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Abstract:  An alternative method to generate J0 Bessel beams with 
controlled spatial partial coherence properties is introduced. Far field 
diffraction from a discrete number of source points on an annular region is 
calculated. The average for different diffracted fields produced at several 
rotation angles is numerically calculated and experimentally detected. 
Theoretical and experimental results show that for this particular case, J0 
Bessel beam is a limit when the number of points tends towards infinity and 
the associated complex degree of coherence is also a function of the number 
of points.   
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1. Introduction  
One of the first known methods to generate J0 Bessel beams consists of illuminating an 
annular slit  [1]. Bessel beams are also known to be non-diffractive or diffraction free optical 
beams. This means that they do maintain a constant profile along propagation coordinate. 
They also have the surprising property of self-regeneration  [2,3].  Recently, it has been a 
growing interest in the synthesis and characterization of Bessel and other optical beams with 
controlled coherence properties. The idea is to combine the benefits of partial coherence 
beams with non-diffracting ones in order to obtain better performances in applications such as 
free space telecommunications  [4], imaging  [5], microscopy  [6], among others.  
Others authors have reported the study of propagation of partially coherent beams in different 
conditions as in the atmosphere, considering turbulence or polychromatic waves  [7-9] 
The purpose of this work is to report how a J0 Bessel beam with controlled spatial partial 
coherence features can be generated. We use the far field form a mask composed of a finite 
number of light point sources equally spaced placed on an annulus of radius R. Then, the 
average of several of such fields produced at different angular positions is taken. Numerical 
and experimental results show that these optical fields have as limit the J0 Bessel beam as the 
number of points n tends towards infinity. In order to corroborate the later, complex degree of 
coherence is studied as a function of the number of point sources. We believe that these 
results confirm the convergence of incoherent optical beams  [10] 
 

2. Theory  
As a start, we consider the diffracted intensity produced by n source points equally spaced 
placed on a circle of radius R. In this case, the amplitude transmittance is function of polar 
coordinates θ,r  and an angular random variable ∆  is of the form  
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whose geometrical parameters are better explained in fig(1)  and Dirac delta function has been 
written in polar coordinates [11],  n is the number of equally spaced point sources on the 
circle of radius R, ∆ is a random rotating angle applied simultaneously to all point sources and 
it is treated as a random variable. 

 

figure 1 Geometrical parameters. a) original angular position depending on the number of 

points  . b) each point is rotated to angle ∆   , but all points remain on a circular trajectory 
because the same radius  R is maintained constant.  

 
The diffracted field is calculated in the context of angular spectrum of plane waves theory. In 
polar cylindrical coordinates, the angular spectrum of plane waves  [12], has the form,  
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Performing the integral (2) leads to an angular spectrum depending only on radial coordinate 

ρ  on momentum space, as follows. 
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where the Jacobi-Anger  identity has been used  [13]. Hence, the optical near field is of the 
form,  
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in polar cylindrical  coordinates. Whereas for the far field, );/();,( ∆≈∆∞ zrAzrφ which is 

Fraunhofer diffraction for the angular spectrum context  [14]. In this case, λ  is the 

wavelength, z  is the propagation coordinate.   
The associated irradiance for one of these far fields is known to be

2
);,();,( ∆=∆∞ zrzrI φ . 

Eq. (3) is valid for all ϕ , in particular we consider 0=ϕ  without any loss of generality and 

for the sake of clarity. Averaging all these irradiance distributions on the entire ∆  ensemble, 
lead us to  
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and the associated radial correlation function for such averaged intensity distributions with the 

0J  Bessel function can be expressed as 
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From here, it is possible to write the complex degree of coherence γ  in the form  [14] 
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2.1 Numerical simulation  

 
In order to grasp a deeper understanding on the behavior of  eq.(5),  a numerical evaluation is 
performed. The Bessel functions are approximated by using polynomial approximation  for 

the first 100 Bessel functions  [13,15]. Cases ranging from 2=n  to 50 points are considered. 

In fig. (2) results are shown for some of these cases. It can be seen that as n is increased, 
eq.(5) resembles Bessel function of order zero. It was observed that the second term in eq.(5) 



forms around 0=r  a zero value plateau which radius increases with n. Over this interval, the 
2

0 )2( RrJ π  term is completely dominant. Outside this interval, both terms interact and the 

result is a function that is dominated by the second term which is different from Bessel 
function of order zero.  

In order to understand how well is the resemblance of these functions with )2(0 RrJ π , the 

complex degree of coherenceγ given in eq.(7) is calculated for several cases. Results are 
shown in fig. (3). In this case, γ  clearly increases towards 1 as n tends towards infinity. The 

asymptotic value obtained for γ  is 0.994 with a standard error of 3105 −× .  

 
   

 

figure 2 Plot of eq. (5) for 2, 4, 10 and 50 points plus J0 function. As the number of points 
increases, the function tends towards the Bessel function, as can be seen for the case of 50 
points. 

 

 

figure 3 Plot of γ  for different number of points. For 20≥n  the complex degree of coherence 

is very near to 1. The asymptotic value obtained is 0.994 with a standard error of   3105 −× . 

 
 
A different but complementary approach is to numerically calculate far field diffraction for 
transmittance functions given in eq. (1). The program consists of three parts. First, the 
transmittance function with n evenly distributed points is calculated. Next, a routine to rotate 



these n points to a certain angle is added. Then, a far field diffraction pattern is computed for 
each rotated transmittance by means of the standard 2D Fast Fourier Transform (FFT) 
algorithm [15], and a squared modulus is calculated in order to obtain the corresponding 

irradiance. Fifty different fields are generated at different ∆  random rotation angles. Finally, 
the averaged intensity of all these fields is evaluated. Numerical results are shown in figure 
(2) for three particular cases out of 80 that have been studied in this way.  The transversal 
intensity of the diffracted fields are plotted in fig. (4). It can be seen the same behavior as the 
observed for the plot presented in fig.(2) if one, for instance, observes the number of lobes for 
the same number of points. These numerical results coincide with each other, despite different 
assumptions were made for their calculation. Moreover,   
 

 

 
figure 4. Numerical results for different cases. a) 4 points case, b) 10 points case, c) 20 points case. Associated 

transversal normalized intensity distribution is plotted above. As the number of coherent points increases, the image 
contrast increases and the intensity distribution tends towards a squared J0 Bessel function. The behavior of the lobes 

coincide with fig.(2). 

 
 

 4. Experiment  

 
Transmittance functions with different number of points are computer generated and printed 
on overhead projector transparencies. Each transparency is mounted on a PC controlled 

rotating stage. An HeNe laser nm8.632=λ  is used to create a coherent plane wave to 

illuminate them. Then, a positive doublet cmf 0.85=  is used as a transformer lens. A black 

and white CCD camera with no lens is placed at Fourier´s plane. When the transmittance 
function is set to rotate, the video capture is made randomly and 900 frames are recorded for 
each case. Then, the associated average is calculated over the entire number of captured 
images. Results are shown in fig. (5) for three different cases.  
 



 

figure 5 Experimental results for different cases a) 4 points b) 10 points c) 50 points. The 
intensity distributions are in good agreement with results obtained numerically in fig. (4), the 
number of minima and maxima of intensity are the same. The corresponding  γ  values are: 

0.444, 0.649 and 1. 

 
Averaged images have been contrast corrected in order to obtain a better visual comparison 
with previously obtained numerical results. It can be observed that the experimental results 
are in very good agreement with the numerical results, as for the coincidence in the number of 
lobes for each case and for the axial intensity distribution. In both cases, as was expected, the 
resulting field tended towards a squared J0 Bessel function when the number of points was 
increased, as occurred in the case of an annular slit transmittance. Hence, the maximum 
intensity of a J0 Bessel beam is the result of the coherent contribution of an infinite number of 
points on an annular slit. As the number of such points decreases, the intensity is spatially 
redistributed generating an optical field with a weakened contrast and a less focused energy 
distribution. The complex degree of coherence given in eq. (7) is also computed for differents 
averaged fields, and results for 4, 10 and 50 point  are 0.444, 0.649 and 1, respectively. This 
also confirms the tendency depicted in fig. (3) where the complex degree of coherence tends 
towards 1 as the number of points increases to infinity. 

 

5. Conclusions 

 
In conclusion, a method that allows the generation of J0 Bessel like beams with controlled 
spatial partial coherence properties has been introduced. The method is based on the average 
of far-field intensity distributions produced by n equally spaced point sources placed on a 
circle of radius R over an ensemble of optical fields that have been rotated to different random 
angles. Numerical and experimental results show that this incoherent average tends towards 
the intensity distribution of a J0 Bessel beam as the number of points is increased. Meanwhile, 
for the intermediate cases, the resulting averaged optical fields are characterized by a complex 
degree of coherence which is directly related to he number of points. We believe that these 
fields can be thought as partially coherent J0 Bessel beams.  


