, in a decision tree [12], any path from the root to a leaf
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determines a conjunction of properties appearing mostly in the
leaf-associated class, which explains the classification. Therefore,
the disjunction of the properties, determined by all paths from the
root to the leaf nodes of a given class, forms an empirical
characterization of the class. This empirical characterization of
classes is the key for classifying query objects. A similar reasoning is
applicable to decision forests [4], where each tree gives support
to a certain class, and the integration strategy provides a joint
explanation.

KORA-3 [3] introduces another way to obtain the empirical
characterization of classes. In this algorithm, the key idea is the
frequency in which certain feature value combinations
(subdescriptions) appear in the objects of a class in the training
sample and not in its complement.

From emerging pattern classifiers [5] and KORA type classifiers
[3], which are other comprehensible classifiers, the user might
obtain for each class a list of patterns or complex features,
respectively. Based on this list, the classifier assigns a class to a
query object, using the patterns or complex features present.

In general, many comprehensible classifiers use discriminative
regularities for classification and classification support. Regularities
are feature value combinations that describe a sample subset. In a
domain partitioned in classes, discriminative regularities are
regularities that describe enough objects in a class, and they
describe few objects in any other class. There are different ways to
represent discriminative regularities in classifiers, although
regularities may be implicit in some classifiers. In a decision tree
or forest, the paths from the root to the leaves are implicit
discriminative regularities expressed in conjunctive forms. In a
rule-based system, the antecedents of the rules that imply the
class are discriminative regularities. Emerging patterns and
KORA'’s complex features are explicit discriminative regularities,
expressed as conjunctions of simpler properties.

The practical problem is how to find the empirical character-
izations of classes. It is important to underline that “empirical”
implies not only the dependency with respect to the training
sample, but also that the obtained characterization of classes is
not the grand truth. Every algorithm for this task obtain an
approximation of the truth based on training data and a particular
procedure to obtain the characterization.

Searching discriminative regularities in a training sample is
the key procedure in many comprehensible classifiers, even
though it may be implicit. This search is a challenge because the
downward closure [13] property no longer holds true for
discriminative regularities, and there could be too many candi-
dates in high dimensional databases. In addition, exhaustive
solutions may be too costly because of the dimensions of the
search space [5].

Despite the fact that some discriminative regularity-based
classifiers are widely used, and they show a competitive behavior
with respect to other classifiers [14], they have one or more of the
following drawbacks:

e There are no efficient pattern finding procedures. For example,
KORA type classifiers use an exhaustive search algorithm.

e A simplified pattern representation is necessary to apply fast
searching algorithms. An a priori discretization of all numerical
features and simple “equal” relations with non-numerical
features are commonly used. Nevertheless, this simplification
usually results in huge amounts of patterns, even for problems
with few objects and features.

e The filtering procedures based on properties like minimality
over subset inclusion or covering objects in a single class may
have two undesirable effects: deletion of important patterns
and selection of useless patterns.

The main contribution of this paper is a novel algorithm for
mining discriminative regularities. This algorithm creates a
collection of diverse decision trees and then extracts patterns
from them. Finally, it applies a pattern-filtering step, obtaining a
reduced set of high quality discriminative regularities. It is
important to note that the resulting regularities are useful by
themselves, and they could help the user to discover new
knowledge about the problem domain.

In this paper, we introduce a new algorithm named Logical
Complex Mine (LCMine) for efficiently finding discriminative
regularities on training samples with mixed and incomplete data.
LCMine has three distinctive characteristics:

e It does not apply an a priori discretization on numerical
features, unlike most algorithms for mining discriminative
regularities. It is important to highlight that each numerical
attributes is frequently discretized independently. Therefore,
discretizing a numerical attribute without considering the
values of other features could hide important relations in the
objects of a class, causing an important information loss. An
example of this undesirable behavior appears in Table 5, where
an emerging pattern based classifier (SJEPC), applying an a
priori discretization, is unable to find patterns in the wpbc
database.

e It uses an extended representation for the regularities. This
representation allows us to find regularities with a wider set of
operators (including #, <, > and € ), while most previous
methods use only the “="operator. This way, LCMine patterns
can express properties using less regularities.

e It uses a new filtering strategy to eliminate redundant
regularities.

Based on the patterns obtained by LCMine, we build a classifier,
which attains higher classification accuracy than previous
methods, while using fewer patterns. Additionally, our classifier
attains very good accuracy results, compared with traditional and
state-of-the-art classifiers.

In the next section, we present a review about discriminative
regularities in some supervised classifiers. We critically analyze
pattern representation and search algorithms for some of the
most successful classifiers using implicit or explicit discriminative
regularities. Section 3 presents LCMine, the proposed algorithm
for finding discriminative regularities. Section 4 presents the
results of an experimental comparison using some popular
classifiers. Finally, we expose our conclusions and future work.

2. Discriminative regularities in supervised classification

One of the first classifiers based on discriminative regularities
is KORA-3, introduced by Bongard in 1963 [3]. The author defines
the concept of complex feature for a two-class problem, as a
combination of three values from three features appearing at least
in p,;,, objects in one class, and not appearing in the other class. A
complex feature appears in an object if the object has the same
values that the complex feature has in the respective features. As
KORA-3 uses Boolean features, a complex feature is a discrimi-
native regularity formed by a combination of three values from
three Boolean features. For example, consider the two-class
problem in Table 1, containing four Boolean features.

If pin = 2, we have the complex feature (tall=true), (fever=-
true), (male=true) in class sick, and the complex feature
(fever=true), (male=false), (pain=false) in class healthy, because
for both complex features their three values appear in their
respective class in at least two objects, and do not appear in any
object of the other class.
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KORA-3 finds the complex features in the training process by
an exhaustive search over all subsets of three features, and it
classifies a query object by majority voting over the complex
features appearing in the query object.

De la Vega-Doria et al. extend KORA-3 to KORA-Q [15], which
uses complex features formed by a combination of values for a set
of features (not necessarily three) appearing enough in a class and
not so much in the others. This extension allows handling
multiple-class problems with mixed and incomplete data, but

Table 1
Two-class problem with four Boolean features, six objects, and two classes.

the search procedure of the complex features is still exhaustive.
KORA-Q performs the search in a predefined collection of feature
subsets, v.gr. all subsets of three features or the power set of the
set of features.

Decision trees and decision forest [4] are very popular
classifiers used in many real world applications. Although there
are many types of decision trees, generally internal nodes have
associated properties that guide the process of classification.
Leaves represent a class, which determines the final classification.
To classify a query object the classifier follows a path from the
root node to a leaf according to the associated properties. The
class assigned to the query is the class of the leaf node at the end
of the path. This way, the conjunction of the properties in each
path is one of the discriminative regularities in the respective
class. Moreover, every tree contains an implicit set of hierarchi-

Object Tall Fever Male Pain Class = . ) .
cally related regularities. For example, the tree appearing in Fig. 1
ol True True True False Sick implicitly contains the hierarchy shown in Fig. 2.
02 True False False True Sick As you can see, in a decision tree, discriminative regularities
o3 True True True True Sick . . . .. .
appear as conjunctions of properties. It is important to underline
that the structure of properties depends on the type of tree and
Og Er;‘e ?“e Eaise Eaise :eaitgy the induction algorithm. Most algorithms for tree induction try to
° ase fue ase aise ealthy find balanced trees with few levels, so they usually find
06 False True False True Healthy o . N
regularities with approximately the same small number of
Length
>30 <30
Color Fly?
- . True False
Red White Pink
Good Fly? Bad Good Bad
True False
Bad Good
Fig. 1. Example of a decision tree.
[ St ] l' ------------- '
E Length>30 E i Length<30 i
Length>30 and Color = Red Length<30 and Fly |
I Length>30 and Color = Pink | Length <30 and not Fly |

Voo

E Length>30 and Color = White E

| Length>30 T

Length > 30 and Color = White and Fly |

U

| Length > 30 and Color = White and not Fly |

Fig. 2. Hierarchy of the regularities implicit in the tree of Fig. 1. Non-discriminative regularities appear with dotted lines.
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properties. This reasoning is similar for a forest, but we obtain a
different family of regularities from each tree.

In 1999 Dong and Li [5] introduce a new family of supervised
classifiers, based on the concept of emerging pattern (EP). An
emerging pattern is a combination of feature values that appears
significantly more in a class than in the remaining classes.
Although the authors did not mention it, this concept is similar to
the complex features used in KORA-Q [15].

There are two families of emerging pattern-based classifiers.
The first family, introduced by Li et al. [16], searches patterns that
match the query object in the training sample during the
classification stage. They use border-processing operators
(MaxSelector, IntersecOperation and DiffOperation) created by
the authors to speed up the pattern searching. A border is a two-
bound structure <L,R), which succinctly represents all the
emerging patterns in the query object. Finally, they add the score
of the patterns per class to determine the winning class. This way,
no global pattern searching process takes place during the
training stage. In [16] the authors consider this strategy as
optimal, because it can handle dynamic databases and it is more
scalable than the full search strategy. Nevertheless, it has some
serious drawbacks. First, repeating the search process for every
query object makes the classification stage slow, and we cannot
apply any global EPs filtering or selection strategy. Second, in
general, this whole family finds patterns expressed using two
kinds of items. For numerical features, the items have the form
feature e [value—o,value + o], being o a global threshold specified
by the user. This makes the determination of the « value—which
is the same for all features—a difficult task. For non-numerical
features, the items have the form (feature=value).

The second emerging pattern-based classifier family, intro-
duced by Bailey et al. [17] in 2002, makes a global emerging
pattern search in the training stage. They make a previous
discretization of all numerical features, so resulting patterns use
only items with the structure (feature=value). The discretized
objects are ranked using the information of their attribute values,
and they are represented in a multi-value tree structure, which is
a tree-based representation of the complete training sample.
Finally, the authors make a depth-first traverse of the tree to
extract patterns, using a subtree merging algorithm to allow
extracting all the patterns.

The a priori discretization allows us to find all the emerging
patterns efficiently. However, it may not be a feasible solution due
to information loss and limited possibility of transformed data
interpretation [18]. Moreover, not all numerical features are
reasonably discretizable. A clear example appears when the
similarity between two different feature values is given in terms
of the absolute value of their difference. Consequently, discretiz-
ing this kind of feature might have the undesirable result of
including two highly similar values in different discretized
subsets.

Fan and Ramamohanarao [14] introduced in 2006 a new type
of emerging pattern that allows handling some level of noise in
the training data. The noise tolerant emerging pattern can support
objects in other classes if the number of objects is below a
predefined threshold, and these objects are considered noisy
objects (a similar solution was previously introduced for KORA
[19]). They present a wide experimental comparison of a classifier
built using those patterns against many popular classifiers,
attaining better results in accuracy. They also show that an EP-
based classifier needs many patterns to work, even in small
databases. For example, the annealing database [20] has 998
objects and 5891 jumping emerging patterns (JEPs), while the
cleveland database [20] has 303 objects and 8281 JEPs. A jumping
emerging pattern is an emerging pattern with no support in other
classes.

In 2008, Kobylinski and Walczak [18] try to remove the initial
discretization introducing a new kind of pattern: emerging
pattern with occurrence count. They show significant improve-
ments in classifier accuracy on a particular image classification
task, but the number of extracted patterns increases dramatically.
For example, in the flower/food database the number of patterns
increases from 9 to 14444. This way, the resulting model is hard
to understand by the user.

Terlecki and Walczak in 2008 [21] introduce two adaptive
versions of classifiers based on emerging patterns, which
dynamically modify the classifier to achieve better results.
Although they present better results in accuracy on several
databases, it is not due to better patterns, since they use a
traditional pattern finding procedure.

In general, classifiers that use discriminative regularities
obtain good accuracies in repository and real world problems
[14]. However, as we have pointed out in this section, they all
have important drawbacks that might affect their accuracy and/or
efficiency. The algorithm introduced in the next section tackles
these drawbacks, because it mines discriminative regularities in
the training stage without any a priori discretization of numerical
features, and it includes a pattern filtering post-processing.

3. The LCMine algorithm

In this section, we introduce the LCMine algorithm (Fig. 3) for
extracting discriminative regularities in databases with mixed
and incomplete data, which has two main components: a
searching procedure and a filtering procedure. We also propose
a classifier based on the regularities.

Let us consider a supervised classification problem with n
objects distributed in r classes. Each object o is described by x1,x5,
...X; features, where x; is defined in the corresponding domain D;,
i=1,..,t. ThusoeD; x Dy x ---Dx.

In this paper, we consider discriminative regularities repre-
sented as logical complexes (I-complexes), a concept introduced by
Michalski [22] for conceptual clustering. A logical complex is a
conjunction of selectors. A selector is a relational statement
[x;#R;], where R; is a value or a set of values belonging to the
domain of feature x;, and # is a relational operator [22]. The
relational operators used for non-numerical data are =, #, e ,¢
and for numerical data are >, <, >, <, e,¢. Some examples of
selectors are:

e [color e {red,pink,white}],
e [age > 20],

o [height # tall],

o [weight € (123.2,170.5)].

A logical product of selectors A;_,[x#R;] is called a logical
complex (I-complex) [22], where [ is a set of feature indexes. An
object o satisfies an I-complex—or an I-complex covers an object
o—if the feature values in o satisfy all the selectors in the
l-complex. For example, given the features color, age, height and
weight, object 0;=(red,34,tall,150.1) satisfies the I-complex

[Color € {red,pink,white}] A [age > 20]
however, it does not satisfy the I-complex
[Height # tall] A [age > 20]

This way, an l-complex can be viewed as an exact symbolic
representation of the set of objects which satisfies it [22]. For
example, the last I-complex in the example represents those
objects whose height is different from tall and whose age is greater
or equal to 20.
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We chose I-complexes to represent the discriminative regula-
rities found by LCMine, because all the reviewed discriminative
regularities can be represented using them.

3.1. Searching procedure

The searching procedure extracts I-complexes from a set of
different decision trees induced from the training sample. The
induction procedure is similar to traditional methods for building
decision trees. However, we explore more candidate splits than
classic methods do in order to look for properties that better
describe the training sample in terms of accuracy and simplicity.
We understand simplicity as the number of conjunctions and
features involved in a l-complex. Therefore, the fewer conjunc-
tions and features the I-complex has, the simpler the I-complex is.

Data: T — object collection to build the tree
Result: ResultEP
EP — @;

To guarantee diversity among trees we select a trade-off
between the best tree (the one with the highest gain in all splits)
and the generation of all possible trees, because the first is unique,
and the latter is hard to apply to non-trivial problems given its
time complexity. Our algorithm BuildTree, unlike traditional
methods for building decision trees, expands the best s candidate
splits. The value s is decreased according to the node level. This
allows higher diversity in upper nodes, where good candidate
splits are more frequent, reducing the diversity in lower nodes,
where it is common to find fewer good splits. In our experiments,
we expanded the best five splits in the root node, the best four in
the next level, and so on (5, 4, 3, 2), and we selected the best split
in lower levels. This way, we created 5-4-3 .2 =120 different
trees.

The algorithm LCMine (Fig. 3) calls, for each different {kjeyer}
values, the procedure BuildTree (Fig. 4), obtaining a family of
diverse trees. BuildTree generates all the candidate splits

// The k; values control which of the best candidate splits is selected for expanding

the tree nodes, according to each node level

for k1 — 1 to 5 do

for ks +— 1 to 4 do

for k3 — 1 to 3 do
for k4 — 1 to 2 do

end

end

end

end

EP «— RemoveDuplicates(EP);
EP — Simplify(EP);
ResultEP «— LCS(T,EP)

Tree «— BmﬁldTTee(T, {k1, ko, k3, k4});
EP — EPU ExtractPatterns(Tree)

Fig. 3. Algorithm LCMine.

Data: T — object collection to build the tree, [ — level in the tree of the resulting node (1 is the

default value), {kiever } — set of k values for each level

Result: N — decision node

while T' has more than one object in the non-majority classes do

end

Generate all candidate splits S; as explained before;

Calculate ig(S;), the information gain using entropy [6];

Sort S; in descending order according to its information gain ig(S;);

Find §', the k" element of the sorted S; collection;

Find the child node subsets T.;,, according to the split S;

Create a decision node N using S’, with the appropriate number of children;

For each child node ch call BuildTree(Tch, [+1, {klevel});

Fig. 4. Algorithm BuildTree.
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according to the type of feature. The split types correspond to the
different types of selectors we want to include in our patterns, in
the following way:

o For non-numerical features:

o If the attribute has exactly two values, BuildTree creates a
single split with two children with the properties
feature=v, and feature=v,, respectively.

o Else, BuildTree creates all these candidate splits:

- For each value v;, an split feature=v; and feature # v;.

- A single split with a child for each feature value with the
property feature=v;.

- A split with a child per class. In the child node
corresponding with class C, group in Vc all the values
that appear more in class C than in its complement. An
extra node groups the values with no correlated class.
Each child node uses the property feature e V.

e For numerical features BuildTree sorts the values and splits
them as in [6], creating a division for each value v with the
properties feature <v and feature > v, respectively.

Each split represents a simple one-feature property we can use
to describe a subset of the objects in the training sample. The
splits selected in each level are those which usually lead to
smaller and more balanced trees, so the extracted I-complexes are
simpler.

We handle missing values introducing a penalizing factor in
the information gain calculation. During the construction of a tree,
when a split is evaluated, all the objects having a missing value in
the features associated to this split are grouped in a virtual child
node with maximum entropy. This way it is not likely that a
feature with many missing values is selected as a good candidate.

LCMine extracts all the I-complexes from the trees, which are
the conjunctions of properties in all the paths from the root node
to the leaves. After removing duplicated patterns, we simplify
each l-complex to obtain structures that are more compact, by
joining redundant selectors and deleting duplicated selectors.
Examples of redundant selectors are the following:

e age > 30 and age > 50, which are simplified to age > 50,
e age > 30 and age < 50, which are simplified to age  (30,50].

Finally, LCMine filters the resulting patterns using procedure LCSF
(Fig. 5). It assigns to each I-complex « a weight w, equal to the
amount of objects that it covers in its own class.

Data: T — Training sample, L — set of l-complexes

Result: L’ — selected 1-complexes

L'« 10

3.2. Filtering strategy

The problem of filtering I-complexes is a challenge because of
two main reasons:

(1) subjective nature of the definition of a “good” I-complex,
(2) total amount of possible I-complex subsets is 2” where p is the
number of I-complexes.

In this paper, we introduce a filtering strategy based on
redundancy reduction in the l-complexes. We compute the
redundancy of each l-complex as the amount of objects covered
in the training dataset that are also covered by other I-
complex(es), defined over the same feature set. Having highly
redundant lI-complexes might cause biased classifiers; for exam-
ple, classifiers that usually tend to classify most of the objects in
the same class.

In order to show why we take into account l-complexes
defined over the same feature set we will make use of the
following example. Suppose two l-complexes o = ([x; = large] A
[x3 <0.4)A[x4 >3] and oy = ([x3 > 27]A[X5 # White] A[x7; > 6.8]),
covering the same objects in the training dataset. Notice that
these l-complexes are not defined over the same feature set
({x1,X3,X4} # {X2,X5,X7}). If we consider that o is redundant with
respect to o, and consequently we remove o, this removal might
be a wrong decision. For example, the object e=(large; 25; 0.1; 7;
blue; true; 5) might be now misclassified because it does not
satisfy o,. Nevertheless it satisfies oy, which was removed from
the final I-complex set. A proper algorithm, like the one that we
propose, can avoid this undesirable behavior taking into account
the redundancy in I-complexes defined over the same feature set.

We based the proposed algorithm on the hypothesis that a
good l-complex subset must reduce the redundancy as much as
possible. The L-Complex Selection by Feature set (LCSF, Fig. 5)
algorithm applies the L-Complex Selection (LCS, Fig. 6) algorithm
on each l-complex group, defined over the same feature set,
selecting a small size l-complex subset that covers the same
objects as the whole group does. LCS scores each l-complex using
the following equation:

IS(et,class(o),T)|

Score, =
*7 max :.z {IS(o,z, D}
z # class(x)

M

where Z is the set of classes, S(«,z,T) is the subset of objects from T
with class label z that satisfies the l-complex o, and |A| is the
cardinality of the set A. This weighting scheme favors I-complexes
covering more objects of its class and fewer objects from different
classes.

Split L in groups G;, where l-complexes in the same group are defined over the same feature subset ;

foreach G € G; do
foreach C in G do
L" —{a € G :dass(a) = C};
L' — L'ULCS(T,L");
end

end

Fig. 5. L-complex selection by feature set algorithm (LCSF).
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Data: T — Training sample, L — set of l-complexes

Result: L’ — selected l-complexes

foreach I-compler o € L do
| calculate score,

end

Sort L in descending order according to scoreg;

L'« 0

foreach I-complex « in the sorted set L do

if there is any object that satisfies o and does not satisfy any l-complex already in L' then

| L'~ L U{a}
end

end

Fig. 6. L-complex selection algorithm (LCS).

3.3. Discriminative regularity-based classifier

In order to test the quality of the discriminative regularities
found by LCMine, we used them to build a supervised classifier.
Like traditional emerging pattern-based and KORA type classi-
fiers, we used a scoring function. Given a query object q this
function computes the total score for class C; aggregating the
weight of the l-complexes that cover q. We computed the score
per class using the following equation:

score(q,C;) = sz (2)

oeD;
gsa

where w, is the weight of regularity o (assigned by LCMine as the
amount of objects that o covers on its own class), D; is the
collection of all discriminative regularities for class C; and <
represents the satisfiability relation.

Finally, the class with the highest score is the output of the
classifier. If votes tie, or no vote exists, the classifier refuses to
classify, and such abstentions count as errors.

3.4. LCMine and overtfitting

While a complex model may allow a very good classification of
the training samples, it is likely to assign wrong classes to unseen
objects. This situation is known as overfitting [23]. As complex
models tend to be overtrained, it may seem that an LCMine
classifier, using the mined l-complexes, would be overfitted.
Nevertheless, some characteristics of the proposed classifier avoid
this drawback:

e Despite decision trees, where a single property (branch)
assigns the class, in the LCMine classifier different I-complexes
influence the final classification result. This way, the votes of
too specific I-complexes are usually lower than the votes of
more general I-complexes, which are more likely to appear in a
query object.

e Using a wider set of operators allows us to find more general
I-complexes, which cover more objects in the universe. This
way, many unseen objects are correctly classified using this
kind of l-complexes.

4. Experimental results
To show the performance of LCMine, we conducted a set of

experiments on 13 databases from the UCI Repository of Machine
Learning [20]. The selected databases, described in Table 2, have

Table 2
Description of the databases used for the experiments.

Database #O0bj Class distrib # Features Missing

(%) values

Numerical Non-
numerical

breastwis 699 65/35 - 9 <1%
cmc 1473 43/23/34 2 7 -
cleveland 303 54/46 6 7 <1%
creditscr 690 45/55 6 9 5%
cylinder 512 61/29 20 20 10%
hepatitis 155 79/21 6 13 6%
horsecolic 368 63/37 7 15 23.8%
iris 150 33/33/33 4 - -
mpl1 432 50/50 = 6 =
mp2 432 62/38 = 6 =
mp3 432 50/50 = 6 =
vote 435 61/39 - 16 5.63%
wpbc 198 76/24 32 = <1%

different characteristics in size (column #obj), class distribution
(column class distrib), feature types (columns #numerical features
and #non-numerical features) and percentage of objects with
missing values (column Missing values).

For comparisons, we selected some popular classifiers, belong-
ing to different paradigms: Two k Nearest Neighbors classifiers
[10] with different values of k, Bagging and Boosting [24], Random
Forest [4], C4.5 [6] and support vector machine (SVM) [11]. We
conducted all experiments in a Compaq Presario V3000 (AMD
Sempron 3600+2 GHz, 1 Gbyte RAM) running Microsoft Windows
XP. We calculated the accuracy using 10 fold cross validation.
Accuracy values appearing in tables are the average accuracy over
the 10 folds. For all methods except ours, we used the Weka [25]
implementations, with their default parameter values. It is worth
mentioning that the reader can find different accuracies, reported
in the literature, for these classifiers in the same databases. This is
mainly because the strong random component of the cross
validation, or because some experts fine-tuned the parameters
of a particular classifier.

Table 3 presents accuracy results of the compared classifiers
on the tested databases. As the reader can see, the proposed
classifier achieves the best accuracy on most databases. Table 4
contains a pairwise comparison of the tested classifiers. Each cell
contains the number of databases where the classifier in the row
wins, loses or ties with respect to the classifier appearing in the
column. For detecting ties (statistically similar results), we use a
pairwise T-Test with a significance level of 0.05 [26].
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Accuracy results of the compared classifiers on the tested databases.

Database 3nn 7nn Boosting Bagging RandFor C4.5 SVM LCMine
breastwis 96.53 95.71 95.58 95.57 95.93 96.47 96.99 97.43
cmc 47.06 48.19 42.52 53.63 50.95 50.90 48.20 55.58
cleveland 82.51 81.83 84.15 79.88 78.57 78.19 84.51 82.20
creditscr 84.15 86.24 86.28 85.94 85.02 85.08 86.30 86.77
cylinder 70.16 71.19 72.86 60.93 72.19 78.51 80.89 81.79
hepatitis 86.04 85.08 83.58 84.52 81.79 82.37 85.16 79.41
horsecolic 81.78 83.95 80.72 84.77 85.04 85.60 78.80 84.28
iris 96.59 97.21 97.75 94.00 95.83 95.20 96.00 96.45
mp1 81.02 76.85 75.00 50.00 75.69 88.89 50.00 95.60
mp2 61.34 65.28 60.65 55.09 65.05 69.88 50.46 75.00
mp3 88.19 92.82 97.22 50.00 97.22 96.30 50.00 97.45
vote 91.97 92.2 94.72 95.18 96.10 96.10 95.87 94.50
wpbc 72.30 75.95 71.02 78.78 74.69 75.51 75.88 68.37

The best result for each database appears bolded.

Table 4

Comparative evaluation of the classifier in the row (win/lose/tie) with respect to the classifier in the column.

3nn 7nn Boosting Bagging RandFor C4.5 SVM LCMine

3nn 1/5/7 3/4/6 6/4/3 3/7/3 2/8/3 4/4/5 2/8/3
7nn 5/1/7 4/3/6 5/3/5 2/3/8 3/6/4 4/3/6 2/6/5
Boosting 4/3/6 3/4/6 6/3/4 1/4/8 2/6/5 3/3/7 2/5/6
Bagging 4/6/3 3/5/5 3/6/4 3/4/6 3/4/6 4/2(7 2/6/5
RandFor 7/3/3 3/2/8 4/1/8 4/3/6 0/3/10 5/3/5 2/5/6
C4.5 8/2/3 6/3/4 6/2/5 4/3/6 3/0/10 5/3/5 2/5/6
SVM 4/4/5 3/4/6 3/3/7 2/4]7 3/5/5 3/5/5 3/5/5
LCMine 8/2/3 6/2/5 5/2/6 6/2/5 5/2/6 5/2/6 5/3/5

Table 5 The last column in Table 5 presents the number of I-complexes

Accuracy results of SJEPC and LCMine on the tested databases.

Database SJEPC LCMine # Pat SJEPC # Pat LCMine
breastwis 96.28 9743 223 72
cmc 7.00 55.58 9 252
cleveland 78.24 82.20 733 41
creditscr 82.61 86.77 1186 114
cylinder 64.28 81.79 46 77
hepatitis 83.21 79.41 1695 27
horsecolic 78.80 84.28 1656 206
iris 78.00 96.45 12 11
mp1 86.81 95.60 125 25
mp2 71.06 75.00 201 56
mp3 93.52 97.45 119 27
vote 93.12 94.50 1773 25
wpbc 0 68.37 0 21

The best result for each database appears bolded.

The results in Table 4 present that our method defeated every

other single classifier used in the experiments in at least five
databases, and lost in at most three of them. Finally, we compared
our classifier with one of the most accurate pattern-based
classifiers, the Strong Jumping Emerging Pattern Classifier (SJEPC)
[14], with some optimization and fixes introduced in [27]. The
results, appearing in Table 5, reveal that LCMine is a more
accurate classifier, using fewer patterns. Since both methods use
similar classifiers, the quality difference is mainly due to the
quality of the patterns used.

We should note that the SJEPC accuracy in the databases wpbc,
iris and cmc are unexpectedly low. This behavior is mainly due to
the discretization method used in the algorithm [28], which in
those databases converts the values of most of the numerical
features into a single non-numerical value.

used by our classifier. This is at least five times less than the
number of objects, so we are building a model simpler than those
built by other pattern-based methods, which usually needs more
patterns than objects to achieve good results. This is very
important, from a user’s point of view, because it makes the
model easier to understand, and it is possible to explain each
classification result as conjunctions of a few properties. For
example, in one of the folds of the Iris database, we found the
discriminative regularities presented in Table 6. Therefore, nine of
them are enough for accurately describing the 150 objects in this
database.

5. Conclusions

The main contribution of this paper is an efficient algorithm for
finding discriminative regularities in a training sample with
mixed and incomplete data for supervised classification. This
algorithm (LCMine) is based on diverse decision tree induction
and a filtering post-processing stage, which allows us to find a
reduced set of high quality discriminative properties for each
class. Based on these regularities, we built a classifier, similar to
those based on emerging patterns or complex features. Our
classifier attains higher accuracy than the most accurate pattern-
based classifier, but using fewer patterns, which is desirable
in situations when an interpretation of the results is needed.
Based on our results and because we used a similar classifier, we
can conclude that our classifier attains higher accuracy because it
uses more representative patterns of their respective classes.

Additionally, experimental results show that the classifier
built using the mined l-complexes attains superior results
than other state-of-the-art classifiers in most of the tested
databases.
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Table 6
Discriminative regularities found by LCMine in the Iris database.

Class Regularity Support per class
0 1 2
0 [PetalWidth < 0.60] 45
1 [PetalWidth € [0.60,1.60]] A [PetalLength < 4.90] 44
[SepalWidth > 2.50] A [PetalWidth < 1.70] A [PetalLength e [1.90,5.00]] 32
[SepalWidth > 3.00] A [PetalLength e [4.40,5.00]] A [PetalWidth > 1.50] 3
[PetalLength € [4.70,5.10]] A [PetalWidth < = 1.70] A [SepalWidth > 2.20] 4 1
2 [PetalWidth > 1.70] 1 39
[PetalLength > 5.00] 1 37
[SepalWidth < 3.10] A [PetalWidth € [1.60,1.80]] 1 10
[SepalWidth < 3.00] A [PetalLength e [4.70,5.00]] A [PetalWidth < 6.30] 1 6

In the near future, we will face the problem of high
dimensionality databases.
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