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Sergio Vázquez-Montiel, Omar Garcı́a-Liévanos, and Juan Alberto Hernández-Cruz
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We propose an alternative method to design diffractive lenses free of spherical aberration for monochromatic light. Our method
allows us to design diffractive lenses with the diffraction structure recorded on the last surface; this surface can be flat or curved
with rotation symmetry. The equations that we propose calculate the diffraction profiles for any substratum, for any f-number,
and for any position of the object. We use the lens phase coefficients to compensate the spherical aberration. To calculate these
coefficients, we use an analytic-numerical method. The calculations are exact, and the optimization process is not required.

1. Introduction

Spherical aberration is, in many cases, the most important of
all primary aberrations, because it affects the whole field of
the lens, including the vicinity of the optical axis. It is due to
different focus positions for a marginal ray, meridional ray,
and paraxial rays. An alternative to minimize the spherical
aberration is to use diffractive optical elements (DOE).
Diffractive lenses are essentially gratings with a variable
spacing groove which introduces a chromatic aberration
that is worse than conventional refractive/reflective optical
elements. In some applications, an optical component may
require a diffractive surface combined with a classic lens
element. By using the diffractive properties, it is possible
to design hybrid elements to obtain an achromatically
corrected element [1]. In other cases, the requirements
can be satisfied by just using a diffractive element. In
general, iterative methods are used to design these lenses
[2]. Also, some people have used analytical third-order and
numerical integrator methods to design diffractive lenses
[1, 3]. The diffractive lenses we describe in this paper
are limited to monochromatic applications; however, our
proposed method is valid for a wide range of wavelengths.

We use lens phase coefficients to compensate spherical
aberration. To calculate these coefficients, we use an analytic-

numerical method. The calculations are exact, simple and
quick. A process of optimization is not required.

The manufacturing problem of diffractive lenses is not
considered here; to solve this problem you can read Castro-
Ramos et al. [4].

First, we describe the diffractive lenses theory. Also, we
give a brief derivation of the general grating equation to trace
a couple of light rays through a rotationally symmetrical
surface. Then, we establish the analytic-numerical method
to minimize spherical aberration. We propose some heights
to correct the spherical aberration. Finally, we conclude by
providing a design example.

2. Theory of the Diffractive Lenses

Diffractive lenses can be described by a polynomial phase
function [5]

φ
(
x, y

) = 2π
λ

∑

m

∑

n

amnx
myn, (1)

where λ is the design wavelength; amn are the lens phase
coefficients; x, y are the coordinates in the diffractive lens.
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We will consider that the diffractive lens is rotationally
symmetrical, so (1) is rerewritten as

φ
(
y
) = 2π

λ

(
a0 + a2y

2 + a4y
4 + a6y

6 + a8y
8 + · · · ). (2)

Here, the longitudinal displacement of the reference sphere
is a0 = 0 because we have assumed it is in the ideal focus.
The coefficient a2 are implicit lens paraxial properties; it is
equal to −1/2 f , where f is the focal length. The remainder
coefficients in (2) give the amount of spherical aberrations of
the first- second- and higher-order [6, 7].

Designers usually use some commercial optical design
programs to obtain the lens phase coefficients by using an
optimization process. We will describe an analytical method
to obtain these coefficients.

To trace a pencil of rays through the diffractive optical
surface, we use the grating equation. For a flat surface, the
grating equation is given by

n′ sin I′ − n sin I = mλ f , (3)

where n′ and n are refractive indexes for two different
mediums, I′ and I are the diffractive and incident angles; f
is the grating frequency; m is the diffracted order.

To analyze the light propagation through a diffractive
curved surface, we have to change the form of the last
equation. After some algebra, we obtain the general grating
equation

(n′M2 − nM1) cos θN + (nN1 − n′N2) sin θN = mλ cos θN f ,
(4)

where the direction of refracted and diffracted rays is given
by the direction cosinesM1, M2, N1, andN2 as are shown in
the Figure 1. This analysis considers that the diffractive lens is
rotationally symmetrical, and then the direction cosines L0 =
0, L1 = 0, L2 = 0. θN is the angle between the normal at
surface and optical axis, it is given by

sin θN , cos θN =
(
∂F/∂y, ∂F/∂z

)

{
(∂F/∂x)2 +

(
∂F/∂y

)2 + (∂F/∂z)2
}1/2 , (5)

here, F is the surface function in which the diffractive lens
will be recorded, and x and y are the surface coordinates.

The grating frequency of (3) and (4) can be calculated in
one dimension by

fy = 1
2π

∂φ

∂y
,

fy = 1
λ

⎡

⎣
∞∑

k=1

2ka2k y
2k−1

⎤

⎦,

(6)

where φ is the phase function given by (2) k is an integer
equal to 1, 2, 3, 4, . . ., and the diffracted order m = 1. With
this, (4) can be rewritten as

[(n′M2 − nM1) cos θN + (nN1 − n′N2) sin θN ]

= cos θN

⎡

⎣
∞∑

k=1

2ky2k−1a2k

⎤

⎦.
(7)
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Figure 1: Lens parameter. The diffractive surface is on the second
surface.
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Figure 2: Transversal spherical aberration of the example one.

Table 1: Example 1 data.

Surfaces Radius
(mm)

Thickness
(mm)

Radius aperture
(mm)

Glass

1 ∞ 200 Air

2 101.954 8.138 25 BK7

3 DOE −101.954 66.059 25 Air

4 ∞ 0 Air

Using (5) and (7), we can trace n rays through the surface at
different heights on the pupil. Then they can arrange a k × k
equations system. The number of equations depends of the
number of coefficients that we want to find.

Then, if we want to find k coefficients, we need to solve
an equation system similar to(8)
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, (8)

where w represents the different constants of the right side
of (7), and A are the constants of the left side of the same
equation, all for different height rays on the pupil.
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Example 2 (our selected points)
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Figure 3: Transversal spherical aberration of the example 2.

Example 3
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Figure 4: Transversal spherical aberration of the example 3.

3. How Many and What Heights Should
Be Corrected

The spherical aberration of the ray in any optical system can
be expressed as

∂W
(
0, y
)

∂y
= 4b1

(
y3) + 6b2

(
y5) + 8b3

(
y7) + · · · . (9)

Considering only big f/numbers, the spherical aberration
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Figure 5: The point spread function of the example 3.

Table 2: Coefficients value for the example 1.

Coefficients Aperture height (mm) Value

a2 Paraxial −0.005 mm−1

a4 (25)(1) = 25 1.180409 × 10−6 mm−3

a6 (25)(0.7746) =19.363 −1.270732 × 10−10 mm−5

Table 3: Coefficients value for the example 2.

Coefficients Aperture height (mm) Value

a2 Paraxial −0.005 mm−1

a4 (25)(1) =25 1.194430 × 10−6 mm−3

a6 (25)(0.9137) =22.842 −1.684803 × 10−10 mm−5

a8 (25)(0.7746) =19.363 3.602457 × 10−14 mm−7

a10 (25)(0.555) =13.875 −5.856954 × 10−14 mm−9

can be represented only for the first and second terms, and
combining these terms, the spherical aberration of the edge
can be corrected. Then, the peak of the spherical aberration
residual occurs when y is equal to the marginal ym multiplied
by
√

3/5 = 0.7746. This analysis is similar to Kingslake [8].
The difference is that the defocus term is not considered here.

It is possible to correct the residual spherical aberration
by using the third term of the expansion (9), but now the
ray aberration curve has two opposite peaks above and below
the 0.7746 zone. The zones with maximum and minimum
residuals fall at values of y given by y/ym = 0.5550 or 0.9137
(see Figure 2).

If we consider f/numbers to be small, we should correct
the spherical aberration residual, and its peaks fall at values
y = ym(0.5550) or ym(0.9137); then we need fourth and
fifth term to correct these other y’s, now the ray aberration
curve has two opposite peaks above and two below of
0.5550 and 0.9137 zones. The zones with maximum and
minimum residuals fall at values of y given by y/ym =
0.9681, 0.8505, 0.6661, or 0.3740, Figure 7. This analysis can
continue because the expansion (9) is infinity.

The points for Kingslake analysis are y/ym = 1, 0.8880,
0.7071, and 0.4597, and for our analysis y/ym = 1, 0.9137,
0.7746, and 0.5550.
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Table 4: Coefficients value for the example 3.

Coefficients Aperture height (mm) Value

a2 Paraxial −0.005 mm−1

a4 (25)(1) =25 9.106091 × 10−7 mm−3

a6 (25)(0.9137) =22.842 −1.941142 × 10−10 mm−5

a8 (25)(0.7746) =19.363 5.218183 × 10−14 mm−7

a10 (25)(0.555) =13.875 −9.916744 × 10−18 mm−9

The number of y that must be corrected for each
optical system depends on the optical system tolerances,
for example, with one value of y ((1)(ym)), we correct
a lens with f/number bigger than f/5; with two different
values of y((1)(ym) and (0.7746)(ym)), we correct a lens
with f/number bigger than f/2; with four different values of
y((1)(ym), (0.7746)(ym), (0.5550)(ym), and (0.9137)(ym)),
we correct a lens with f/number bigger than f/1, but only the
designer should decide the correction that he needs.

4. Results

We have proposed a general expression to compute the
phase coefficients. Now, we will show how theses coefficients
minimize the spherical aberration with some numerical
examples. All examples considered in this section have the
diffracted order m = 1.

4.1. Example 1. In this example, we consider that the
diffractive surface is on a spherical surface (the last surface
of the system) with 50 mm of diameter aperture, numerical
aperture 0.375, object distance 200 mm, and λ = 0.587μm.

In Table 1, other characteristics of the refractive-
diffractive lens are shown.

We must trace light rays until the last surface, and then
we can calculate all constants of (8).

The number of rays traced depends on the number of
coefficients. In this example, we use two coefficients, and we
get the next equations system

[
6.340530E + 4 6.130961E + 7
2.924391E + 4 1.6731E + 7

][
a4

a6

]

=
[

0.067053
0.032394

]

.

(10)

We have solved (8) to compute the phase coefficients for
two different pupil positions on the surface; they are shown
in Table 2.

Figure 2 shows the spherical aberration of the refractive-
diffractive lens; the graphics were obtained using the com-
mercial optical design program “OSLO” [9].

We can see in the graphic a maximum transversal
spherical aberration of about 0.004 mm, having zeros on
two pupil positions. This is because we had computed two
coefficients for the system. The corresponding Strehl Ratio is
of about 0.151.

In the Figure 2, FBY and FBX are the fractional object
coordinates, and WV1 is the wavelength (λ = 0.587μm) for
the evaluation.

4.2. Example 2. We consider the same optical system but
now using four phase coefficients. Solving the next equations
system

⎡

⎢
⎢
⎢
⎢
⎢
⎣

6.34053E + 4 6.130961E + 7 5.269617E + 10 4.246204E + 13

4.821205E + 4 3.869253E + 7 2.760235E + 10 1.84602E + 13

2.924391E + 4 1.6731E + 7 8.50856E + 9 4.056593E + 12

1.071387E + 4 3.119059E + 6 8.071391E + 8 1.958143E + 11

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a4

a6

a8

a10

⎤

⎥
⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.067053

0.051953

0.032394

0.012299

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (11)

we obtain phase coefficients which are show in Table 3.
In Figure 3, we can see a maximum traversal spher-

ical aberration of the refractive-diffractive lens of about
0.00005 mm, having zeros on four pupil positions. The
reason is that we had computed four coefficients for this sys-
tem. The corresponding Strehl Ratio is of about 1. Figure 3
also shows the difference between the points proposed by
Kingslake [6] and our selected points. It can be seen that
the points suggested in this paper to correct the spherical
aberration are slightly better than the Kingslake points.

4.3. Example 3. Now we consider the same optical system

but the diffractive surface on a hyperbolic surface (last

surface) with conic constant, diameter aperture K =
−4.654, 50 mm, numerical aperture of 0.375, object distance

of 200 mm, and λ = 0.587μm. We must trace rays

to the hyperbolic surface because in this way we can
calculate all constants of (8) for this example. We use

four phase coefficients to solve the following equations
system:
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⎡

⎢
⎢
⎢
⎣

6.422962E + 4 6.209924E + 7 5.336845E + 10 4.299859E + 13
4.86619E + 4 3.905076E + 7 2.785591E + 10 1.862844E + 13

2.939127E + 4 1.681484E + 7 8.550953E + 9 4.076689E + 12
1.072902E + 4 3.123454E + 6 8.082727E + 8 1.960884E + 11

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a4

a6

a8

a10

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

0.048792
0.038001
0.023906

9.203867E − 3

⎤

⎥
⎥
⎥
⎦

(12)

In the Table 4 are the new coefficients for this optical system.
Figure 4 shows the aberration of this refractive-diffractive

lens.
We can see again a very small spherical aberration,

and its maximum value is of around 2 × 10−5 mm. It
has 4 zeros because we have used 4 phase coefficients.
The irradiance distribution corresponding to this system is
shown in Figure 5.

Our proposed method is also for flat surfaces. We only
use zero for the angle between the normal to the surface and
optical axis in (4), and then we obtain the grating (3) for a
flat surface. Then, we can use the procedure that we used in
the previous examples.

If the designer wants to use the first surface, the
conjugates must be changed, and then the method proposed
can be applied.

5. Conclusions

We have established a new exact method to correct the
spherical aberration for any optical system using diffractive
lenses; this method makes use of the general grating equation
and exact ray trace. With our method, we can decide how
many zeros the spherical aberration should have and fix its
position in the exit pupil. The method can only be applied to
the first and last surface of the optical system.

We also have proposed some heights to correct the
spherical aberration and how many rays must be traced
depending on the f/number.

In the first and second examples, we have shown that we
can have a high control of spherical aberration, minimized
at points on the surface where we have wanted. Also, we
have shown that our method is valid for any rotationally
symmetrical surface.

In general, spherical aberration will have as many zeros as
the coefficients we calculate. It is very important to see that in
order to minimize spherical aberration, we use only as many
coefficients as necessary.

Finally, to calculate the coefficients, we only use the
analytic-numerical method. The calculations are exact, sim-
ple, and quick. A process of optimization is not required.
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