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We show that the orbital angular momentum can be used to unveil lattice properties hidden in

diffraction patterns of a simple triangular aperture. Depending on the orbital angular momentum of the

incident beam, the far field diffraction pattern reveals a truncated optical lattice associated with the

illuminated aperture. This effect can be used to measure the topological charge of light beams.
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Light beams possessing an azimuthal phase structure
expðim�Þ carry orbital angular momentum (OAM) of m"
per photon, wherem is an integer number [1], referred to as
the topological charge. Fundamentally, OAM in light-
matter interaction was investigated in several processes,
for instance, second harmonic generation [2], spontaneous
[3] and stimulated [4] parametric down-conversion, and
wave mixing [5]. Applications of light’s OAM range from
optical manipulation [6] to quantum communication [7].
Just recently [8], a proposal to generate brilliant x-ray
radiation with OAM has appeared, which may open new
exploration venues in matter characterization.

A seminal work [1] by Allen et al. published in 1992
showed that light can carry a well-defined OAM associated
with an helicoidal wave front. As a consequence of this
spatial structure, light beams propagate with the Poynting
vector twisting like a corkscrew around the propagation
axis. High-order Laguerre-Gauss (LG) [1] and high-order
Bessel [9] beams are examples of beams carrying OAM.
Analogous to spin and two-level systems, OAM states can
be decomposed in terms of orthogonal light beams, and
geometric representations equivalent to Poincaré and
Bloch spheres have been constructed [10,11]. On the other
hand, wave fields with helicoidal phase structure give rise
to optical vortices that have also been extensively studied
in nonlinear periodic optical lattices [12–14]. We should
mention that the rich relationship between the phase of
light with OAM and diffraction phenomena has been ex-
ploited before [15–17].

In this Letter, we will show how the diffraction of helical
beams by triangular apertures produces in the far field
plane a surprising triangular lattice correlated with the
topological chargem. We present measurements, computer
simulations, and a heuristic argument that explains the
observations. Wewill also show that a powerful application
can be derived from our idea: a new direct way to measure
the topological charge of a light beam.

Initially, we will briefly discuss the orbital angular mo-
mentum of a beam. The total angular momentum density of
a beam is given by [18]

j ¼ r? � p; (1)

where p is the linear momentum vector and r? is the
transverse coordinate at the aperture plane. The OAM’s z
component can be written as jz ¼ r?p�, where p� is the

azimuthal component of the linear momentum p. For such
an incident beam, the z component of the total OAM is
given by Jz ¼ m@ per photon.
Now, our goal is to determine the Fraunhofer diffraction

pattern in the far field region of a beam carrying OAM by a
triangular aperture. If we are interested only in relative
intensities at a fixed plane placed at the position z ¼ z0, the
diffracted field Ed is given by the integral [19]

Edðk?Þ ¼
Z

�ðr?ÞEiðr?Þe�ik?�r?dr?: (2)

In this integral, the far field distribution Edðk?Þ is obtained
from the Fourier transform of the product of the function
describing the aperture �ðr?Þ and the incident field Eiðk?Þ.
Note that the transverse wave vector k? can be associated
with the coordinate system of the far field region playing
the role of reciprocal space. When the incident beam is a
plane wave, the integral usually can be evaluated, being a
two-dimensional Fourier transform of the function �ðr?Þ.
In fact, the problem of the diffraction of a plane wave by

a triangular aperture was solved a long time ago, and even
the existence of a lattice of points of zero intensity in the
Fourier plane was reported (see, for example, Sillitto and
Sillitto [20] and references therein). However, we should
point out that a lattice of intensity maxima has not so far
been theoretically predicted or experimentally observed,
for a triangular aperture. Moreover, when the incident field
has the azimuthal phase structure of a beam carrying
orbital angular momentum, the exact integral has not
been analytically solved for polygonal apertures.
Let us start by numerically solving the Fraunhofer dif-

fraction pattern for an equilateral triangular aperture. The
integral shown in Eq. (2) can be numerically evaluated by
using high-order LG beams as the initial condition for the
electric field. For LG beams with p ¼ 0, the Fraunhofer
diffraction patterns for different values of the topological
charge m ranging from one to three is shown at the top of
Fig. 1. Observe that the number of maxima increases with
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m. Also notice that the triangle is rotated by 30� in relation
to the triangular aperture, shown in the inset.

We have experimentally confirmed our numerical results
by using a very simple experimental setup. The light beams
possessing OAM were prepared by using an argon laser
operating at 514 nm illuminating a computer-generated
hologram [21]. Different orders diffracted by the hologram
produced high-order LG beams with different topological
charges, which were selected by using a pinhole. An equi-
lateral triangular aperture with side length of 1.75 mm was
placed in the propagation path. Using a 30 cm focal length
lens immediately after the aperture, we obtained the far
field diffraction pattern at the lens’s focal plane. The
intensity distribution of the diffraction patterns were re-
corded by a CCD (charge-coupled device) camera. The
experimental results are also shown at the bottom of Fig. 1.

One important point about the experimental setup is that
the phase singularity must fall in the center of the aperture
and the edges of the aperture should be illuminated by the
inner border of the incident beam. In fact, there is a rich
relationship between the relative phases on the wave front
around the phase singularity, becoming even richer for high
values of m. However, it is easy to center the beam in the
aperture just by checking the obtained CCD image during
the alignment.

It is well known that the diffraction pattern of an optical
field by an aperture is the result of the interference between
the edge waves. To have a physical insight, we use a simple
qualitative argument to analyze the effect of the azimuthal
phase over the edge, taking each edge separately. By using
some trigonometric relations, for a vortex expðim’Þ, the
phase along any of the edges can be written as

’ðsÞ ¼ arcsin

�
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða=12Þ2 þ s2

p
�
; (3)

where s is a coordinate with origin at the middle of the slit
and in the range ½� a

2 ;
a
2�, and a is the size of each side of

the triangle. We approximate this expression by the first

term of the Taylor expansion: ’ðsÞ ≂ 2
ffiffiffi
3

p
s=a. We now

approximate the triangle’s edges by infinitesimally thin
slits, ignoring the variation of the field amplitude. We
choose the slit width to be so narrow that we can treat it
as a Dirac delta. If we consider a infinite horizontal slit, and
replace x for s in the expression for ’ðsÞ, we have the
Fourier transform for the electric field Eslit that can be
solved easily [22]:

Eslitðkx; kyÞ �
Z

�ðyÞei2
ffiffi
3

p
mx=ae�ik?�r?dxdy

¼ �ðkx � 2
ffiffiffi
3

p
m=aÞ; (4)

where x and y are the transverse Cartesian coordinates in
the plane of the aperture; kx and ky are the transverse

coordinates in the Fourier plane; and � is the delta of
Dirac. To solve Eq. (4), we also used the two-dimensional
shift theorem [22]. As expected, we can see from this result
that an infinite slit along x produces a pattern that is
displaced in the kx direction (i.e., the center of the pattern
is displaced) by an amount proportional tom. The effect of
the azimuthal phase over this diffraction pattern is to
produce a shift proportional to the amount of OAM. We

FIG. 1 (color online). Results for the diffraction of a light
beam possessing OAM by a triangular aperture. Numerical
(upper part) and experimental (lower part) results for m ranging
from one to three. For the numerical results, light intensity
increases from blue to red; for the experimental ones, from
black to white. The inset in the m ¼ 1 numerical result shows
the orientation of the triangular aperture.

FIG. 2 (color online). Contour lines for the central fringe for
the light diffracted separately by each edge forming the triangle
for the topological charge m being equal to (a) 0, (b) 1, (c) 2, and
(d) 3. The triangular aperture is in the same position as in Fig. 1.
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also see a dependence of the shift proportional to the
inverse of the size of the triangle’s side.

Finally, we will corroborate the previous reasoning,
numerically evaluating Eq. (2) for each edge separately.
The contour lines corresponding to the initially central
fringe for Laguerre-Gauss beams diffracted by each edge
for m changing from zero to three are shown in Fig. 2. We
can see that the effect of the azimuthal phase is to shift each
of the rays of the starlike diffraction pattern for the case
without OAM. Each pattern is shifted by a linear amount
proportional to the topological chargem, and it delimits the
lattice in the reciprocal space. In Figs. 3(a)–3(c), we show
intensity contour plots to each edge for the case of m ¼ 1.
When the diffraction patterns corresponding to each edge
in the triangle are superposed, i.e., they are allowed to
interfere, one recovers the truncated lattice corresponding
to m ¼ 1, as seen in Fig. 3(d).

For the case where the topological charge of the inci-
dent field is negative (m< 0), the spatial shift will be in
the opposite direction and the diffraction triangular pat-
tern will be rotated by 180� in relation to the former.
Figure 4 illustrates this effect by comparing the diffraction
pattern in this case of Bessel beams with m ¼ �7 (a) and
m ¼ 7 (b), showing the 180� rotation.

A practical application emerges from our results: a
simple way to determine the magnitude and sign of a
beam’s topological charge. So far, mainly the azimuthal
phase structure of light beams with OAM has been ex-
ploited to obtain the value of the topological charge.

Different techniques to measure the light’s OAM have
been developed so far, many of them based on interference
[16,23,24] and others, for example, related with direct
measurement of the wave front [25] and with whispering
gallery resonators [26]. From Fig. 1, we can observe that
the value of m is directly related to external points of the
lattice forming a triangle. The total charge is given bym ¼
N � 1, where N is the number of points on any side of the
triangle.
In conclusion, we numerically and experimentally dem-

onstrated the generation of a truncated triangular optical
lattice just diffracting beams with OAM through a equi-
lateral triangular aperture. The shift effect caused by the
OAM reveals a concealed lattice, which is not observed for
beams without OAM. The obtained optical lattices are
constrained by the topological charge of the incident
beam. From a practical point of view, we can use the
diffraction patterns to determine the topological charge
of a light beam in an easy and direct way, just by counting
the number of external points of a triangular lattice.
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