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We show that classical analogs to quantum coherent and displaced Fock states can emerge in one-dimensional semi-
infinite photonic lattices having a square root law for the coupling coefficients. Beam dynamics in these fully in-
tegrable structures is described in closed form, irrespective of the site of excitation. The trajectories of these beams
are closely examined, and pertinent examples are provided for their realization. © 2010Optical Society of America
OCIS codes: 270.0270, 350.5500.

Light propagation in waveguide lattices has been the sub-
ject of considerable interest over the past few years.
Such array structures provide a versatile platform upon
which one can observe a host of processes, such as op-
tical Bloch oscillations, Zener tunneling, Rabi oscilla-
tions, and Talbot revivals, to mention a few [1–3]. The
discrete diffraction properties of such configurations
can mold the flow of light in a predictable manner, hence
providing altogether new opportunities for applications.
Quite recently, light propagation in random and quasi-
random arrays has also been considered—ranging from
ballistic to the Anderson localization regime [4]. In addi-
tion, quantum correlations in regular lattice structures
have been investigated for both classical and completely
quantum states [5,6]. Yet, despite all the efforts put forth
in this area, only a few of the reported lattices are known
to have closed-form solutions [7,8]. In fact, integrable dis-
crete systems are rather rare, and any new addition to
this class will further facilitate such fundamental studies.
In this Letter we show that a semi-infinite array having

a square root law distribution for the coupling constants
can admit classical analogs to quantum coherent and dis-
placed Fock states. The linear impulse response in these
Glauber–Fock photonic lattices can be described in a
closed form and are shown to be markedly different from
those occurring in other classes of optical arrays. The
proposed lattices can be established by judiciously ad-
justing the separation distance between successive iden-
tical single-mode waveguide elements, in such a manner
that the coupling constants vary as

ffiffiffi
n

p
(see the inset of

Fig. 1). This can be readily accomplished, given that the
coupling constant between the waveguides depends
exponentially on the separation distance dn, κn;nþ1 ∼

expð−γdnÞ [9]. The self-bending beam trajectories in such
structures are analytically examined.
In the proposed system, the normalized modal

field amplitudes obey a discrete linear Schrödinger-like
equation:

i
dEn

dZ
þ ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

Enþ1 þ
ffiffiffi
n

p
En−1 ¼ 0; ð1Þ

where n ≥ 0. The normalized coordinate Z is given by
Z ¼ κ1z, where z is the actual propagation distance
and κ1 stands for the coupling coefficient between sites
0 and 1. We begin by exploring the stationary wave states

allowed in this system. To do so, we assume the solution
En ¼ an expðiμZÞ in Eq. (1), where μ is a propagation
eigenvalue. In this case, the resulting linear difference
equation has the form

−

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
anþ1 þ μan −

ffiffiffi
n

p
an−1 ¼ 0: ð2Þ

A direct calculation indicates that an eigensolution in
these arrays is given by an ¼ Hnðμ=

ffiffiffi
2

p Þ=2n=2 ffiffiffiffiffi
n!

p
, where

HnðxÞ represents a Hermite polynomial.
Toobtain the impulse responseof theGlauber–Fock lat-

tice (e.g., when only one site is excited) we consider the
following virtual x representation:

i
dψðx; ZÞ

dZ
¼ −ðaþ a†Þψðx; ZÞ; ð3Þ

where að†Þ ¼ ð1= ffiffiffi
2

p Þðxþ ð−Þd=dxÞ are the “annihilation
(creation)” operators [10]. These operators satisfy the re-
lations aψnðxÞ ¼

ffiffiffi
n

p
ψn−1ðxÞ and a†ψnðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ψnþ1

ðxÞ, where the system eigenfunctions are given

by Gauss–Hermite functions ψnðxÞ ¼
�
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π1=22nn!

p �
expð−x2=2ÞHnðxÞ.

Fig. 1. (Color online) Propagation dynamics when the first
waveguide site is excited. The dashed curve indicates the
trajectory where the energy is highest during propagation.
The inset depicts a semi-infinite waveguide array where

ffiffiffi
n

p
is the corresponding coupling constant.

July 15, 2010 / Vol. 35, No. 14 / OPTICS LETTERS 2409

0146-9592/10/142409-03$15.00/0 © 2010 Optical Society of America



By using separation of variables, we can express
ψðx; ZÞ as a superposition of ψnðxÞ,

ψðx; ZÞ ¼
X∞
n¼0

EnðZÞψnðxÞ: ð4Þ

To introduce the Dirac notation, we use a correspon-
dence between ψnðxÞ and jni, ðψnðxÞ → jniÞ, then by sub-
stituting Eq. (4) into Eq. (3) yields

i
X∞
n¼0

dEnðZÞ
dZ

����n
�

¼ −

X∞
n¼0

� ffiffiffi
n

p
EnðZÞ

����n − 1

�
þ ffiffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

EnðZÞ
����nþ 1

��
:

ð5Þ

Using the orthonormality properties of the eigenfunc-
tions jni, we finally derive Eq. (1). Thus, by eliminating
the virtual x dependence in Eq. (3), we have effectively
obtained the equations governing light evolution in the
system under investigation. Equation (3) can be readily
solved using the evolution operator

����ψðZÞ
�

¼ exp

�
iZ

�
aþ a†

������ψð0Þ
�
: ð6Þ

Note that D̂ðiZÞ ¼ expðiZðaþ a†ÞÞ represents the so-
called Glauber displacement operator [11]. Because
the operators a and a† satisfy the commutation relations
½a; a†� ¼ 1 and ½a; ½a; a†�� ¼ ½a†; ½a; a†�� ¼ 0, we can factor-
ize D̂ðiZÞ using the Baker–Hausdorff formula,
D̂ðiZÞ ¼ expð−Z2=2Þ expðiZa†Þ expðiZaÞ. The initial con-
dition jψð0Þi can be described in general via a linear
superposition of “states,” depending on which wave-
guides are excited. The aim here is to analyze the case
when light is launched into a single lattice site at position
k from the edge. In this case, jψð0Þi ¼ jki, and Eq. (6) be-
comes jψðZÞi ¼ expð−Z2=2Þ expðiZa†Þ expðiZaÞjki. To
evaluate the field distribution in the mth waveguide,
we take the inner product Em ¼ hmjψðZÞi, hence

Em ¼ expð−Z2=2Þ
�
m

����expðiZa†Þ expðiZaÞ
����k
�
: ð7Þ

To develop an analytical expression for the solution of
Eq. (1), a Taylor series expansion for the exponentials
of the a; a† operators in Eq. (7) is used. For m ¼ kþ s
(where s ¼ 0; 1; 2;…), i.e., for sites m ≥ k (on the right
of the excited waveguide k), the field at a distance Z
is given by

EkþsðZÞ ¼ expð−Z2=2ÞðiZÞs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k!
ðkþ sÞ!

s
Ls
kðZ2Þ; ð8Þ

where Ls
kðZ2Þ are generalized Laguerre polynomials of

degree k [12]. Conversely, if m ¼ k − s, the field at any
position to the left side of the excited waveguide is

Ek−sðZÞ ¼ expð−Z2=2ÞðiZÞs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − sÞ!

k!

r
Ls
k−sðZ2Þ: ð9Þ

When k ¼ 0, i.e., when light is injected into the first
waveguide, Eq. (8) readily reduces to the field
redistribution:

EmðZÞ ¼ expð−Z2=2Þ ðiZÞ
mffiffiffiffiffiffi

m!
p : ð10Þ

Figure 1 depicts the intensity evolution among wave-
guide sites in this Glauber–Fock lattice when the first ele-
ment is initially excited. Notably, the expression for
EmðZÞ in Eq. (10) is identical in form with the complex
amplitudes involved between Fock states and coherent
Glauber states in quantum optics [13]. The resulting in-
tensity distribution Im ¼ jEmj2 at any distance Z ≠ 0 is,
in this case, Poissonian with m resembling the probabil-
ity of finding a quantum harmonic oscillator at an energy
level m, if a measurement is made when the oscillator is
in a coherent state. In other words, for this particular
case, we can think of the entire propagating lattice field
as the classical analog of a quantum coherent state eval-
uated on the imaginary axis, i.e.,

����α ¼ iZ

�
¼ exp

�
−
jαj2
2

�X∞
n¼0

ðαÞnffiffiffiffiffi
n!

p
����n
�
; ð11Þ

whereas the vacuum state itself corresponds to the in-
coming field into the zeroth waveguide. The role of the
translation operator, the generator of coherent states, is
played by the lattice itself on the field.

As light propagates along the waveguides, the energy
spreads from the left to the right (Fig. 1). In the case of
k ¼ 0, the trajectory where the intensity is a maximum
can be exactly described by the function

Z ¼ f ðnÞ ¼ exp

�
1
2

	
−γ þ

Xn
k¼1

1
k


�
; ð12Þ

where γ is the Euler–Mascheroni constant (γ ¼ 0:57721).

Fig. 2. (Color online) (a) Intensity evolution of the twentieth
classical displaced state and (b) its corresponding output inten-
sity profile at Z ¼ 3.

2410 OPTICS LETTERS / Vol. 35, No. 14 / July 15, 2010



Direct numerical simulations (dashed curve in Fig. 1) are
in excellent agreement with Eq. (12).
Along similar lines, a classical number state jki corre-

sponds to an initial excitation of the kth waveguide site in
this lattice. In this case, field distributions, given by
Eqs. (8) and (9), represent the matrix elements of the
Glauber displacement operator hmjD̂ðiZÞjki in a Fock
base representation. Figure 2 illustrates the intensity evo-
lution when light is launched in the twentieth site. Notice
that there is a marked difference between discrete dif-
fraction occurring in regular waveguide arrays with that
expected in a semi-infinite Glauber–Fock lattice [8]. In
the Glauber–Fock lattice, the patterns are always tilted
and accelerated toward the high coupling regions, a di-
rect outcome of the imposed

ffiffiffi
n

p
coupling law. Figure 3

compares the resulting intensity distributions in the same
structure when different sites are excited. Figures 3(a)
and 3(b) were obtained for k ¼ 0, while Figs. 3(c) and
3(d) were obtained for k ¼ 1. The double-humped inten-
sity profile of the first displaced number state resulting
from the boundary reflection is evident in Fig. 3(d).
Glauber–Fock waveguide arrays can be fabricated on

semiconductor wafers by implantation/etching tech-
niques or in bulk silica by laser-direct writing [9,14].

The square root law required for the couplings between
identical elements can be imposed by judiciously varying
the distance between waveguides. Given the range of
coupling constants available [14], Glauber–Fock arrays
involving up to 100 elements should be feasible.

In conclusion, we have demonstrated that classical
analogs to quantum coherent and displaced Fock states
can emerge in one-dimensional semi-infinite photonic lat-
tices having a square root law for the coupling coeffi-
cients. Such fully integrable configurations can provide
new opportunities in the studies of optical discrete sys-
tems. Of particular interest will be the study of quantum
and classical correlations in such waveguide lattices—a
topic of great interest in quantum optics.
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