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1. Introduction 

When a material presents an intensity dependent refractive index then it can change 
dramatically an incident beam with a well defined distribution. Typically a ring pattern can be 
observed at far field when a Gaussian distribution illuminates a thin sample of the nonlinear 
material. This phenomena known as spatial self phase modulation, has been studied for many 
research groups, whom had given different theoretical models to describe the observed 
patterns. The first observation of this effect was reported by Callen et al [1] in 1967, when 
they illuminated a CS2 sample with a He-Ne beam. In 1970 Dabby et al [2] presented a 
qualitative and quantitative study of the phenomena. A similar effect was observed in liquid 
crystals by Durbin et al [3] in 1981. Santamato and Shen [4] proposed that the far field pattern 
was composed by two sets of concentric rings: one due to the nonlinearity and the other one to 
the interference between self-phase modulation and wavefront curvature. This nonlinear effect 
has been observed in numerous materials [1–9]. The main difference is on the central portion 
of the far field pattern, in some cases is dark [5–7], while in others is brilliant [8,9]. Many 
papers involve experimental and numerical results [9–11]. Recently a method based on the far 
field intensity distributions has been proposed to determine the sign of the nonlinear refractive 
index of highly nonlinear samples [9], where the z-scan technique is not adequate. 

Assuming steady state conditions, the nonlocality is a mechanism that spread out or in 
localized excitations. The physical mechanism that creates such response can be of different 
origins: heat [12], charge carriers [13], atoms [14], etc. Nonlocality has been considered in the 
propagation of optical beams in some materials [15], however has not been considered in 
general to explain spatial self phase modulation of Gaussian beams by thin samples. 

In this work we propose a simple model where the locality in the nonlinear response of the 
material is taking into account. We demonstrate that the features of the far field pattern are 
affected by the nonlocality, magnitude of the maximum on axis nonlinear phase shift and 
position of the sample. 

In the next section we present our theoretical model and the main suppositions that must 
be fulfilled in order to calculate the far field patterns. Then some numerical results are 
presented taking into account the main parameters that affect such distribution. Finally the 
conclusions are presented. 

2. Theoretical model 

We are going to consider a Gaussian beam of waist w0 and wavelength λ, propagating in the z 

direction. This beam has a Rayleigh range z0 given by 2

0 0
z wπ λ= , and the following field 

amplitude: 
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where A0 is a constant, 2k π λ= , w(z) and R(z) are the beam width and wavefront radius of 

curvature, respectively and ( )zε  is the phase retardation relative to a plane wave. 

At some distance z from the waist the beam illuminates an optical nonlinear sample of 
width d. This sample is going to be considered as thin (d<<z0) and that present a refractive 
index dependent on the incident intensity. It is well accepted that when a Gaussian beam 
illuminates such samples then the output field can be expressed by [10]: 

 ( ) ( )( ), exp ,outE E r z i rϕ= − ∆   (5) 

where we are considering that the sample has not absorption. E is the field amplitude of the 

Gaussian beam at the entrance of the sample, r the radial coordinate and ( )rϕ∆  the nonlinear 

phase change. This nonlinear phase change can be approximated as [3,10]; 

 ( ) ( )2

20
2exp ,rr

w
ϕ ϕ∆ ≈ ∆ −   (6) 

here, 
0

ϕ∆  is the maximum on axis phase shift photo-induced in the beam after crossing the 

nonlinear medium set at z. This phase change is due to the intensity-dependent refractive 

index of the material. If 
0

ϕ∆  is much larger than 2π [16], a pattern of concentric rings appear 

at far field, Fresnel-Kirchhoff diffraction formula can be used to evaluate the intensity 
distribution at far field [17]. 

In order to describe the response of the material in some cases it is necessary to solve one 
differential equation for the field and another one for the material. Nevertheless, Eq. (6) 
describes very well the far field patterns observed for materials with a spatial local response. 
However, not all the materials present such response. In this work we propose a very simple 
model to describe the far field intensity distribution that can be obtained when the response of 
the material is nonlocal. We propose that the nonlocality can be considered as a number m in 
the following expression for the nonlinear phase shift: 

 ( ) ( ) ( )
2 2

2 20 0exp exp ,mr rr
w w m

ϕ ϕ ϕ
 
 ∆ ≈ ∆ − = ∆ −
 
 

  (7) 

where m can be any real positive number. Note that m can be considered as a factor that 
affects the width of the Gaussian function (last expression in Eq. (7)). For m<2 the nonlinear 
phase change extend beyond the incident intensity distribution and for m>2 the nonlinear 
phase change is narrower than the intensity distribution. Only for m = 2 the nonlinear phase 
change follows the intensity distribution and then the response of the material is considered as 
local. Values of m different of 2, in Eq. (7), will be considered as nonlocal. 

The previous equation can be obtained considering that the phase shift is directly 
proportional to the change of the refractive index N(I), that in the case of a nonlocal media the 
following phenomenological expression is used [18]; 

 ( ) ( ) ( , ) ,N I s R r I z dξ ξ ξ= −∫   (8) 

where s is positive (negative) for a self-focusing (self-defocusing) nonlinear media, I is the 

intensity of the incident beam 
2

( ( , ) ( , ) )I r z E r z=  and R, a real localized and symmetric 

function, is the response function of the nonlocal medium whose width determines the degree 
of nonlocality [15]. This phenomenological function (Eq. (8)) describes several real physical 
situations according to references [15,18]. 

The Eq. (8) is the correlation between functions R and I, in our case we are considering 
that I is Gaussian. For the function R we will consider two cases: 1) a delta function and 2) 
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another Gaussian function [3]. In the first case, R(r) = δ(r) the response is local, the resulting 
change of the refractive index is directly proportional to I and, in our model, this corresponds 
to m = 2 in Eq. (7). In the second case the correlation gives a Gaussian function. For the 
Gaussian response with a given width, if this is smaller than the extension of the beam it is 
said that there exists a weak nonlocality (in our model m>2). When the width of the response 
function is much wider than the incident beam the case is called highly nonlocal [15,18]. In 
our model m<2 mean that the refractive index change extends beyond the incident intensity. 
Finally, a Gaussian response is valid as shown by Shen and associates [3], who used a similar 
expression to Eq. (7) for the induced phase shift observed in their experiments. Thus, from the 
correlation in Eq. (8) with a Gaussian response we conclude that nonlocality can be modeled 
by considering a Gaussian phase shift with different values of m in Eq. (7). 

In the next section we show numerical results obtaining the Fourier transform of the field 
given by Eq. (5), considering Eq. (7), for different values of m and different positions z of the 
sample, which are normalized to the Rayleigh range z0 and analyze the far field patterns for 
different maximum phase shifts. The results will be presented in graphs with the same 
coordinates as the figures in reference [10]. 

3. Numerical results 

We are going to present a study where the position of the thin nonlinear sample was changed 
and two different magnitudes of the on axis nonlinear phase change were considered. From a 
z-scan experiment, where the far field on axis transmittance is measured as a function of the 
position, for a thin Kerr material we know that the nonlinear response can be exhibited at 
distances far from the waist as large as 6z0 [19]. The maximum changes in the transmitted 
intensity of the sample in a z-scan experiment are obtained for distances close to z0 from the 
waist. For these reasons the positions for the sample considered in this characterization are z = 
4z0, 2z0, z0 and z = 0. Furthermore, for those positions is very simple to calculate w(z) and R(z) 
from Eqs. (2) and (3), respectively. Two values of the maximum nonlinear phase shift are 
considered, one in the lower limit (2π rad) where the formation of one ring is expected at the 
far field and the other one (12π rad) where many rings must be clearly distinguished. 

For a positive nonlinear phase change 
0

ϕ∆  = 2π rad and the sample set before the waist of 

the incident Gaussian beam, z = −4z0 (convergent beam), the patterns present the following 
characteristics: the diameter of the spot is almost the same for all cases, the beam present a 
minimum in the center; this minimum is smaller as m increases, such that a well defined ring 
is obtained at far field for m = 4 and not for m = 1, see Fig. 1. 
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Fig. 1. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 2π rad, set at z = −4z0. And different values of m: a) 1, b) 2 and c) 4. 

At the same position and for 
0

ϕ∆  = 12π rad the far field patterns present the following 

characteristics: The diameter and number of rings increased with the value of m; a central dark 
spot is obtained in all cases but its diameter is smaller as m increases. The outermost ring was 
of the highest intensity for m = 1 and 2, but not for m = 4, where the highest intensity ring 
surround the central dark spot, see Fig. 2. 
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Fig. 2. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 12π rad, set at z = −4z0. And different values of m: a) 1, b) 2 and c) 4. 

Changing the position of the sample, keeping the same sign for the wavefront curvature 
radius remarkable differences can appear in the far field patterns. For example at z = -2z0 and 

0
ϕ∆  = 2π rad the following differences are noted: a central bright spot appears for m = 2 and 
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4, see Fig. 3. This result is very important due to contradict the main conclusion of references 
[9,10] in order to identify the sign of the nonlinearity. Another difference was in the spatial 
extension of the pattern that was larger than in the previous position. 
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Fig. 3. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 2π rad, set at z = −2z0. And different values of m: a) 1, b) 2 and c) 4. 
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Fig. 4. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 12π rad, set at z = −2z0. And different values of m: a) 1, b) 2 and c) 4. 
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Fig. 5. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 2π rad, set at z = -z0. And different values of m: a) 1, b) 2 and c) 4. 

For the sample with 
0

ϕ∆  = 12π rad the far field patterns presented the following 

characteristics, see Fig. 4: many rings were observed but only for the case m = 2 they present 
good contrast. The spatial extension of the pattern was larger than in the previous position. 
For m = 1 outermost ring had the maximum intensity and contrast, the inner rings had low 
contrast. For m = 4 the number of observed rings was smaller than for m = 2, and the ring 
closer to the center was the most intense. It seems that the pattern present two set of rings, one 
with higher frequency and intensity than the other. A central bright spot was obtained for this 
value of m. Here is important to mention that even though the phase shift is the same for all 
cases the number of rings were not the same for the different patterns with different values of 
m. 

In Fig. 5 we present the far field patterns obtained for a sample set at z = -z0 with 
0

ϕ∆  = 

2π rad. In this case all the patterns presented a central bright spot and one ring surrounding it, 
the intensity of this central spot was larger with respect to the ring as m increases. Note that at 
this position R(z) reaches its minimum value and its equal to 2z0. 

In Fig. 6 we present the far field patterns obtained for a sample set at z = -z0 with 
0

ϕ∆  = 

12π rad. Many rings with good contrast were obtained for m = 1 and 2, but for m = 4 low 
intensity rings were obtained. In all cases we can see a central bright spot. The spatial 
extension of the patterns was larger than in the previous positions. The number of observed 
rings was very close to that waited due to the magnitude of the on axis nonlinear phase 
change. 
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Fig. 6. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 12π rad, set at z = -z0. And different values of m: a) 1, b) 2 and c) 4. 

When the sample was set at the waist of the incident Gaussian beam, this means 
wavefronts without curvature; the patterns for the two magnitudes of the on axis nonlinear 
phase shift presented the characteristics shown in Figs. 7 and 8. Figure 7 shows the results 

obtained for a sample with 
0

ϕ∆  = 2π rad, the characteristics of the patterns were the 

following: when m = 1, the pattern presents a central dark spot and for m = 2 and 4 there was 
a central bright spot surrounded by a ring. The intensity of the ring was smaller as m increase. 
The spatial extension of the pattern is slightly larger than in the previous position and grew as 
m does. 

Figure 8 shows the results for the same position as in Fig. 7 with 
0

ϕ∆  = 12π rad. Patterns 

with many rings were obtained for m = 1 and 2, however for m = 4 the pattern presented a 
central bright spot surrounded by one ring. The pattern obtained for m = 1 presents a central 
dark spot, it was well contrasted, the outermost ring had the higher intensity and the innermost 
the smaller intensity; the number of observed rings correspond to the phase shift. For m = 2 
the pattern presented a central bright spot and the innermost ring presented the highest 
intensity, the rest of the rings had similar maximum intensity but very small compared with 
the central spot. The number of observed rings, for this value of m, corresponds to the phase 
shift. 
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Fig. 7. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 2π rad, set at z = 0. And different values of m: a) 1, b) 2 and c) 4. 
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Fig. 8. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 12π rad, set at z = 0. And different values of m: a) 1, b) 2 and c) 4. 

The rest of the positions presented in this work correspond to a divergent Gaussian beam. 

For the position z = z0 with 
0

ϕ∆  = 2π rad, the far field patterns presented the following 

characteristics: the diameter of the pattern grows with the increment of m, however was 
smaller than in the previous position. In all cases there was a central bright spot and one ring, 
see Fig. 9. The intensity of the central bright spot was larger than that of the ring. 
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Fig. 9. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 2π rad, set at z = z0. And different values of m: a) 1, b) 2 and c) 4. 
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Fig. 10. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 12π rad, set at z = z0. And different values of m: a) 1, b) 2 and c) 4. 

In Fig. 10 we present the results obtained for a sample set at z = z0 and 
0

ϕ∆  = 12π rad. 

The far field patterns presented the following characteristics: a central bright spot for all cases, 
many rings were obtained for m = 1 and 2 but for m = 4 only one ring can be clearly 
observed. The rings observed for m = 1 presented good contrast and the outermost ring had 
the highest intensity. For m = 2 two set of rings were obtained one with high frequency and 
intensity and the other with low frequency and intensity. 

When the sample was set at z = 2z0 and 
0

ϕ∆  = 2π rad, the far field pattern presented a 

central bright spot for all values of m. For m = 2 and 4 this central bright spot was surrounded 
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by one well defined ring, see Fig. 11. Note that the spatial extension of the pattern was smaller 
than in all previous positions. 
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Fig. 11. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 2π rad, set at z = 2z0. And different values of m: a) 1, b) 2 and c) 4. 
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Fig. 12. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 12π rad, set at z = 2z0. And different values of m: a) 1, b) 2 and c) 4. 

When the sample was set at z = 2z0 and 
0

ϕ∆  = 12π rad, the far field patterns presented a 

central bright spot and many rings. For m = 1 the number of rings was close to that 
corresponding to the magnitude of the nonlinear phase shift; the outermost and innermost 
rings were of the highest intensity. When the magnitude of m was increased, two sets of rings 
were observed, the inmost with higher frequency and intensity than the outer. See Fig. 12. 
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Fig. 13. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 2π rad, set at z = 4z0. And different values of m: a) 1, b) 2 and c) 4. 
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Fig. 14. Far field intensity profiles (upper row) and cross sections (lower row) obtained for a 

sample with 
0

ϕ∆  = 12π rad, set at z = 4z0. And different values of m: a) 1, b) 2 and c) 4. 

When the sample was set at z = 4z0 with 
0

ϕ∆  = 2π rad, no remarkable differences were 

observed in the far field patterns with respect to z = 2z0; a central bright spot was obtained for 
all values of m. A well defined ring surrounding the central spot was obtained for m = 4, see 
Fig. 13. The spatial extensions of the patterns were smaller than in all previous positions. 

For the same position and for a sample with 
0

ϕ∆  = 12π rad, two set of rings were 

observed, one with higher frequency and amplitude than the other, see Fig. 14. In all cases a 
central bright spot was obtained and the number of observed rings does not correspond to the 
phase shift. 
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Note that for a negative sign of the nonlinearity the results are the same to the presented 
here changing the sign of the position. This means that the patterns obtained for a negative 
nonlinear sample with positive curvature radius of the wavefront are the same to that 
presented for negative values of z. 

It is important to mention that some intensity distributions obtained for some position and 
m values are similar to that obtained for another position and other m value. For example, the 
pattern presented in Fig. 6b is qualitatively similar to that presented in Fig. 10a, for large 
nonlinear phase shift, or Fig. 3c is qualitatively similar to 5b, for small nonlinear phase shift. 
However, in order to determine the nonlocality associated to some unknown sample it is 
necessary to obtain its far field patterns behavior to different positions and curvature radius of 
the wavefront of a Gaussian beam. 

4. Conclusions 

We have presented a model where the effects of the nonlocality in the photoinduced phase 
change is taken into account as a parameter that can take different values depending on the 
extension of the photoinduced refractive index change. The model considers a Gaussian 
incident intensity distribution and a thin sample. The far field intensity distributions were 
calculated numerically for different: 1) positions of the sample respect to the waist of the 
Gaussian beam, 2) maximum nonlinear phase shifts and 3) different values of the extension of 
the photoinduced refractive index. The numerical results demonstrate that for positive 
curvature radius of the wavefronts a central bright spot is always obtained for a positive 
nonlinear media and a central dark spot is not always obtained for a negative one. For a 
negative curvature radius of the wavefronts a central bright spot is always obtained for a 
negative nonlinear media and a central dark spot is not always obtained for a positive one. 
Another important result is that the number of rings in the pattern is not always related to the 
maximum phase shift; this number depends on the position of the sample respect to the waist 
of the beam and the nonlocality of the nonlinearity. 

From the analysis we can say that our model reproduce in a well correspondence the 
results reported in media with thermal nonlinearity with the parameter m = 1, see as example 
references [1,2,5,20] where experiments with absorbing media were made. The case m = 2 
reproduce similar results to that reported in the reference [10]. The case m = 4 reproduce 
similar results to that reported in references [3,9] where samples of liquid crystals were used. 
Recently a paper where the far field patterns are used to determine the sign and magnitude of 
the nonlinear refractive index was published [9], we add to their conclusions that it is also 
possible to know the locality of the nonlinearity. The model is not restricted to only integer 
numbers for m, in fact in some samples different values of m must be needed depending on 
the used wavelength. 
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