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ABSTRACT

A new approximate partition function is derived as a function of temperature and total number density of particles in
the given system, and three adjustable parameters. The derivation assumes that we can simulate the calculations of the
partition function for hydrogen by means of averages of the energies and sums of the statistical weights. We present
the procedure and mathematical process to obtain an approximate analytic function and its derivatives that depend
on those parameters. The comparisons with other calculations reported in the literature show good agreement. The
free parameters of this function are calculated and given in a table for all the ions of the first 20 atomic species.
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1. INTRODUCTION

The partition function was defined by Boltzmann as the sum
over all the possible energy states that an atom can have and is
represented by

U =
∞∑

n=1

gnjke
− Enjk

kB T , (1)

where gnjk is the statistical weight, Enjk is the excitation energy
of the state n for the state of ionization j of the chemical element
k, kB is the Boltzmann constant, and T is the temperature
of the thermodynamic system. In reality, n represents the
electron configurations, the enumeration of the values of n
and l, the principal and angular momentum quantum numbers,
respectively, for all the electrons of an atom, including the
multiple excited states, in the case of complex atoms. The
partition function is useful in the calculation of the equation
of state for stellar atmospheres and interiors as well as for
plasma diagnostics through the Saha equation or through the free
energy of Helmholtz for more sophisticated methods to calculate
the thermodynamic parameters useful in many applications.
The partition function diverges for isolated atoms due to the
existence of an infinite number of available energy states. For
atoms embedded in a system of particles the number of energy
states in the atoms is finite due to the physical interactions
among the particles; therefore, the partition function can be
numerically evaluated. In this work, we are interested in finding
the partition function for atoms and ions in a partially ionized
perfect gas in thermodynamic equilibrium. In the calculation
of the thermodynamic properties of a gaseous system, it is
necessary to know the partition function for each chemical
species in its different states of ionization in order to determine
the populations and other thermodynamic coefficients in stellar
atmospheres and plasmas. Traditionally, the sum that defines
the partition function is evaluated, taking into account very
few terms of the power series expansion of the exponentials.
In general, the numerical results are presented in tables of the
partition function for some temperatures and electronic densities
and is necessary to make interpolations when they are required
in the given applications. Those results do not produce compact
analytic functions necessary for the repetitive calculations
required in model atmospheres and plasma diagnostics. In this
work, we obtain a compact analytic partition function that is easy
to use in any numerical application. In what follows, we present

in Section 2 the assumptions and mathematical procedure to find
the approximate partition function and its derivatives. Section 3
presents the comparisons of the results obtained with the derived
partition function with other methods and calculations. The
tables obtained for the free parameters necessary to calculate the
partition functions for 20 elements and their ions are explained in
Section 4. Finally, in Section 5 the conclusions and discussions
are presented.

2. MATHEMATICAL PROCEDURE

Following Unsöld (1948), we should split the sum in Equa-
tion (1) into two parts; in our case, we divide it into three parts
for simplicity as

U = g1jke
− E1jk

kB T +
n′∑

n=2

gnjke
− Enjk

kB T +
n∗∑

n=n′
gnjke

− Enjk

kB T , (2)

where the first sum is over the lowest energy states up to n′
and the last one is from n′ to n∗, the last remaining energy
state in the atom due to the interaction of the atom with the
other particles in the system. The atomic shells in hydrogen
are composed of energy states that are degenerate in energy
therefore the summation in Equation (1) is carried directly up to
the maximum energy state available to the atoms. The procedure
that we want to follow is to try to convert our expressions to
something similar to the hydrogenic partition function by means
of averages of the energy and of sums of the statistical weights.
The first sum of Equation (2) can be converted into

U0 =
n′∑

n=2

ĝnjke
− Ênjk

kB T , (3)

where ĝnjk is the sum of the statistical weights gnjk and Ênjk

is the weighted average of the energies Enjk with respect to the
statistical weights, for the shell n (Cowan 1981). Now applying
the mean value theorem for sums to Equation (3), we can obtain
the following expression:

n′∑
n=2

ĝnjke
− Ênjk

kB T = e
− ξ

kB T

n′∑
n=2

ĝnjk, (4)
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where ξ is a value in the closed interval (2, n′), that is, 2 �ξ �
n′ as required by the theorem. Defining the sum in Equation (4)
as

Gjk =
n′∑

n=2

ĝnjk (5)

and taking ξ equal to the average energy with respect to the
statistical weights ĝn gives

ξ = Ejk =
∑n′

n=2 ĝnjkÊnjk

Gjk

, (6)

that assures that ξ is in the interval (2, n′); therefore, Equation (3)
becomes

U0 = Gjke
− Ejk

kB T . (7)

The second sum of Equation (2) is defined as

U1 =
n∗∑

n=n′
ĝnjke

− Ênjk

kB T . (8)

Using the results of Cardona et al. (2005), applying the mean
value theorem for integrals, we obtain

U1 = m

3
(n ∗3 −n′3)e− Ên∗jk

kB T , (9)

where m is the structure factor and comes from the quasi-
hydrogenic approximation for the statistical weights gn = mn2

(Fischel & Sparks 1971), and defining the mean excitation
energy of the last level in the atom as

Ên∗jk = χjk − Z2
effRy

n∗2
, (10)

where χjk is the ionization potential of the ionization state j
of the atomic species k considered, Ry is the energy of one
Rydberg, and the effective charge Zeff = j + 1, where j is the
state of ionization of the ion, that is, j = 0 for neutral atoms
and takes into account the screening of the core electrons in the
atom. Now, the maximum level in the atom is given by (Cardona
et al. 2005)

n∗ = q

2

(
1 +

√
1 +

4

q

)
, (11)

with

q =
√

Zeff

2πa0

1
6
√

N
, (12)

where a0 is the Bohr radius and N is the total number of particles
per unit volume of the material that composes the medium.
Therefore, given the total number density N we can calculate
n∗. The principal quantum number of the highest allowed state is
given by other models also (Hummer & Mihalas 1988; Däppen
et al. 1987). Substituting Equations (8) and (9) into Equation (2),
we finally obtain

U = ĝ1jke
− Ê1jk

kB T + Gjke
− Ejk

kB T +
m

3
(n ∗3 −n′3)e− Ên∗jk

kB T . (13)

This is our atomic partition function for any temperature and
total number density with the four parameters Gjk, Ejk , m, and
n′. In order to comply with the requirements for the derivation

of Equation (9), using the mean value theorem for integrals,
following the analysis of Cardona et al. (2009a), we set n′ = 7.
Therefore, Equation (13) gets transformed into the final form as

U = ĝ1jke
− Ê1jk

T + Gjke
− Ejk

T +
m

3
(n ∗3 −343)e− Ên∗jk

T , (14)

where the energies have been divided by the Boltzmann constant
kB.The parameters of the partition function are for each chemical
element and each ionization stage of that element. Equation (14)
is analytic; thus, the derivatives of Equation (14) with respect to
N and T are given by

(
dU

dT

)
N

= ĝ1jk

Ê1jk

T 2
e− E1jk

T + Gjk

Ejk

T 2
e− Ejk

T

+
m

3

Ên∗jk

T 2
(n ∗3 −343)e− Ên∗jk

T (15)

and(
dU

dN

)
T

= m

3

[
3n ∗2 dn∗

dN
− (n ∗3 −343)

T

dÊn∗jk

dN

]
e− Ên∗jk

T ,

(16)
together with

dÊn∗jk

dN
= 2Z2

effRy

n∗3

dn∗
dN

, (17)

dn∗
dN

= 1

q

⎡
⎣n ∗ − 1√

1 + 4
q

⎤
⎦ dq

dN
, (18)

and
dq

dN
= −1

6

q

N
. (19)

Equation (14) together with Equations (15) and (16) are useful
for any calculations of the equation of state in stellar atmo-
spheres and interiors as well as for plasma diagnostics. This is
the partition function that we will use to compare with other
results in the following section.

3. RESULTS AND COMPARISONS

For model stellar atmospheres calculations, where the main
thermodynamic variables are the temperature T and the total
number density of particles N or the gas pressure P, our
derived expressions are directly applicable. In order to make
comparisons with other results it is necessary to calculate N for
the given electron density ne and to compile the required data
from tables of the statistical weights and energy levels of the
atoms, specially from the NIST physical data tables and from
other sources. The statistical weights ĝ1jk and the energies Ê1jk

for the ground states of the atoms are given in tables as those
of Cox (2000) and TOP (2009), or calculated from the tables
of NIST (2009). In some cases, the energies Ê1jk are different
from zero when the ground states are multiplets, but even so
they are small. The procedure to obtain Gjk, Ejk , and m is the
following: the ĝnjk for each shell n is obtained by adding up all
the statistical weights collected from the tables of all the states in
the shell, no matter if they are multiple excited. The energy Ênjk

of the shell is obtained by making the weighted average of the
energies Enjk with respect to the statistical weights for the shell
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Figure 1. Curves of the partition function for hydrogen calculated with our
results as a function of temperature for different electronic densities. The
asterisks are the results of de Jager & Neven (1960) and from Fischel & Sparks
(1971).

n, obtained from the tables. This procedure is carried out from n
= 2 to n = 7. In this procedure, we try to simulate the hydrogenic
calculations of the partition function. Now using Equations (5)
and (6), we obtain Gjk and Ejk . The structure parameters m is
obtained by examining the list of total statistical weights of each
shell n of the given atom using, m = gnjk/n2 mentioned above,
and one chooses the greater value among all the shells because
it means that the shell has the greater number of levels. We
have developed procedures and programs to retrieve the data
from the tables of NIST and of TOP when necessary, of the
energy levels of the atoms, to select the appropriate quantities
up to the seventh shell in the atoms, in order to calculate the
parameters of Equation (14). The procedures to retrieve the data
and the necessary calculations to obtain the parameters for all
the atomic species considered here are given in the following
section. The comparisons of Equation (14) are made for three
chemical species: hydrogen, helium, and nitrogen, because there
are published results of the partition function of these elements
and their ions.

For hydrogen there are several comparison that one can
make. The first one is carried out using the combination of
Equations (3) and (9), setting n′ = 7 in order to compare with
our partition function. This would test the accuracy of the second
term of Equation (14). The second one is the comparison of the
combination of Equations (3) and (9) with the evaluation of the
original partition function with the upper limit set equal to n∗.
The third one is the comparison of our result with the direct
calculation of the partition function using

En = χ01 − Ry

n2
, (20)

that is similar to Equation (10), where χ01 is the ionization
potential of neutral hydrogen and gn = 2n2 in Equation (1)
with the upper limit set equal to n∗. The calculations are carried
out for some electron densities ne and temperatures T using
the standard procedures (Mihalas 1978; Cardona et al. 2009b)
to obtain the total number density of particles N necessary in
the calculation of n∗. Figure 1 shows the curves for the values
of the partition function calculated using the three forms of
the partition function mentioned above for several electron
densities, 107, 1010, 1012, and 1015 cm−3, as a function of
temperature. The results behave in a similar way with respect
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Figure 2. Curves of the partition function for neutral helium calculated with
our results as a function of temperature for different electronic densities. The
asterisks are the results of de Jager & Neven (1960) and from Fischel & Sparks
(1971).

to the exact evaluation of the partition function for hydrogen.
The relative errors are less than 0.1% for all temperature and for
electron densities less than 1015 cm−3. Therefore, the results of
the three different evaluations of the partition function are not
appreciated in the scale of the figures. The interpolated results
of de Jager & Neven (1960) and of Fischel & Sparks (1971)
for the electron densities considered have higher relative errors
with respect to the direct evaluation of the partition function.
For low temperatures and high densities, there are few levels
in the atoms; for example, for temperatures around 104 K and
electron densities of around 1016 cm−3, the number of levels
that remain in the atoms, given by Equation (11), is of the order
of 5 that agree with the experimental values for the Balmer lines
of hydrogen where only three lines appear, as can be seen in
Figure 1.7 of Fujimoto (2005) and Figures 5.5 of Griem (1997).
Therefore, our expression would fail under these conditions and
one has to calculate Equation (1) directly for the few levels given.
Then, Equation (14) is a good representation of Equation (1),
when there are a sufficient number of terms in the atoms, let say
more than 12. When there are seven levels in the atoms one uses
only the two first terms of Equation (14). The evaluation of the
partition function for hydrogen is important because we have
the possibility of directly compare with the exact evaluation of
the partition function, something that we cannot do with the
other elements, except the hydrogenic ones.

For helium we can compare with the interpolated results of
de Jager & Neven (1960) and Fischel & Sparks (1971). The
results of the calculations for He i are shown in Figure 2 for the
same electronic densities given above. The relative errors for
the temperatures shown are of the order of few percent; thus, the
results from Equations (3) and (9) are not seen in the scale of
the figure. For He ii, Figure 3 shows the curves for the derived
partition function for the electronic densities given above with
respect to temperature, the relative errors with respect to the
direct evaluation of the partition function, as for hydrogen, are
less than 0.5% and with respect to the interpolated results of
Fischel & Sparks (1971) are of the order of a few percent also.
The results of de Jager & Neven (1960) are very far away from
our results and of the results of Fischel & Sparks (1971). We do
not know the reasons for that difference.

For nitrogen, we present results for N i, N ii, and N iii,
since there are results reported in the literature for them. The
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Figure 3. Curves of the partition function for ionized helium calculated with
our results as a function of temperature for different electronic densities. The
asterisks are the results of Fischel & Sparks (1971).
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Figure 4. Curves of the partition function for neutral Nitrogen calculated with
our results as a function of temperature for different electronic densities. The
asterisks are the results from de Jager & Neven (1960).

comparisons are carried out using our partition function and the
combination of Equations (3) and (9), as was done for hydrogen
and helium, with the derived results of de Jager & Neven (1960).
Figure 4 shows the calculations for N i, Figure 5 the calculations
for N ii, and Figure 6 the calculated values for N iii, all of them
for the electronic densities given above. The results for the ions
of nitrogen do not compare at all with calculated points of de
Jager & Neven (1960); the asterisks are farther down than their
respective curves in the figures, one cannot determine the cause
of the differences, and Fischel & Sparks (1971) conclude that
the use of an incorrect value of the structure factor m produces
wrong results for N i, and an insufficient number of terms for
N ii is the cause of the differences. For N iii, our results do
not compare with the values reported by de Jager & Neven
(1960) shown by the asterisks. For high densities, our results are
different from the results of the combination of Equations (3)
and (9) due to the low number of level at those densities. Another
cause for the differences is that de Jager & Neven (1960) did not
take into account the double excited energy states in nitrogen.
Therefore, other comparison that one can make is to consider
the case of atoms with and without the double excited state, and
for that purpose we use N ii with and without the double excited
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Figure 5. Curves of the partition function for ionized Nitrogen calculated with
our results as a function of temperature for different electronic densities. The
asterisks are the results of de Jager & Neven (1960).
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Figure 6. Curves of the partition function for double ionized Nitrogen calculated
with our results as a function of temperature for different electronic densities.
The asterisks are the results of de Jager & Neven (1960).

states and the results are shown in Figure 7 where the upper
curves for each electronic density are the ones with the double
excited states taken into account. Those results could not explain
the differences with the results of de Jager & Neven (1960). Also,
we cannot compare our results with other computations such as
the ones of Irwin (1981) and Sauval & Tatum (1984) because the
partition function is calculated truncating the sum of the partition
function to a particular excitation energy and not necessarily to
the correct result given, for example, by Equation (11) or by
other sources (Hummer & Mihalas 1988), and also the range in
temperatures considered is very small.

We cannot compare the derivatives of the partition function
obtained above with other derivations because we do not have
any information about other results. Nevertheless, we can
compare with the exact derivatives of the partition function with
respect to temperature and total number density of particles
for the hydrogenic ions. For the derivative with respect to
temperature, we can use the definition of the partition function
with the upper limit set to the maximum level n∗, giving relative
errors of less than 1% for the conditions mentioned above. For
the derivative with respect to the total number density of particles
N, we can compare with the exact derivative for the hydrogenic
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Table 1
Free Parameters of the Partition Function

Z J E G m Z J E G m Z J E G m

1 0 150991.49 278 2 12 4 1411093.36 647 21* 17 4 ∗∗
2 0 278302.52 556 4 12 5 1865964.26 1418 31* 17 5 ∗∗
2 1 604233.37 278 2 12 6 2142223.03 1010 31* 17 6 1007399.32 236 2
3 0 52534.09 124 2 12 7 2338880.38 576 29* 17 7 3539215.89 99 2
3 1 839918.28 299 4 12 8 2773140.05 318 14 17 8 ∗∗
3 2 1359687.21 278 2 12 9 3261657.47 120 2 17 9 ∗∗
4 0 96994.39 318 7 12 10 19189623.12 266 4 17 10 ∗∗
4 1 183127.29 250 2 12 11 21237123.02 124 2 17 11 ∗∗
4 2 1687543.18 234 4 13 0 61332.91 226 2 17 12 ∗∗
4 3 2417471.50 278 2 13 1 186963.72 456 9 17 13 ∗∗
5 0 82608.14 152 6 13 2 270429.14 242 2 17 14 ∗∗
5 1 254450.62 427 15 13 3 1216959.19 545 12 17 15 ∗∗
5 2 361450.28 166 2* 13 4 1549146.53 1170 31* 17 16 ∗∗
5 3 2843419.75 260 4* 13 5 1886238.18 1083 28* 18 0 175362.78 1156 12
5 4 3777763.90 278 2 13 6 2414611.81 1204 21* 18 1 291708.85 2642 29
6 0 119011.30 755 12 13 7 2812666.21 1755 33* 18 2 332987.89 654 22*
6 1 247141.75 412 15 13 8 2542105.04 334 21* 18 3 537020.33 1276 23*
6 2 481799.03 619 16 13 9 3548579.89 373 12* 18 4 676953.56 780 11*
6 3 638971.96 262 2 13 10 3916731.05 120 2 18 5 689723.48 386 16*
6 4 4372895.09 526 4 13 11 22713375.11 266 4 18 6 899714.78 278 11
6 5 5440754.24 278 2 13 12 24893674.25 120 2 18 7 1226291.38 216 2
7 0 156577.63 1076 23 14 0 84557.15 810 12 18 8 4276148.89 758 12*
7 1 297149.04 826 23 14 1 159923.67 354 15 18 9 4765524.26 1810 31*
7 2 463576.22 532 22 14 2 327359.79 685 12 18 10 5427874.79 2126 69*
7 3 761375.52 637 16 14 3 424109.62 268 2 18 11 6309262.74 1942 35*
7 4 969809.93 276 2 14 4 1734718.76 816 12* 18 12 6891291.49 3442 92*
7 5 5955082.97 161 4 14 5 2052871.62 898 30* 18 13 6930433.44 1968 56*
7 6 7406739.18 278 2 14 6 2366175.20 527 17* 18 14 7939677.47 947 16*
8 0 148025.55 658 10 14 7 3068684.69 1804 27* 18 15 8000300.84 96 2*
8 1 358811.61 1104 33 14 8 3544292.35 2157 36* 18 16 44488328.97 179 4*
8 2 522198.02 769 39 14 9 2939472.35 274 17* 18 17 49025928.61 278 2*
8 3 770292.81 812 37 14 10 4284733.99 440 12* 19 0 41649.47 154 2
8 4 1127189.72 805 16 14 11 4631575.50 120 2 19 1 ∗∗
8 5 1337937.59 228 2 14 12 26837561.59 376 4 19 2 ∗∗
8 6 8063119.12 230 4 14 13 28926125.27 124 2 19 3 ∗∗
8 7 9676005.18 278 2 15 0 111553.41 1438 21 19 4 ∗∗
9 0 189306.98 642 22 15 1 187200.91 673 13 19 5 ∗∗
9 1 369967.32 1072 33 15 2 279091.88 524 20 19 6 ∗∗
9 2 648202.69 2070 43* 15 3 490515.56 782 16 19 7 1123307.05 320 10
9 3 862099.86 1285 45* 15 4 599981.58 268 2 19 8 1408338.41 144 2
9 4 1081435.70 674 36* 15 5 2035495.04 248 12 19 9 ∗∗
9 5 1410884.98 381 14 15 6 ∗∗ 19 10 ∗∗
9 6 1777557.76 198 2 15 7 ∗∗ 19 11 ∗∗
9 7 10507621.11 308 4 15 8 ∗∗ 19 12 ∗∗
9 8 12248930.42 278 2 15 9 ∗∗ 19 13 ∗∗

10 0 242506.72 1200 12 15 10 ∗∗ 19 14 ∗∗
10 1 445257.78 2030 29 15 11 ∗∗ 19 15 ∗∗
10 2 657825.06 1391 40 15 12 ∗∗ 19 16 ∗∗
10 3 948042.58 908 26* 15 13 31007596.77 376 4 19 17 ∗∗
10 4 1229305.92 1373 40* 15 14 33218858.77 124 2 19 18 ∗∗
10 5 1402396.67 614 41 16 0 109679.73 660 13 20 0 59040.50 414 10
10 6 1984373.15 758 16 16 1 226987.56 1388 29 20 1 104428.91 184 2
10 7 2249518.89 174 2 16 2 295403.69 463 12* 20 2 510019.07 931 12
10 8 13035747.69 237 4 16 3 418347.48 648 22 20 3 558657.22 620 22*
10 9 15125862.09 278 2 16 4 646590.95 616 12 20 4 708820.36 329 8*
11 0 53037.84 268 2 16 5 793008.25 250 2 20 5 1016510.46 1614 26*
11 1 514746.96 836 12 16 6 2548457.94 242 12 20 6 1163436.41 1083 16*
11 2 748590.86 1156 30* 16 7 3335040.66 1284 24* 20 7 895168.86 174 8
11 3 967135.82 841 37* 16 8 3808539.43 1065 26* 20 8 1331538.08 321 10
11 4 1399246.48 1316 31* 16 9 4539809.54 1946 35* 20 9 1675252.51 144 2
11 5 1663176.34 1052 33* 16 10 5061921.17 2109 36* 20 10 6264642.54 873 10*
11 6 1880070.95 628 34 16 11 3920308.38 246 14 20 11 6675525.78 2104 48*
11 7 2420828.30 421 13* 16 12 5836111.97 366 9* 20 12 7300369.62 2724 86*
11 8 2627246.17 106 2 16 13 6237904.34 118 2* 20 13 8271825.80 3730 103*
11 9 15982554.64 260 4 16 14 35480563.25 376 4 20 14 9069080.36 4227 112*
11 10 17839645.56 124 2 16 15 38723116.45 278 2* 20 15 9213595.25 794 22*
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Table 1
(Continued)

Z J E G m Z J E G m Z J E G m

12 0 80322.99 421 5 17 0 141057.47 1344 21 20 16 10293633.64 849 16*
12 1 148041.70 252 2 17 1 239116.84 1444 34 20 17 10010271.91 102 2
12 2 828015.89 531 12 17 2 ∗∗ 20 18 55504272.68 136 4*
12 3 1134464.90 1536 31* 17 3 ∗∗ 20 19 60549406.08 278 2*

Notes. “∗” indicates data taken from the NIST and TOP databases. “∗∗” indicates sufficient information not available.
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Figure 7. Curves of the partition function for ionized nitrogen calculated with
and without the double excited states as a function of temperature for different
electronic densities. The lower curves for each series are for N ii without the
double excited states.

atom given by (
dU

dN

)
T

= mn ∗2 e− Ên∗jk

T
dn∗
dN

, (21)

producing relative error of less than 1% for the same conditions.
All of these comparisons validate the derivation of our partition
function.

4. TABLE OF PARAMETERS

The procedures for selecting and retrieving the data from
the tables are presented in this section. We decided to use
the data bases of NIST and TOP because they are the most
complete set of atomic data. The data base of NIST contains the
atomic configurations, the energy levels in cm−1 and the total
angular momentum of the chemical elements and some other
spectroscopy information. For our purpose, we use the tables of
energy levels of the atoms and their ions. When necessary we
use the TOP data base that gives the atomic configurations, the
energy levels in Rydberg, and the statistical weights directly.
The two data bases complement each other in different ways.
Some times there are atomic ions in one data base that have
incomplete energy levels necessary for our purposes and then
we use the one that has more information. Also, there exist levels
in one ion that do not have the same energy in the two systems,
especially of the double excited energy states, for example in
single ionized beryllium. In some cases, we use a combination
of both data bases.

We have compiled the data from the ground states up to the
seventh shells. The seventh shell was chosen due to theoretical

and mathematical reasons. For instance, in the derivation of
the third term of our partition function, in order to produce
an analytic function, it is required to transform the sum into
an integral. Therefore, it is necessary that the levels should be
close enough to each other, practically forming a continuum;
thus, from the arguments of Cardona et al. (2009a), this is
accomplished setting the maximum shell n equal to 7. There
exist ions in the two data set that do not have levels up to the
seventh shell and as we do not have any other information,
that ion is not taken into account in our table. The multiple
excited states with different parent ions are take into account
in the averaging as, if they were in the same shell, together
with the single excited states. The procedures and programs
to retrieve the data from the data bases are available upon
request.

Table 1 contains the values of the free parameters of the
partition function given in Equation (14). Column 1 represents
the atomic number, Z, Column 2 the ionization stage, J,
Column 3 the excitation energies, Ejk , Column 4 the statistical
weights, Gjk, and Column 5 represents the structure factors, m.
Theses columns are repeated twice. The remaining quantities
ĝ1jK and Ê1jk of the ground states are obtained from the tables
mentioned before, and n∗ and Ên∗jk are calculated from the
formulas given above, using the given temperatures and total
number densities of particles with the ionization potentials given
in the tables mentioned before. The data required to obtain the
free parameters of the partition function in Table 1 are available
upon request.

5. CONCLUSIONS AND COMMENTARIES

We have derived the atomic partition function for applications
in stellar atmospheres and plasma diagnostics supposing that
one can simulate the calculations of the partition function for
atomic hydrogen where the levels in a given shell have the
same energy; they are degenerate in energy. For that purpose,
we have used the mean value theorems for integrals and
sum to obtain mean values for the energies and statistical
weights and an analytic function in terms of these mean
values and a structure factor. The comparisons with some
published values of the partition function in the literature are
in accordance with the results of our derived partition function.
The tables of the free parameters provided can be used for
the calculation of the partition function for the given elements
for any temperature and total number density of particles in
the particular system under study. This partition function can
be used in the calculation of the equation of state following the
procedures of Cardona et al. (2009b) and the procedures that use
the Helmholtz free-energy minimization methods (Mihalas et al.
1988).
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