

Modelo General semiempírico para la Frecuencia de Resonancia en Resonadores piezoeléctricos de contorno (LWR)

Por

Andrés Felipe Jaramillo Alvarado Ing. Físico, UTP.

Tesis sometida como requisito parcial para obtener el grado de

#### MAESTRO EN CIENCIAS EN LA ESPECIALIDAD DE ELECTRÓNICA

En el

Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) Agosto 2018 Tonanzintla, Puebla.

Supervisada por:

Alfonso Torres Jácome Investigador Titular del INAOE Emmanuel Torres Ríos Profesor Tec. Monterey

©INAOE 2018 Derechos Reservados El autor otorga al INAOE el permiso de reproducir y distribuir copias de esta tesis en su totalidad o en partes mencionando la fuente.



#### Resumen

En la actualidad los retos tecnológicos para cumplir las demandas contemporáneas de las telecomunicaciones son cada vez más grandes. Con el fin de cumplir con las nuevas metas, se deben optimizar cada uno de los componentes básicos de los circuitos específicos. Los transductores interdigitados son parte fundamental de cualquier sistema de comunicación, y por ello en este trabajo, se presenta un modelo semiempírico y su respectiva interpretación para la frecuencia de resonancia en resonadores piezoeléctricos de contorno basados en nitruro de aluminio (AIN), este incluye efectos que no se tienen en cuenta en la metodología comúnmente utilizada para su diseño. Se presenta un análisis cuantitativo de la dependencia del factor de calidad y el coeficiente de acople electromecánico respecto a los espesores normalizados de los electrodos y el piezoeléctrico. Se presentan las limitaciones del modelo predictivo y se delimito el espectro de frecuencias en el cual se puede utilizar, además, se demostró que el comportamiento de la frecuencia de resonancia en función de los espesores de los electrodos y el piezoeléctrico varía de forma lineal si se sitúa la frecuencia de resonancia a un porcentaje por debajo de la calculada teóricamente; cuando se está cerca a esta, el comportamiento es altamente no lineal. En la validación del modelo para la frecuencia de resonancia se obtuvieron errores porcentuales promedio del 5.1% para resonadores con electrodos de aluminio y de 5.05% para resonadores con electrodos de molibdeno.

## Abstract

Currently, the technological challenges for reaching the demanding aspects of modern telecommunications are larger every day. As a result, in order to meet the new specifications every single component of each specific circuit must be optimized. The interdigitated transducer is a fundamental part of every communication system and, this work devoted to the development of a design methodology for Lamb Wave Resonators (LWR) based on AIN. Also, it is obtained a semi-empirical model that relates the resonance frequency of a LWR resonator with the electrodes thicknesses. The methodology is an algorithm that looks for the highest electromechanical coupling factor, the highest guality factor in terms of the resonance frequency required. The limitations of the predictive model here presented and useful range frequency are discussed. It is also shown that tat the resonance frequency changes linearly with the electrodes thicknesses but, for high frequencies this dependence is not longer lineal and behaves as the third power of the thickness. The error that this model produces is in the order of the 5.1% for aluminium electrodes and 5.05% for molybdenum electrodes. Error found by simulations.

## Agradecimientos

Un agradecimiento sincero y fuerte hacia México como país y para cada uno de sus ciudadanos, así mismo al Consejo Nacional de Ciencia y Tecnología de México por brindarme la oportunidad de seguir con mis estudios gracias a la beca que se me otorgo en la convocatoria número 291137 de Becas Nacionales 2016 Segundo Periodo.

Un fuerte abrazo, y sinceros agradecimientos hacia el Msc. Edwin Andrés Quintero por la gran persona que es, por su compromiso con la ciencia y su gran apoyo en mi formación académica.

Se agradece integralmente a Intel Corporation, específicamente a la división de Intel Labs en México por aportar los materiales utilizados en los procesos de fabricación que se realizaron durante esta investigación según lo previsto en el acuerdo de investigación Intel Cg# 29653659, Thin Film Bulk Acoustic Devices On Aln And Zno For Low Loss And Highly Selective Band Pass Passive Filters In The Range Of 0.7-5 Ghz.

Un agradecimiento especial a mis directores de tesis Alfonso Torres Jacome y Emmanuel Torres Rios por su gran asistencia y colaboración para dar este paso en mi vida.

Un agradecimiento a los técnicos del laboratorio de Nanoelectrónica y microelectrónica Ignacio Juárez, Adrián Itzmoyotl, Oscar Aponte, Armando Hernández, Ramiro Arroyo y Víctor Aca.

```
public static void Main(String args)
{
    int intentos = 0;
    for (int i = 0; i < intentos + 1; i++)</pre>
    {
        if (Love.isTrue)
        {
           Console.WriteLine("Ves que el amor si existe?");
           Me.Happy();
           break;
                                        Dedicatoria
        }
        intentos++;
                                        Dedicada a mi madre Miriam Eugenia Alvarado R. por
       Love.Next();
                                        enseñarme que para salir adelante se necesita firmeza y
       Me.Study();
                                        convicción, a mi padre Leonardo Jaramillo Z. por inculcarme
    }
                                        el amor a la ciencia, a mi hermana Adriana María Santa A.
   Me.Live();
                                        por regalarme el valor de la responsabilidad y a mi hermano
}
                                        Ricardo Andrés Jaramillo A. por no dejarme olvidar el niño
                                        que llevo dentro.
```

.

A mi novia Caterine Tatiana Cifuentes R. por acompañarme en mi camino y ser una fuente de apoyo incondicional para mi progreso. A mis amigos Jorge Alejandro Bueno V., Miguel Ángel Jaramillo S. por estar conmigo en todo momento.

A mi familia, a mis amigos, a mis profesores, a mis colegas y a la vida misma por hacerme quien soy

# Índice

| Resumen2 |                                                                 |    |  |  |
|----------|-----------------------------------------------------------------|----|--|--|
| Abstract |                                                                 |    |  |  |
| Dedicato | oria                                                            | 5  |  |  |
| 1. Intro | oducción                                                        | 10 |  |  |
| 1.1      | Necesidades de la nueva generación                              | 10 |  |  |
| 1.2      | Tecnología de MEMS                                              | 11 |  |  |
| 1.3      | Materiales piezoeléctricos                                      | 12 |  |  |
| 1.4      | Resonadores piezoeléctricos                                     | 14 |  |  |
| 1.5      | Herramientas de simulación                                      | 15 |  |  |
| 1.5.1    | COMSOL Multiphysics®                                            | 15 |  |  |
| 1.6      | Estado del arte                                                 | 16 |  |  |
| 1.7      | Justificación                                                   | 18 |  |  |
| 1.8      | Objetivos                                                       | 19 |  |  |
| 1.8.1    | General                                                         | 19 |  |  |
| 1.8.2    | Objetivos específicos                                           | 19 |  |  |
| 1.9      | Organización del documento                                      | 20 |  |  |
| 2. Mar   | co Teórico                                                      | 22 |  |  |
| 2.1      | Mecánica en Solidos                                             | 22 |  |  |
| 2.1.1    | Ley de Hooke                                                    | 22 |  |  |
| 2.1.2    | Efecto Piezoeléctrico.                                          | 24 |  |  |
| 2.1.3    | Propiedades de ondas acústicas sobre materiales piezoeléctricos | 25 |  |  |
| 2.1.4    | Resonadores piezoeléctricos.                                    | 26 |  |  |
| 2.1.5    | Resonador de onda acústica superficial (SAW)                    | 27 |  |  |
| 2.1.6    | Resonador de modos acústicos de contorno (LWR)                  | 27 |  |  |
| 2.1.7    | Parámetros de caracterización de resonadores piezoeléctricos    | 28 |  |  |
| 2.1.8    | Longitud de onda del dispositivo ( $\lambda$ )                  | 29 |  |  |
| 2.1.9    | Coeficiente de acople electromecánico (keff2).                  | 29 |  |  |
| 2.1.10   | Frecuencia de resonancia serie y paralelo $(fs y fp)$           | 30 |  |  |
| 2.1.11   | Factor de calidad ( <i>Q</i> )                                  | 31 |  |  |
| 2.1.12   | Velocidad de propagación mecánica en el piezoeléctrico (v)      | 31 |  |  |

|   | 2.1.13         | B Impedancia mecánica de resonancia ( <i>Rm</i> )                    | . 32      |
|---|----------------|----------------------------------------------------------------------|-----------|
|   | 2.1.14         | Características piezoeléctricas del AIN.                             | . 32      |
|   | 2.1.15         | Modelo Butterworth-Van Dyke Modificado                               | . 33      |
|   | 2.2            | Simulación basada en elementos finitos.                              | . 33      |
|   | 2.2.1          | Componentes generales del método de elementos finitos                | . 34      |
|   | 2.2.2          | Desventajas y limitaciones.                                          | . 34      |
| 3 | . Cor          | strucción metodológica                                               | . 36      |
|   | 3.1            | Simulación base y resultados físicos esperados.                      | . 36      |
|   | 3.1.1          | Simulación base                                                      | . 37      |
|   | 3.1.2          | Resultados físicos esperados.                                        | . 37      |
|   | 3.2            | Grupo de simulaciones y reducción de datos                           | . 40      |
|   | 3.3            | Modelo predictivo de la frecuencia de resonancia y su interpretación | . 42      |
|   | 3.3.1          | Modelo de contribuciones lineales.                                   | . 42      |
|   | 3.3.2          | Modelo de contribuciones generalizado.                               | . 43      |
|   | 3.3.3          | Metodología de validación                                            | . 45      |
| 4 | . Res          | ultados y discusión                                                  | . 48      |
|   | 4.1            | Características comunes del grupo de simulaciones.                   | . 49      |
|   | 4.2            | Resultados y discusión                                               | . 50      |
|   | 4.2.1<br>mecái | Resultados y discusión para la frecuencia de resonancia y veloci     | dad<br>51 |
|   | 4.2.2          | Resultados y discusión para el factor de acople electromecánico      | . 58      |
|   | 4.2.3          | Resultados y discusión para el factor de calidad                     | . 61      |
|   | 4.3            | Modelo de la frecuencia de resonancia                                | . 64      |
|   | 4.3.1          | Modelo de contribuciones lineales.                                   | . 64      |
|   | 4.3.2          | Modelo de contribuciones Generalizado.                               | . 71      |
|   | 4.4            | Validación del modelo de contribuciones                              | . 73      |
|   | 4.4.1          | Validación del modelo: Electrodos de Aluminio.                       | . 73      |
|   | 4.4.2          | Validación del modelo: Electrodos de Molibdeno.                      | . 74      |
| 5 | . Cor          | nclusiones y trabajo futuro                                          | . 76      |
|   | 5.1            | Frecuencia de resonancia                                             | . 76      |
|   | 5.2            | Factor de acople electromecánico                                     | . 78      |
|   | 5.3            | Factor de Calidad                                                    | . 78      |

| 5       | .4                   | Trabajo Futuro                                                                                                      | <i>'</i> 9 |
|---------|----------------------|---------------------------------------------------------------------------------------------------------------------|------------|
| 6.      | Ane                  | exos                                                                                                                | 30         |
| 6       | .1                   | Diseño de la simulación base sobre COMSOL Multiphysics®                                                             | 30         |
| 6<br>fe | .2<br>enóm           | Ejemplo de obtención del sistema de ecuaciones diferenciales para<br>neno piezoeléctrico para un material hexagonal | el<br>33   |
| 6       | .3                   | Valores de los espesores utilizados para las simulaciones de validación                                             | 38         |
| 7.      | Índi                 | ce de Figuras                                                                                                       | 98         |
| 8.      | Índice de Tablas 102 |                                                                                                                     | )2         |
| 9.      | . Referencias        |                                                                                                                     | )4         |

## 1. Introducción

El campo de las telecomunicaciones se ha desarrollado dramáticamente en los últimos veinte años debido a las exigencias que han ido presentando las nuevas necesidades tecnológicas de la sociedad, debido a estos requisitos, han surgido avances gracias a la implementación de nuevas topologías, mejora en los materiales y nuevas técnicas de diseño. Sin embargo, a pesar de estos nuevos desarrollos los requerimientos de las telecomunicaciones son cada vez más extensos, por ello, se hace necesario optimizar cada uno de los componentes y dispositivos específicos que permiten que estas tecnologías lleguen a la sociedad y sigan aumentando su eficiencia cada vez más.

#### 1.1 Necesidades de la nueva generación

La nueva generación de las telecomunicaciones tiene como objetivos entre otros el aumentar la tasa de transferencia de datos hasta cien veces respecto a la tecnología 4G LTE, contar con una latencia inferior a 1ms y aumentar la densidad de usuarios permitidos por unidad de área [1]; para cumplir con estas necesidades se deben enfocar los esfuerzos en concretar avances dirigidos a los materiales y metodologías de diseño, además, trabajar en el rango de frecuencias de operación para hacer compatible la investigación con los estándares industriales. Algunas de las características más demandantes de la nueva generación de las telecomunicaciones, son las dificultades ambientales de impuestas. el comportamiento las ondas por electromagnéticas y su disipación en el aire sobre las diferentes bandas de frecuencia propuestas [2]; por este motivo es imperativo que se desarrollen tanto nuevas topologías y metodologías de diseño, como la optimización de los componentes básicos que integran los circuitos encargados de la recepción y procesamiento de la información para así, cumplir con las demandas mencionadas. Teniendo en cuenta lo anterior y pensando en focalizar la industrialización de los nuevos diseños y metodologías, se hace necesario que estos sean fácilmente integrables a los procesos de fabricación industriales, y por ello, la refinación de los dispositivos requiere de miniaturización y compatibilidad parcial o total con los procesos de fabricación actuales (CMOS, SOI, FinFet, etc).

Los osciladores son parte fundamental de cualquier sistema de procesamiento en el área de las telecomunicaciones. Sin embargo, al ser elementos activos cuentan con un consumo de potencia elevado en comparación, por ejemplo, con un resonador micro-electromecánico el cual es un elemento pasivo. La tarea de los osciladores puede ser llevada a cabo por un resonador con un pequeño circuito de control, generalmente, con menor ganancia y factores de calidad inferiores respecto al oscilador, sin embargo, su mayor ventaja recae en su bajo consumo de potencia e inferior disipación térmica [3]. De allí que este trabajo este enfocado en crear una metodología de diseño para resonadores micro-electromecánicos partiendo desde simulaciones y llegando a la fabricación para así demostrar experimentalmente la metodología propuesta.

## 1.2 Tecnología de MEMS

La tecnología de dispositivos Micro-Electromecánicos (en adelante MEMS) es fundamental para el desempeño logrado por los dispositivos modernos, estos son empleados en la electrónica manufacturada desde hace ya años. Los fundamentos de esta tecnología fueron planteados en las décadas de los sesentas y setentas del siglo pasado. En la Fig. 1 se observan los alcances de esta tecnología la cual permite la fabricación y micro-maquinado superficial de dispositivos, permitiendo el diseño e industrialización de forma económica de sensores de presión, inercia, de gases y algunos sensores biológicos entre otros [4],[5],[6].

La fabricación de los dispositivos MEMS mediante micro-maquinado superficial se basa en la diferencia de velocidades de grabado de los diferentes materiales, permitiendo así, esculpir un material mientras los demás no se ven afectados significativamente. El material esculpido se le denomina material estructural mientras que el grabado se le llama de sacrificio. De los materiales más utilizados de sacrificio son el SiO<sub>2</sub> y el vidrio de fosfosilicato (SiO<sub>2</sub> con dopado tipo P), lo anterior debido a su alta razón de grabado con ácido fluorhídrico (HF).

La gran utilidad y eficiencia de la tecnología de MEMS se ve reflejada no solo en la expansión de sus aplicaciones día a día, sino también, en el crecimiento del mercado referente a esta tecnología. En 2007 los sistemas basados en MEMS tomaron un movimiento monetario neto de cerca de 47 mil millones de dólares aumentando esta cifra para 2012 a 103 mil millones de dólares, donde el mercado obtuvo una tasa compuesta de crecimiento anual del 15% por más de cinco años [7]. El aumento del mercado de la tecnología de MEMS es debido a su expansión tanto en número de aplicaciones como en un mayor consumo de materias primas para la fabricación de los dispositivos.

Algunas de las aplicaciones más demandas de la tecnología de MEMS incluyen el uso de materiales piezoeléctricos como sensores, referencias frecuenciales o resonadores [8]; el porqué de este último, recae en que su fabricación es sencilla, presenta un alto rendimiento y tienen una variedad de parámetros que le permiten a los diseñadores realizar su tarea eficazmente, además, ofrecen compatibilidad con los procesos de fabricación industriales utilizados en la actualidad.

#### 1.3 Materiales piezoeléctricos

El efecto piezoeléctrico estudiado desde 1880 por los hermanos Pierre y Jacques Curie ha sido de gran utilidad desde la década de 1960, debido a que las aplicaciones y dispositivos basados en este efecto tienen una buena relación desempeño/costo, son fácilmente escalables y son compatibles con los procesos de fabricación industrial. El formalismo matemático y físico necesario para entender a profundidad este efecto, fue presentado en el libro "The Theory of Sound" [9] escrito por el físico Baron Rayleigh donde se estudia meticulosamente la acústica y el comportamiento microscópico de esta.



Fig. 1-1 Micro-maquinado superficial para diseño de dispositivos MEMS [10].

El efecto piezoeléctrico es un proceso termodinámicamente reversible, sucede cuando la celda cristalina del material posee anisotropía de carga al ser sometida a una deformación respecto a su posición de equilibro, con lo cual, debido a la no homogeneidad de carga se generan dipolos que polarizan el material, obteniendo así, un campo eléctrico neto diferente de cero. Es importante aclarar que el efecto piezoeléctrico polariza el material por lo tanto cumple las leyes electromagnéticas de la polarización teniendo que, si el material es homogéneo e isotrópico, el campo eléctrico producido es solo debido a la densidad de carga superficial puesto que la interna (volumétrica) será siempre cero.

Los materiales piezoeléctricos comúnmente usados en la industria para la fabricación de dispositivos son Óxido de zinc (ZnO), Cuarzo (SiO<sub>2</sub>), Niobato de Litio (LiNbO<sub>3</sub>) y el nitruro de aluminio (en adelante AIN) entre otros. En la

Tabla 1 se pueden observar las principales características referentes a la fabricación de resonadores con estos materiales. Como se mostrará en el capítulo 2, la frecuencia de operación de un resonador es proporcional a la velocidad del sonido en el material, de allí, si se desea operar a una mayor frecuencia se deberá entonces tener, una mayor velocidad. De acuerdo a lo anterior, se escogió trabajar con el nitruro de aluminio ya que es el material con las mejores características para llevar a cabo la investigación, debido a que presenta la mayor velocidad mecánica de los materiales allí mostrados. Generalmente, el AIN es obtenido mediante Sputtering Reactivo ya sea de corriente continua o de radio frecuencia, de entre estas dos formas, la que se encuentra disponible en el INAOE es Sputering Reactivo DC.

Los piezoeléctricos son materiales transductores electromecánicos, por ello las tensiones en su estructura cristalina pueden provenir de excitaciones eléctricas o mecánicas. De allí, que su comportamiento se vea afectado de manera drástica por la relación de aspecto entre los espesores del piezoeléctrico y los electrodos del dispositivo, debido a que las ondas mecánicas sufren dispersión al viajar por los diferentes materiales (medios)

| Material           | Velocidad (m/s) | Factor de acople<br>electromecánico (%) | Estructura Cristalina<br>(Shear mode). |
|--------------------|-----------------|-----------------------------------------|----------------------------------------|
| ZnO                | 2558            | 3.2                                     | Wurtzite                               |
| Cuarzo             | 3158            | 0.16                                    | Hexagonal                              |
| LiNbO <sub>3</sub> | 3490            | 5                                       | Trigonal                               |
| AIN                | 10300           | 0.6                                     | Hexagonal                              |

Tabla 1. Características principales de los piezoeléctricos comúnmente usados en la industria

## 1.4 Resonadores piezoeléctricos

A pesar de que el descubrimiento del efecto piezoeléctrico y su estudio datan del siglo XIX, las aplicaciones y utilidades de estos materiales no fueron

realmente empleados hasta la década de 1960 cuando, Voltmer y White [11] realizaron importantes avances en el campo del procesamiento de señales, planteando las bases de los dispositivos de ondas acústicas superficiales (SAW), mediante el diseño e implementación de transductores interdigitados los cuales, son en esencia resonadores. En esa misma década Foster [12] publicaría un estudio similar variando los materiales piezoeléctricos utilizados, dando lugar al inicio de la investigación de materiales piezoeléctricos donde, Shiosaki y Yamamoto [13] utilizaron el Sputtering reactivo RF en 1980 para depositar AIN, el cual sigue siendo uno de los materiales más comúnmente utilizados en la actualidad.

#### 1.5 Herramientas de simulación.

Debido a los altos costos que tendría una investigación que variara cada uno de los parámetros de los resonadores y lo complicado de esto, en la fabricación de los mismos, se hace necesario realizar simulaciones que permitan basar los diseños en resultados iniciales aceptables, esto con el propósito de evitar un sobrecosto en la investigación. En el caso particular de esta investigación se usó el software COMSOL Multiphysics® para la simulación de resonadores piezoeléctricos.

#### 1.5.1 COMSOL Multiphysics®

COMSOL Multiphysics® es un simulador multi-física y de primeros principios, que evalúa los valores numéricos de los campos pertenecientes a las magnitudes físicas de interés, y resuelve las ecuaciones de continuidad y las asociadas al comportamiento de los materiales al sufrir diferentes tipos de estímulos. En el caso específico de los dispositivos piezoeléctricos este simulador encuentra las soluciones a las ecuaciones tensoriales que rigen el comportamiento de estos materiales y, usando las condiciones de frontera e iniciales, calcula la respuesta en diferentes espacios de solución como lo son, por ejemplo, el espacio frecuencial o el temporal.



Fig. 1-2 a) Estructura 3D de un resonador piezoeléctrico SAW con reflectores de Bragg b) El mismo resonador con un mallado libre tetraédrico.

COMSOL Multiphysics® ofrece al usuario una interfaz para diseño 3D de los dispositivos y fenómenos físicos a simular, además de un gran número de herramientas para su complemento. En la Fig. 1-2 a) se observa el diseño 3D de un resonador piezoeléctrico de ondas superficiales con reflectores de Bragg, donde en azul se resalta el material piezoeléctrico el cual, está entre las capas metalizadas de los electrodos. En la Fig. 1-2 b) se muestra este mismo pero ahora con mallado tetraédrico libre calculado por el simulador. Cabe destacar que al ser un simulador de primeros principios (se basa en las ecuaciones teóricas y no en modelos numéricos) y totalmente numérico las soluciones encontradas por el simulador dependen en cierto grado de la calidad del mallado y el tamaño mínimo permitido del elemento en él.

#### 1.6 Estado del arte.

El uso de materiales piezoeléctricos en la fabricación de resonadores data de finales de la década de 1960, donde Voltmer en [11] presentó por primera vez avances prácticos sobre este tipo de dispositivos, tomando como fundamento el trabajo teórico de L. Brillouin [14]. Los resonadores piezoeléctricos básicos son los denominados FBAR (Film Bulk Acoustic Resonator), estos constan de un par de electrodos que envuelven la parte inferior y superior de un material piezoeléctrico. Estos dispositivos tienen un buen desempeño a frecuencias

relativamente bajas y en respuesta al bajo rendimiento a altas frecuencias, se diseñaron los resonadores piezoeléctricos de capas apiladas sólidamente o SMR (por sus siglas en ingles Solid Mounted Resonator). Estos cuentan con un grupo de capas de diferentes materiales ubicadas debajo del dispositivo, cada una de ellas con impedancias acústicas muy diferentes para así, confinar las ondas acústicas que van del resonador hasta las capas inferiores mediante la difracción de estas, confinando así, los modos de oscilación de interés [15]. Los dispositivos SMR requieren un número elevado de pasos de fabricación y presentan dificultades para la medición a altas frecuencias como se muestra en [16]. Los resonadores de Ondas Acústicas Superficiales o SAW por sus siglas en inglés (Surface Acoustic Waves) son dispositivos de fácil diseño y desempeño aceptable en un gran número de aplicaciones [17], [18], [19], sin embargo, estos presentan deficiencias en el factor de acople electromecánico y el factor de calidad; para solucionar estos problemas se propusieron los resonadores acústicos de contorno o Lamb Wave Resonators (LWR) los cuales, combinan las mejores características de los resonadores SAW y SMR, lo anterior se debe a que son dispositivos que utilizan los cambios abruptos de impedancia acústica entre el substrato y el aire para confinar los modos de oscilación de interés. Los resonadores LWR son dispositivos tipo SAW que han sido liberados del substrato pudiendo oscilar libremente, por ello son los que mejor desempeño ofrecen para los requerimientos tecnológicos actuales, así, son los más ampliamente utilizados a nivel industrial [20], sin embargo, al ser una tecnología resiente aún se tiene trabajo de investigación por realizar [21].

Los resonadores piezoeléctricos de contorno tienen como fundamento el confinar los modos de oscilación de interés mediante la geometría del dispositivo y de los electrodos, en [22] se demuestran los efectos de variar la geometría obteniendo un factor de acople electromecánico de 2.5% y la mejor respuesta en frecuencia para la geometría "sinc" allí planteada. En [23]

muestran diferentes geometrías y procesos de fabricación que tienen como propósito optimizar el desempeño de los dispositivos, obteniendo un factor de calidad de 1005 y un factor de acople electromecánico de 0.43%.

Las metodologías de diseño comúnmente empleadas para resonadores piezoeléctricos, no tienen fórmulas que incluyan parámetros de fabricación, como lo son los espesores de los electrodos o el del piezoeléctrico. Por ello, en la industria se recurre a la caracterización o la simulación para realizar diseños que arrojen buenos resultados iniciales [24] usando, incluso, un modelo de circuito equivalente. Actualmente para los resonadores piezoeléctricos en general, es el de Butterworth-Van Dyke Modificado [25] ya que representa acertadamente este tipo de dispositivos. Debido a la deficiencia teórica sobre los resonadores piezoeléctricos y el bajo costo que conlleva realizar simulaciones se opta generalmente, por emplear este último como medio de obtención de las características geométricas de diseño optimas; como puede observarse en [10], [26]. Al simular los fenómenos físicos de los resonadores piezoeléctricos, también es posible observar el comportamiento de los campos de desplazamiento mecánico y eléctrico permitiendo un entendimiento mayor del fenómeno. Como se muestra en [21] la variación de los espesores de piezoeléctrico y de electrodos afecta notablemente la respuesta en frecuencia de estos dispositivos, y ya que no existe ninguna expresión analítica que cuantifique esta dependencia, nace la necesidad de plantear un modelo para la predicción de la frecuencia de resonancia en resonadores piezoeléctricos LWR que incluya los factores mencionados.

### 1.7 Justificación.

Debido a las demandas de la nueva generación de las telecomunicaciones, se hace necesario optimizar el diseño de cada componente que pertenezca a la circuitería encargada de estas funciones. Los osciladores son parte fundamental de los circuitos encargados de la transferencia de datos, sin

18

embargo, estos cuentan con desventajas que pueden ser suplidas mediante su reemplazo con resonadores piezoeléctricos. Así, se hace necesario entonces, desarrollar una metodología de diseño para la implementación de resonadores piezoeléctricos de tipo LWR basados en nitruro de aluminio (AIN), puesto que estos poseen alta velocidad mecánica permitiendo así, una alta frecuencia de operación.

Con el fin de proporcionar una forma exacta de predecir la frecuencia de resonancia para un resonador piezoeléctrico y obtener los mayores valores posibles de factor de calidad y coeficiente de acople electromecánico, se empleará el software COMSOL Multiphysics® con el propósito de realizar simulaciones de las cuales se puedan extraer modelos predictivos para dichos parámetros.

#### 1.8 Objetivos.

A continuación, se enuncian los objetivos general y específicos que se alcanzarán en esta investigación.

## 1.8.1 General.

Desarrollar un modelo para la frecuencia de resonancia de resonadores piezoeléctricos LWR basados en AIN, que considere parámetros de fabricación y demostrar las dependencias de los factores de calidad y acople electromecánico respecto a estos.

## 1.8.2 Objetivos específicos.

- Diseñar una simulación base que cumpla con los resultados esperados, tanto físicos como numéricos.
- Realizar las variaciones paramétricas de la simulación base y así obtener los resultados necesarios para el análisis y desarrollo metodológico deseado.
- Desarrollo metodológico que permitan optimizar el factor de calidad y el factor de acople electromecánico.

 Desarrollo teórico y solución para encontrar una expresión de la frecuencia central de oscilación en términos de los espesores y parámetros de los materiales utilizados.

## 1.9 Organización del documento.

Con el fin de que el lector pueda comprender a cabalidad el trabajo aquí presentado se ha elegido la siguiente organización documental: 1) Capitulo de introducción donde se muestran aspectos que hacen necesaria esta investigación ahondando en la contextualización del tema. 2) Marco teórico: Aquí se enuncian las premisas teóricas necesarias para entender el contenido de la tesis. 3) Construcción metodológica: se muestra por qué y cómo se construyó la metodología de trabajo para alcanzar los objetivos mencionados. 4) Resultados: Se enuncian los resultados obtenidos y se muestra las validaciones para el modelo propuesto. 5) Conclusiones: Se enumeran las conclusiones y se plantea trabajo futuro con el fin ahondar objetivamente en la investigación.

# 2. Marco Teórico

En este capítulo se examinan los conceptos teóricos fundamentales para tomar una postura crítica ante la investigación. Se describen elementos físicos como la ley de Hook, pasando por el efecto piezoeléctrico, hasta llegar a la caracterización del nitruro de aluminio en términos de las cuantías descritas, además, se incluye un breve repaso de la teoría de simulaciones basadas en elementos finitos, sus características, problemas y ventajas.

Debido a lo anterior este capítulo se encuentra dividido en dos secciones, la primera muestra la física y matemática de los fenómenos físicos de estudio, y la segunda parte está dedicada al entendimiento de los simuladores de elementos finitos sobre materiales piezoeléctricos.

## 2.1 Mecánica en Solidos.

En general, se identifica la mecánica de solidos por el estudio del movimiento mecánico en materiales que se encuentren en el régimen elástico, lo anterior tiene como consecuencia que un estudio armónico pueda llevarse a cabo fácilmente.

## 2.1.1 Ley de Hooke.

Los planteamientos fundamentales para hallar las ecuaciones de movimiento nacen de la ley de la conservación de la energía expresada sobre volúmenes diferenciales, obteniendo luego de un procedimiento matemático la ecuación 2-1, esta es conocida como la ley generalizada de Hooke. Esta ley establece la relación entre las deformaciones y las tensiones sobre el material, donde al realizar un desarrollo de las simetrías físicas sobre la celda cristalina, se obtiene la ecuación 2-2. La ley de Hooke tiene en cuenta las tensiones producidas en todas las direcciones por deformaciones unidireccionales, donde  $T_{ij}$  representa la fuerza aplicada en dirección i por unidad de área en el plano cuyo vector normal va en dirección j, y  $e_{ij}$  es la proyección de la

deformación en dirección i sobre la dirección j y se calculan de la forma mostrada en la ecuación 2-3. Así, el problema central es la obtención de los campos de desplazamiento respecto al punto de equilibrio de la celda cristalina  $u_1$ ,  $u_2$  y  $u_3$  debido a las tenciones aplicadas al material o viceversa, dando origen a dos formulaciones de la ley de Hooke Tensión-Carga o Deformación-Carga, particularmente, se empleó en la investigación la forma Tensión-Carga la cual es mostrada en la ecuación 2-2.

$$T_{ij} = C_{ijkl}S_{kl}$$

$$T_{xx}$$

$$T_{yy}$$

$$T_{zz}$$

$$T_{yz}$$

$$T_{zx}$$

$$T_{xy}$$

$$= \begin{pmatrix} C_{11} & \cdots & C_{16} \\ \vdots & \ddots & \vdots \\ C_{61} & \cdots & C_{66} \end{pmatrix} \begin{vmatrix} e_{xx} \\ e_{yy} \\ e_{zz} \\ e_{yz} \\ e_{zx} \\ e_{xy} \end{vmatrix}$$

$$2-2$$

$$e_{ij} = \begin{cases} \frac{du_i}{dx_j}, i = j\\ \frac{du_i}{dx_j} + \frac{du_j}{dx_i}, i \neq j \end{cases}$$
2-3

Para hallar las ecuaciones de movimiento a resolver y poder realizar un estudio armónico sobre la mecánica de materiales linealmente elásticos, se necesita solucionar la ecuación general de onda 2-4, donde U es la magnitud física ondulatoria de estudio. A partir de esta ecuación y considerando que las magnitudes físicas son los campos de desplazamiento  $u_1$ ,  $u_2$  y  $u_3$ , se tiene entonces el sistema de ecuaciones diferenciales en derivadas parciales acopladas mostradas en 2-5, las cuales al resolverse, darán como resultado  $u_1$ ,  $u_2$  y  $u_3$  y con ellos el sistema mecánico será completamente descrito.

$$\frac{\partial^2 U}{\partial t^2} = c^2 \nabla^2 U$$
 2-4

$$\rho \frac{\partial^2 u_1}{\partial t^2} = \frac{\partial T_{xx}}{\partial x_1} + \frac{\partial T_{xy}}{\partial x_2} + \frac{\partial T_{zx}}{\partial x_3}$$

$$\rho \frac{\partial^2 u_2}{\partial t^2} = \frac{\partial T_{xy}}{\partial x_1} + \frac{\partial T_{yy}}{\partial x_2} + \frac{\partial T_{yz}}{\partial x_3}$$

$$\rho \frac{\partial^2 u_3}{\partial t^2} = \frac{\partial T_{zx}}{\partial x_1} + \frac{\partial T_{yz}}{\partial x_2} + \frac{\partial T_{zz}}{\partial x_3}$$
2-5

#### 2.1.2 Efecto Piezoeléctrico.

El efecto piezoeléctrico es un proceso termodinámicamente reversible, este sucede cuando la celda cristalina del material posee anisotropía de carga al ser sometida a una deformación respecto a su posición de equilibro, debido a esto, se genera una no uniformidad de carga proveniente de dipolos que polarizan el material, dando como resultado un campo eléctrico neto diferente de cero.

El efecto piezoeléctrico tiene como base dos grandes campos de la física, la mecánica de sólidos y la electroestática. Las dos ecuaciones que rigen el comportamiento de los fenómenos físicos independientes en un material piezoeléctrico son las mostradas en 2-1 y 2-6, las cuales se ven acopladas en un material piezoeléctrico debido al intercambio reversible de potencia; Las ecuaciones 2-7 son las resultantes por este acople, además, son la base para solucionar cualquier problema con materiales piezoeléctricos anisótropicos y cuya respuesta a estímulos mecánicos o eléctricos sea lineal. La descripción tensorial de 2-7 es mostrada en 2-8, donde C son los coeficientes de Rigidez,  $\epsilon$  es la matriz de piezoelectricidad (o acople) y  $\epsilon$  es la matriz de permitividades del material.

$$\vec{D} = \bar{\varepsilon}\vec{E}$$
 2-6

$$T = CS - \epsilon E D = \epsilon S + \epsilon E$$
 2-7

$$T_{jk} = C_{jkil}\partial_{i}u_{l} + \epsilon_{ijk}\partial_{i}V D_{i} = \epsilon'_{ijk}\partial_{j}u_{k} - \epsilon_{ij}\partial_{j}V$$
2-8

En la Fig. 2-1 se muestran algunas de las formas que se puede polarizar un material piezoeléctrico debido a esfuerzos mecánicos, en la parte A se observa cómo se genera una polarización longitudinal a la compresión mecánica, en B como se genera una polarización transversal a los esfuerzos de compresión y en C como se genera la polarización transversal debido a un esfuerzo de cizallamiento.



Fig. 2-1 Modos de actuación sobre materiales piezoeléctricos. A) Modo paralelo de compresión, B) modo transversal de compresión, C) Modo transversal de cizallamiento.

#### 2.1.3 Propiedades de ondas acústicas sobre materiales

#### piezoeléctricos.

El efecto piezoeléctrico al ser un proceso reversible tiene como consecuencia una definición de efecto directo y otra de efecto inverso. Por convención se conoce como efecto directo, cuando el material produce un potencial eléctrico al ser sometido a un estrés mecánico, y el efecto inverso es en el que se observa una variación en el estrés mecánico del material debido a una excitación eléctrica.

En un material piezoeléctrico las ondas acústicas pueden dividirse en dos tipos, las primeras denominadas de cuerpo (Bulk waves en inglés) son aquellas ondas que utilizan el material en volumen como medio de oscilación, mientras las segundas, son aquellas oscilaciones que se presentan superficialmente y son denominadas como ondas acústicas superficiales (Surface Acustic Waves en ingles SAW). Generalmente, las ondas acústicas de cuerpo tienen mayores pérdidas tanto dieléctricas como mecánicas y presentan menores velocidades de grupo, en contraste, las ondas superficiales al tener como medio de propagación la discontinuidad que representa la superficie cristalina posee menores perdidas mecánicas. Cabe hacer énfasis en que las ondas superficiales poseen una atenuación de orden exponencial respecto a la profundidad en el material piezoeléctrico, esto puede

observarse en la Fig. 2-2, allí, se muestran las formas características de las ondas mecánicas del modo de propagación fundamental en dicho sólido.



Fig. 2-2 Ondas acústicas de cuerpo y superficiales.

#### 2.1.4 Resonadores piezoeléctricos.

Los resonadores piezoeléctricos son dispositivos que entran en resonancia, debido a condiciones geométricas establecidas desde el proceso de fabricación; estas condiciones se centran en acomodar geométricamente las ondas mecánicas, para que, mediante las reflexiones producidas por los cambios de medio, se obtenga resonancia constructiva entre dichas reflexiones. En la Fig. 2-3 se observa un resonador piezoeléctrico de ondas acústicas superficiales, allí, la resonancia ocurre debido a que la distancia entre un dedo y otro es de  $\lambda/2$ , provocando resonancia constructiva por la difracción de las ondas mecánicas producto de las reflexiones y transmisiones, estas últimas provocadas por los cambios de medio piezoeléctrico-electrodo. La condición fundamental para la existencia de resonancia total recorrida por la onda mecánica debida a la difracción de esta, sea un múltiplo entero de  $\lambda$ , en otras palabras, la separación entre electrodos debe ser de  $n\lambda/2$ .

Existen diversas topologías y arquitecturas de resonadores piezoeléctricos, sin embargo, los de central atención en este trabajo son los resonadores

piezoeléctricos de modos acústicos de contorno o LWR por sus siglas en inglés (Lamb Wave Resonator).



Fig. 2-3 Características geométricas de los resonadores SAW.

## 2.1.5 Resonador de onda acústica superficial (SAW)

Generalmente cualquier estudio ondulatorio examina la respuesta del medio ante todo tipo de perturbaciones, en el caso del análisis tensorial acústico presentado por L. Brillouin en 1965 [14], se observa como aparecen los modos de propagación de cizallamiento longitudinales dando cabida a un nuevo tipo de resonadores: Los resonadores de ondas acústicas superficiales o SAW por sus siglas en inglés (Surface Acustic Wave).

## 2.1.6 Resonador de modos acústicos de contorno (LWR)

Estos dispositivos fueron propuestos y empleados desde inicios del milenio. Ha sido una tecnología ampliamente utilizada desde entonces, esta se basa en los procesos de liberación de los dispositivos respecto al substrato [27]. Su estructura aprovecha las ventajas de los dispositivos SAWs, como lo es la alta velocidad de propagación, con el confinamiento de modos de oscilación que presentan los resonadores de cuerpo FBAR con cavidad inferior de aire. Desde una perspectiva tensorial de la acústica del AIN, se puede observar como la velocidad de fase en estos dispositivos es teóricamente mayor a 10.200 m/s teniendo por su estructura cristalina (Bursita), una baja dispersión ondulatoria y un coeficiente de acople electromecánico aceptable.

En la Fig. 2-4 se observa un resonador de modos acústicos de contorno, el cual consiste en un interdigitado SAW que ha sido desligado del substrato con el fin de atrapar los modos de oscilación de interés.





## 2.1.7 Parámetros de caracterización de resonadores piezoeléctricos.

Los resonadores piezoeléctricos cuentan con características y figuras de mérito que miden cierto atributo de interés con el fin de validar la utilidad del diseño frente a una aplicación específica. Los parámetros más importantes que poseen los resonadores piezoeléctricos en su respuesta, son: El factor de calidad (Q), Coeficiente de acople electromecánico  $(k_{eff}^2)$ , Frecuencia de resonancia serie y paralelo ( $f_s y f_p$  respectivamente), Impedancia mecánica de resonancia  $(R_m)$  y la Velocidad de propagación de ondas mecánicas en el piezoeléctrico (v).

En la Fig. 2-3 se pueden observar las características principales de diseño geométrico que poseen los resonadores piezoeléctricos LWR, donde la separación entre dedos del interdigitado es conocida como pitch. En la Fig. 2-5 se observa la respuesta genérica de un resonador piezoeléctrico y la forma de cálculo de los parámetros mencionados.

#### 2.1.8 Longitud de onda del dispositivo ( $\lambda$ ).

Los resonadores piezoeléctricos basan su diseño de acuerdo a la velocidad del sonido en el material específico v y la frecuencia de operación deseada  $f_0$ . Teniendo en cuenta que la condición para la existencia de resonancia es que la separación entre electrodos sea  $\lambda/2$ , donde  $v = \lambda f_0$ , entonces, se define la longitud de onda del dispositivo como  $\lambda$ .

## 2.1.9 Coeficiente de acople electromecánico $(k_{eff}^2)$ .

Los materiales piezoeléctricos transforman potencia eléctrica en mecánica y viceversa, mediante un proceso reversible como se explicó en la sección 2.1.2. Debido a lo anterior se hace fundamental medir cuanto de la transducción electromecánica lleva a cabo el dispositivo, por lo cual se define en la ecuación 2-9 el coeficiente de acople electromecánico cuyo valor representa en porcentaje, la energía que el transductor intercambia entre las potencias eléctricas y mecánicas. Se ha evidenciado empíricamente que el valor de este parámetro está asociado al material piezoeléctrico utilizado, su calidad y las relaciones de aspecto que posea con los espesores de los electrodos [21], sin embargo, no se tienen expresiones teóricas que incluyan dichos parámetros en el cálculo del factor.

$$k_{eff}^2 = \frac{\pi f_0}{2f_p} \left( tan\left(\frac{\pi f_0}{2f_p}\right) \right)^{-1}$$
 2-9

El factor de acople electromecánico es de utilidad cuando se desea diferenciar si un resonador piezoeléctrico puede utilizarse o no, en aplicaciones con requisitos de potencia mínima, ya que la transducción en estos dispositivos siempre se encuentra limitada por el coeficiente de acople electromecánico.



Fig. 2-5 Respuesta genérica de un resonador piezoeléctrico.

## 2.1.10 Frecuencia de resonancia serie y paralelo $(f_s y f_p)$ .

Las frecuencias de resonancia en serie y paralelo de un resonador piezoeléctrico están alrededor de la frecuencia central de operación; debido a su estructura cristalina y las propiedades tensoriales de su comportamiento, el resonador a frecuencias levemente superiores a su frecuencia central sufre una anti-resonancia.

Para resonadores piezoeléctricos LWR se tiene que la frecuencia de resonancia es configurada por el espaciado entre los dedos del dispositivo (pitch Fig. 2-3), mediante la ecuación abajo mostrada (2-10).

$$f_r = \frac{v}{2p}$$
 2-10

En otros tipos de resonadores piezoeléctricos la frecuencia de resonancia es asignada por el espesor del piezoeléctrico, por lo que los espesores de los electrodos tienen incidencia indirecta sobre los valores de  $f_s y f_p$  pero en una menor proporción, debido a que las relaciones de aspecto entre los espesores del piezoeléctrico y los electrodos someten al material a tensiones residuales y además, debido a la presión provocada por el peso de estos, se genera un estrés que cambia las propiedades acústicas del material.

## 2.1.11 Factor de calidad (Q).

El factor de calidad de un resonador piezoeléctrico permite conocer que tan centrada está la respuesta en frecuencia del resonador, permitiendo identificar si su respuesta es apta o no para la aplicación deseada. La definición del factor de calidad es la mostrada en la ecuación 2-11 y sus valores pueden ser obtenidos de la Fig. 2-5.

$$Q = \frac{f_s}{\Delta f_{3dB}}$$
 2-11

## 2.1.12 Velocidad de propagación mecánica en el

piezoeléctrico (v).

La velocidad de propagación de ondas mecánicas está asociada a las propiedades del medio donde se propaga y el modo ondulatorio especifico que se presenta. En el caso anisótropico de los materiales piezoeléctricos, esta velocidad viene definida por una relación entre los coeficientes de elasticidad o rigidez y la densidad del material, donde los coeficientes a utilizar en el cálculo dependerán del modo de oscilación que está empleando el dispositivo; de allí que el valor de la velocidad de propagación mecánica dependerá exclusivamente del material y del modo de oscilación que se utilice.

Este parámetro es fundamental para el diseño de los dispositivos piezoeléctricos puesto que, a partir de él, se obtienen características geométricas que se deberán implementar en los procesos de fabricación, para así obtener la frecuencia de resonancia deseada.

A partir de este parámetro y conociendo las limitaciones fotolitográficas del proceso de fabricación del dispositivo, se puede calcular cual es la frecuencia de operación más alta que puede alcanzar un dispositivo fabricado con dicho proceso, por ejemplo, si se tiene que la dimensión mínima del proceso fotolitográfico es m y la velocidad de propagación en el piezoeléctrico es de v, entonces, la frecuencia máxima que se puede alcanzar con dispositivos tipo SAW es la calculada con la ecuación 2-12.

$$f_{max} = \frac{v}{4m}$$
 2-12

## 2.1.13 Impedancia mecánica de resonancia $(R_m)$ .

Como se puede observar en la Fig. 2-5, la impedancia mecánica de resonancia, corresponde al inverso del mayor valor que toma la admitancia en la respuesta en frecuencia del resonador, por lo cual, se asocia directamente a las pérdidas por efecto Joule que tiene el dispositivo cuando está en resonancia, así, lo que se busca generalmente es configurar  $R_m$  al valor de acople, para obtener una disipación energética mínima y un acople de impedancias óptimo.

#### 2.1.14 Características piezoeléctricas del AIN.

Para caracterizar un material piezoeléctrico completamente es necesario hallar los valores de los coeficientes de la matriz de Elasticidad (C), Matriz de acoplamiento ( $\epsilon$ ) y tener los valores de las permitividades relativas en forma matricial ( $\epsilon$ ). En la investigación se han utilizados los valores reportados por Jie Zou y P. Pisano en [10] para el nitruro de aluminio donde:

$$[C] = \begin{bmatrix} 3.45 & 1.25 & 1.20 & 0 & 0 & 0 \\ 1.25 & 3.45 & 1.20 & 0 & 0 & 0 \\ 1.20 & 1.20 & 3.95 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1.18 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.18 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1.10 \end{bmatrix} (10^{11}N/m^2)$$

$$[\epsilon] = \begin{bmatrix} 0 & 0 & 0 & 0 & -0.48 & 0 \\ 0 & 0 & 0 & -0.48 & 0 & 0 \\ -0.58 & -0.58 & 1.55 & 0 & 0 & 0 \end{bmatrix}' (C/m^2)$$
2-13

$$\begin{bmatrix} d \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & -4.068 & 0 \\ 0 & 0 & 0 & -4.068 & 0 & 0 \\ -2.646 & -2.646 & 5.532 & 0 & 0 & 0 \end{bmatrix} (10^{-12}m/V)$$
2-15
$$\begin{bmatrix} 8.0 & 0 & 0 \\ 0 & 8.0 & 0 \\ 0 & 0 & 9.5 \end{bmatrix} (10^{-11}F/m)$$
2-16

### 2.1.15 Modelo Butterworth-Van Dyke Modificado.

Para representar mediante un circuito equivalente los resonadores piezoeléctricos, se utiliza generalmente el modelo de Butterworth-Van Dyke modificado, el cual consta de tres resistencias, dos capacitores y un inductor. Cada componente representa un efecto físico que puede deducirse de la respuesta en frecuencia del dispositivo. En la Fig. 2-6 se puede observar la topología del circuito equivalente, donde  $R_s$  es la resistencia que representa el efecto resistivo presente en los electrodos y en la interfaz con el piezoeléctrico a lo largo de la respuesta en frecuencia,  $C_0$  y  $R_0$  en conjunto recrean la impedancia cuando el resonador está fuera de la frecuencia central de oscilación, mientras que  $R_1$ ,  $C_1$  y  $L_1$  representan la respuesta del resonador en la frecuencia de resonador en





2.2 Simulación basada en elementos finitos.

El método de elementos finitos o FEM por sus siglas en inglés (Finite Element Method), es un método numérico empleado para solucionar ecuaciones diferenciales que modelan fenómenos físicos a través de geometrías complejas, con el fin de representar aspectos de la vida real. Este método fue desarrollado entre las décadas de 1940 y 1950 por Richard Courant, M. J. Turner, R. W. Clough, H. C. Martin, y L. J. Topp mediante la presentación de su trabajo en [28].

2.2.1 Componentes generales del método de elementos finitos. Los componentes genéricos para una simulación basada en elementos finitos (FEM) son: Definición de la geometría como se muestra en la Fig. 1-2 a); el segundo es la definición, tanto de las condiciones de frontera como los valores iniciales asociados a la geometría que se desea simular, esto con el fin de acotar la familia de soluciones a la solución especifica que se desea; al conjunto de estos primeros dos componentes se le conoce como definición del modelo; El ultimo componente consiste en definir un mallado de puntos (Fig. 1-2 b)) en los cuales el simulador deberá de solucionar las ecuaciones del fenómeno físico y así obtener las magnitudes de interés.

Es importante resaltar, que las ecuaciones a solucionar en general son de dos tipos, las constitutivas que son las que dominan el comportamiento termodinámico, de intercambio de energía o movimiento (por ejemplo, la ley de Hooke), y las segundas de evolución temporal, las cuales centran su objetivo en las leyes de conservación en conjunción con el desarrollo temporal del fenómeno físico, por ejemplo, las ecuaciones de continuidad.

2.2.2 Desventajas y limitaciones.

Al emplear métodos numéricos para solucionar las ecuaciones y cumplir las condiciones dadas por el usuario en el modelo, se presentan márgenes de error difícilmente cuantificables, debido a que la solución puede tomar, entre múltiples puntos solución, un mínimo no global del error relativo.

Debido a que el método presenta resultados numéricos calculados específicamente con los valores de parámetros dados, es difícil realizar un

análisis de sensibilidad donde pueda verse fácilmente, que tanto cambiarían los resultados con una variación mínima de uno de sus parámetros sin tener que realizar de nuevo toda la simulación, por lo cual este tipo de análisis llevan bastante tiempo.

La existencia de múltiples mínimos no absolutos sobre los errores para los espacios solución, hace que se deba dedicar una gran cantidad de tiempo en afinar detalles de la geometría y condiciones de frontera, para así lograr representar efectivamente los fenómenos físicos. La densidad de puntos de mallado es también fundamental, debido a que, si es baja, presentará resultados que no demuestran la realidad física, ya que las interacciones fenomenológicas entre puntos no son descritas correctamente, mientras que si la densidad de puntos de mallado es alta entonces se tendrán excesos sobre los tiempos de cómputo. Debido a lo anterior, es difícil y toma numerosas pruebas de ensayo, el encontrar una simulación base que esté acorde con los fenómenos físicos y el resultado esperado al variar los parámetros.

# 3. Construcción metodológica

En este capítulo se especifica la metodología empleada para alcanzar los objetivos de la investigación, además de las herramientas matemáticas utilizadas para llegar a ellos. También se definen las condiciones de verdad para las simulaciones y el grupo de ellas con las cuales se trabajará, así mismo como la forma de reducción de datos, obteniendo el conjunto de observaciones con el cual, se pueda plantear un modelo predictivo para la frecuencia de resonancia en función de los espesores del piezoeléctrico y los electrodos.

Como herramienta de validación se plantea una metodología que permita comprobar el funcionamiento correcto del modelo propuesto, y además, demostrar si las contribuciones de los metales al decaimiento de la frecuencia de resonancia, pueden modelarse como una combinación lineal de las funciones específicas para cada contribución.

### 3.1 Simulación base y resultados físicos esperados.

Una simulación es un procedimiento que representa un grupo de fenómenos siguiendo un modelo para hallar de forma numérica, una solución a las ecuaciones que rigen dicho fenómeno, por lo cual se hace fundamental especificar cuáles son las características de la preparación y los resultados que permitan calificarla como correcta. Así, es imperativo para la investigación, la construcción de una simulación cuya respuesta cumpla con las exigencias físicas establecidas por el fenómeno específico y, a partir de ella, realizar el barrido de parámetros deseados para asegurar que dicho barrido también cumple con las condiciones de verdad; a esta simulación inicial se le denomina simulación base. En el caso de este trabajo se configuro en COMSOL Multiphysics® las condiciones de frontera e iniciales del sistema físico, los materiales y el mallado como se muestra en el anexo 6.1. Lo anterior, se realizó con el fin de asegurar que los resultados arrojados estuviesen de
acuerdo con el comportamiento eléctrico y mecánico esperado para un resonador piezoeléctrico LWR.

#### 3.1.1 Simulación base.

Debido a que el mayor interés de este trabajo es plantear una metodología que permita optimizar los diseños para la frecuencia de resonancia, el factor de calidad y el factor de acople electromecánico, se han centrado esfuerzos para diseñar una simulación base que recree la influencia de los diferentes parámetros sobre estos factores. Debido a lo anterior se ha decidido realizar simulaciones variando los espesores del piezoeléctrico, electrodo inferior y superior ya que se ha observado empíricamente que los factores mencionados tienen una gran dependencia de estos espesores.

Cabe resaltar que la simulación base y por consecuencia todas las simulaciones consideradas como correctas, cuentan con un factor de perdidas isotrópicas mecánicas del 0.005 y un factor de perdida isotrópico dieléctrica de 0.05, lo anterior con el objetivo de maximizar la valides de la investigación y comparar los resultados obtenidos con los de la comunidad científica [10], [21].

3.1.2 Resultados físicos esperados.

De acuerdo a la teoría y las observaciones experimentales que se han realizado desde la década de 1960 respecto al efecto piezoeléctrico, se obtuvieron las premisas que debe cumplir la simulación base para considerarla como correcta. A continuación, se enumeran:

a) Frecuencia de resonancia inferior a la ideal:

Teóricamente se puede calcular la frecuencia de resonancia para un resonador LWR como se muestra en la ecuación 3-1 donde  $c_{ij}$  es la constante de elasticidad que rige el modo de oscilación principal,  $\rho$  la densidad del material piezoeléctrico y  $\lambda$  la longitud de onda del dispositivo. En general, se tiene que la frecuencia de resonancia teórica en un material piezoeléctrico es la más alta que un dispositivo de este

tipo pueda tener, debido a que en su cálculo no se incluyen efectos de electrodos ni espesor de piezoeléctrico, los cuales generan tensiones en el material y disminuyen su frecuencia de resonancia. Así pues, la frecuencia de resonancia obtenida de cualquier simulación deberá ser menor a  $f_0$ .

$$f_0 = \frac{\sqrt{\frac{c_{ij}}{\rho}}}{\lambda}$$
 3-1

b) Desplazamientos inferiores a los Angstroms:

Debido a que el fenómeno de estudio incluye movimientos mecánicos, es de resaltar que los campos de desplazamiento neto deben de estar en el orden de los desplazamientos posibles para la red cristalina, esto es, deben de ser del orden de 40 Angstroms [29].

 c) Concordancia de la frecuencia de resonancia y máximos de los desplazamientos:

Teniendo en cuenta las amplitudes de las ondas mecánicas en el dispositivo, se debe verificar que los mayores valores de dichas amplitudes coincidan con la frecuencia de resonancia; Lo anterior debido a que en dicha frecuencia se presenta la mayor transmisión de energía del electrodo al piezoeléctrico.

 d) Contraposición del campo de desplazamiento en las frecuencias de resonancia y anti-resonancia:

Los resonadores piezoeléctricos cuentan con una frecuencia de resonancia y otra de anti-resonancia, las cuales deben de ser próximas en su respuesta en frecuencia. Se debe de cumplir que el campo de desplazamiento para ambas frecuencias debe de estar desfasado 180° como se ve en Fig. 3-1.



Fig. 3-1 Campos de desplazamiento del resonador piezoeléctrico para a) frecuencia de resonancia y b) frecuencia de anti-resonancia.

 e) Respuesta comúnmente esperada para los resonadores piezoeléctricos LWR:

La respuesta en frecuencia de todas las simulaciones debe seguir la forma mostrada en Fig. 2-5. En el caso de tener  $f_0 > f_p$  por ejemplo, demuestra una incongruencia física con los resultados tanto teóricos como experimentales. Cualquier diferencia fundamental con la forma de la respuesta esperada anulará los resultados de la simulación. Además,

se debe de tener en cuenta que los picos espurios que aparecen cerca a la resonancia en la respuesta en frecuencia, deberán tener una amplitud mucho menor a la del pico principal.

3.2 Grupo de simulaciones y reducción de datos.

Para obtener una muestra representativa con la cual se puedan realizar predicciones, se tiene que normalizar los espesores a una medida común en la cual se pueda dar seguimiento de los parámetros resultados respecto a los parámetros de estudio de un dispositivo a otro. Se ha seguido la propuesta de Pissano de normalizar alrededor de la longitud de onda del dispositivo (sección 2.1.8), es decir, si el espesor del electrodo superior es de 200nm y la longitud de onda del dispositivo es de 4µm, entonces, el espesor normalizado del electrodo superior será 0.05 como se muestra en la ecuación 3-2. En lo que sigue del documento se entenderá  $h_e$ ,  $h_g y h_p$  por el espesor normalizado del electrodo superior, espesor normalizado del electrodo inferior y el espesor normalizado del piezoeléctrico respectivamente.

$$h_e = \frac{h_{electrodo}}{\lambda} = \frac{200nm}{4\mu m} = 0.05$$
 3-2

El grupo de simulaciones se realizará variando los valores de los parámetros  $h_e$ ,  $h_g$  y  $h_p$  siguiendo los barridos mostrados en la Tabla 2. Los barridos de los parámetros son basados en los trabajos [10] y [21] debido a que allí se enuncia la normalización y los rangos de diseño más comúnmente empleados. Se escogieron los pasos para los barridos de acuerdo a las limitaciones de tiempo que tuvo el presente trabajo, ya que la cantidad de simulaciones por variación de material piezoeléctrico o de electrodos es de 11.025.

El proceso de reducción de datos constará del siguiente algoritmo el cual deberá cumplirse para los todos los resultados de simulación:

1) Verificación de los resultados esperados:

Como criterio de verdad sobre los resultados de simulación se tienen las premisas enunciadas en la sección 3.1.2, estas deben ser cumplidas a cabalidad. Si los resultados de la simulación incumplen alguna condición de la validación esta será desechada.

2) Extracción de respuesta en frecuencia:

Al término de la verificación de los resultados físicos esperados se deberá de programar COMSOL Multiphysics® para extraer la respuesta en frecuencia asociada a cada simulación.

- A partir de la respuesta en frecuencia calcular las frecuencias de resonancia y anti-resonancia, factores de calidad (siguiendo la ecuación mostrada en la Fig. 2-5), factor de acople electromecánico, y velocidad efectiva de propagación.
- 4) Almacenar en un archivo el registro con los parámetros extraídos en el paso 3) en un arreglo junto con los parámetros de diseño  $h_e$ ,  $h_g y h_p$ .

| Descripción del Parámetro                    | Símbolo        | Barrido                            |
|----------------------------------------------|----------------|------------------------------------|
| Espesor del electrodo superior normalizado a | h <sub>e</sub> | Desde 0.01 en pasos de 0.004 hasta |
| lambda.                                      |                | 0.09                               |
| Espesor del electrodo inferior normalizado a | hg             | Desde 0.01 en pasos de 0.004 hasta |
| lambda.                                      |                | 0.09                               |
| Espesor del piezoeléctrico normalizado a     | h <sub>p</sub> | Desde 0.1 en pasos de 0.033 hasta  |
| lambda.                                      |                | 0.9                                |

Tabla 2 Conjunto de simulaciones. Barrido de parámetros para las variables de estudio.

Al término de la evaluación de todas las simulaciones siguiendo los cuatro pasos anteriores, se obtendrá un conjunto de resultados donde se tendrán los parámetros: frecuencia de resonancia, factor de calidad, factor de acople electromecánico y la velocidad efectiva de propagación en términos de los parámetros de diseño  $h_e$ ,  $h_g$  y  $h_p$ , con lo cual, se podrá observar el comportamiento de cada uno de los parámetros de salida, respecto a los de

diseño permitiendo así una comprensión profunda de las dependencias entre ellos.

### 3.3 Modelo predictivo de la frecuencia de resonancia y su

interpretación.

Con el fin de predecir el comportamiento y tener ecuaciones de diseño que permitan escoger la frecuencia de resonancia con bastante precisión, se plantea un modelo analítico en términos de los espesores tanto de piezoeléctrico como de electrodos, teniendo como base, la frecuencia dada por el modo de oscilación principal dispuesto por la geometría y el material piezoeléctrico (frecuencia de resonancia teórica ecuación 2-10). Así, para el cálculo de este modelo, se utilizan estimadores estadísticos que a partir de las simulaciones (observaciones), minimizan el error en la función analítica que predice el comportamiento de la frecuencia de resonancia en términos de los espesores mencionados.

# 3.3.1 Modelo de contribuciones lineales.

El modelo consta de la contribución frecuencial de *n* factores, donde cada uno de ellos es una variación geométrica del dispositivo. Estos *n* factores restan de la frecuencia ideal (ecuación 2-10) por lo cual se plantea una formulación como se muestra en la ecuación 3-3, donde *f* es la frecuencia de resonancia predicha por el modelo y  $f_0$  la frecuencia de resonancia teórica. Para el caso específico de la investigación *i* varia de uno a tres, debido a que se consideran contribuciones de tres fuentes: Espesor de electrodo superior, Espesor de electrodo inferior y el espesor del piezoeléctrico ( $h_e$ ,  $h_g$  y  $h_p$  respectivamente).

$$f = f_0 - \sum_{i=1}^n \sqrt{\frac{E_i}{\rho_i} \frac{h_i}{\lambda_i}}$$
 3-3

En general los materiales utilizados como electrodos son linealmente elásticos, así, para las contribuciones realizadas por los electrodos, se toma  $E_i$  como el módulo de Young del material *i*-esimo,  $\rho_i$  será su densidad y  $h_i$  el espesor normalizado a la longitud de onda del dispositivo. Para el caso de la contribución del espesor del piezoeléctrico, se tendrá que  $\rho_i$  y  $h_i$  seguirán la definición mencionada, sin embargo,  $E_i$  será la constante de la matriz de rigidez del piezoeléctrico que domina el modo de oscilación principal en el resonador.

Para completar la descripción del modelo se hace necesario ver que los coeficientes  $h_i$  son adimensionales, y que el radical de la sumatoria siempre tendrá unidades de velocidad, con lo cual, para que la equidad en unidades se conserve de ambos lados de la ecuación, se tiene que  $\lambda_i$  tendrá unidades de distancia. De lo anterior y tomando en cuenta la ecuación 3-1 para el cálculo de la frecuencia de resonancia, se puede deducir que los coeficientes  $\lambda_i$ , pueden ser interpretados como la longitud de onda de la contribución frecuencial, de allí que a estos coeficientes se les ha denominado como longitud de onda efectiva de la contribución.

El modelo plantea una serie de contribuciones lineales a la frecuencia de resonancia teórica, teniendo así que el efecto de los electrodos y el espesor del piezoeléctrico sobre la frecuencia de resonancia pueden observarse como fenómenos lineales, así, se les puede asociar una longitud de onda efectiva, que no aparece en la realidad del fenómeno, pero completa la interpretación del modelo planteado.

# 3.3.2 Modelo de contribuciones generalizado.

Con el fin de aumentar la precisión del modelo se plantea una generalización inmediata, reduciendo los errores predictivos del modelo y aumentando la confiabilidad del mismo. Se ha optado por una generalización polinómica debido a que el patrón que se conoce del fenómeno, es compatible con este tipo de comportamiento.

La ecuación 3-4 muestra la generalización del modelo, donde, se pone la frecuencia de resonancia en términos de los espesores normalizados  $h_i^j$  y sus

contribuciones polinómicas. En este caso el barrido sobre *i* se realiza para tener en cuenta los *n* tipos diferentes de contribuciones, y el barrido sobre *j* considera los efectos de orden uno hasta *j* de cada una de las *n* contribuciones. Los coeficientes  $\lambda_{i,j}$  son las longitudes de onda efectivas de la contribución *i*-esima debida al efecto de orden *j* de la contribución.

$$f = f_0 - \sum_{j=1}^{m} \sum_{i=1}^{n} \sqrt{\frac{E_i}{\rho_i}} \frac{h_i^j}{L_{i,j}} + O_f$$
 3-4

 $O_f$  es una frecuencia de ajuste que se genera debido a que el método para el cálculo de los coeficientes  $\lambda_{i,j}$  es el de mínimos cuadrados generalizados así, el término de orden cero coincide con el valor de  $O_f$ .

Para encontrar los valores de  $\lambda_{i,j}$ , y así tener una función analítica que modele el comportamiento de la frecuencia de resonancia en función de los espesores, se debe cambiar la forma del modelo a la mostrada en la ecuación 3-5, donde las fórmulas de equivalencia se muestran en 3-6.

$$f - f_0 = -\sum_{j=1}^m \sum_{i=1}^n D_{i,j} h_i^j + O_f$$
 3-5

$$D_{i,j} = \sqrt{\frac{E_i}{\rho_i} \frac{1}{\lambda_{i,j}}}$$
3-6

$$\lambda_{i,j} = \sqrt{\frac{E_i}{\rho_i} \frac{1}{D_{i,j}}}$$
 3-7

Para el cálculo del modelo se requieren las observaciones f (resultados de las simulaciones), la frecuencia teórica de resonancia ( $f_0$ ) y los parámetros correspondientes a dicha observación  $h_i^j$ , de donde al realizar la estimación polinómica mediante el método de mínimos cuadrados generalizados, se obtienen los valores de  $D_{i,j}$  y así, conocidos  $E_i$  y  $\rho_i$  se pueda obtener  $\lambda_{i,j}$ , con lo cual el modelo quedará completamente descrito.

# 3.3.3 Metodología de validación.

Para comprobar si el modelo propuesto cumple a cabalidad las exigencias matemáticas del fenómeno, se debe de plantear una metodología de validación que permita reconocer claramente las ventajas y limitaciones de este. Por ello, se ha diseñado la metodología con los siguientes objetivos en mente:

- a) Verificar que componentes afectan en mayor medida el fenómeno, es decir, cual tiene la mayor influencia en la variación de la frecuencia de resonancia (espesor de electrodo superior, inferior o el de piezoeléctrico).
- b) Examinar los límites del modelo en los aspectos referentes a límite de frecuencia predecible, complejidad computacional y peor aproximación polinómica.
- c) Validar mediante rangos de frecuencia, diferentes modelos de orden *m*,
   con el fin de observar cual rango de frecuencia sigue cual patrón funcional.

De lo anterior, se sigue que la metodología propuesta es:

- Calculo de los coeficientes λ<sub>i,j</sub> para la determinación del modelo a partir de las simulaciones.
- 2) Realizar un grupo de simulaciones tal que: Los valores de  $h_e$ ,  $h_g y h_p$ deben ser números aleatorios obtenidos en el rango mostrado en la Tabla 3, teniendo en total, un conjunto de 401 combinaciones de valores para cada variación en los materiales utilizados

Tabla 3. Rangos de valores aleatorios para los parámetros de estudio en las simulaciones de validación.

| Parámetro      | Rango de valores        |  |
|----------------|-------------------------|--|
|                | Aleatorios              |  |
| h <sub>e</sub> | Desde 0.005 hasta 0.095 |  |
| $h_g$          | Desde 0.005 hasta 0.095 |  |
| $h_p$          | Desde 0.05 hasta 0.95   |  |

- 3) Calculo de los errores de la frecuencia de resonancia calculada con el modelo versus la obtenida en la simulación. Se tomará como resultado verdadero el obtenido por la simulación. Se deben realizar el cálculo de los modelos de un orden uno y tres.
- Realizar los pasos de 1) a 3) tantas veces como materiales de electrodos se tenga.

# 4. Resultados y discusión.

Debido a la gran cantidad de resultados que se deben presentar (11.025 resultados por variación de material), se ha optado por organizarlos de forma clara y concisa mediante dos tipos de gráficas para cada uno de los siguientes parámetros: frecuencia de resonancia, velocidad mecánica efectiva, factor de calidad y el factor de acople electromecánico. El primer tipo de grafica es del parámetro específico en términos de los espesores normalizados de los electrodos, para un espesor dado del piezoeléctrico (Planos rojos en la Fig. 4-1). El segundo tipo de grafica es el valor del parámetro en función del espesor del piezoeléctrico, con espesores de electrodos determinados. El primer tipo de gráfica, permite observar el comportamiento de los parámetros en función de los espesores de los electrodos, y el segundo permite el análisis del comportamiento en términos del espesor del piezoeléctrico, con lo cual se puede determinar el comportamiento total y relativo del fenómeno, frente a los parámetros de estudio.

El conjunto de simulaciones puede verse como puntos en un espacio tridimensional, donde cada punto será una simulación, así como se muestra en la Fig. 4-1. Desde esta perspectiva, el cubo (espacio solución) tiene 11.025 puntos y cada uno de ellos, tiene un conjunto de resultados incluyendo la respuesta en frecuencia y el grupo de parámetros: frecuencia de resonancia, factor de calidad, factor de acople electromecánico y la velocidad mecánica efectiva. En el espacio solución las gráficas tipo uno serán planos con  $h_p$  constante (mostrados sobre la figura en rojo), y las gráficas tipo dos serán los puntos de color naranja a lo largo de todos los valores de  $h_p$ .





En la investigación aquí presentada se han realizado las simulaciones sólo con el nitruro de aluminio como piezoeléctrico y los materiales de ambos electrodos de aluminio y molibdeno respectivamente. De allí, que el grupo total de resultados son el conjunto de 22.050 simulaciones, de donde se extraen los parámetros resultado y se realizan los análisis de comportamiento, para mostrar las principales dependencias de los parámetros de diseño de los resonadores piezoeléctricos LWR.

#### 4.1 Características comunes del grupo de simulaciones.

Con el objetivo de normalizar y construir un procedimiento estándar que arrojara siempre resultados correctos, se construyó la simulación base con un grupo de características que permitiese realizar las variaciones deseadas y normalizar el entendimiento del fenómeno. Así, todos los resultados obtenidos a partir de las simulaciones tienen en común las siguientes características:

- Los resonadores piezoeléctricos son de tipo LWR con interdigitados en ambos electrodos.
- 2) Ambos electrodos son del mismo material.

- 3) El piezoeléctrico utilizado es nitruro de aluminio
- 4) La longitud de onda de los dispositivos simulados es de 4µm. Lo anterior debido a que dicha longitud de onda, corresponde a los resonadores piezoeléctricos tipo SAW más pequeños que se pueden fabricar en los laboratorios del INAOE.
- La matriz de elasticidad y acople del nitruro de aluminio usadas en las simulaciones son las dadas en [10] por Pissano y Jie Zou.
- 6) Para acercar las simulaciones a la realidad de la fabricación se ha incluido en ellas perdidas dieléctricas y mecánicas isotrópicas con valores de 0.05 y 0.005 respectivamente [21].
- 7) Los barridos sobre los parámetros  $h_e$ ,  $h_g y h_p$  son los valores mostrados en la Tabla 2.
- Las condiciones de frontera y valores iniciales son los mostrados en el anexo 6.1.
- 9) La malla es controlada por la física y generada automáticamente por el simulador, con un tamaño de elemento mínimo de  $1.8 \cdot 10^{-4}$ .
- 10)Las simulaciones fueron realizadas sobre COMSOL Multiphysics 5.3a.

## 4.2 Resultados y discusión.

Del conjunto de datos de simulación en su totalidad, se pueden extraer propiedades y características del comportamiento del fenómeno, permitiendo un entendimiento profundo de la influencia de los parámetros de estudio sobre la respuesta del dispositivo. Para sistematizar el análisis de los datos en torno a un planteamiento metodológico, se discutirá la frecuencia de resonancia, factor de calidad y factor de acople electromecánico de forma independiente, y en torno a cada uno de los parámetros variados dentro de las simulaciones

Para las gráficas tipo uno  $(h_p = cte)$  los valores escogidos del espesor normalizado del piezoeléctrico son 0.1, 0.366, 0.566 y 0.766, esto con el fin de observar el comportamiento a lo largo del barrido. Para las gráficas tipo dos  $(h_e y h_g$  constantes) se ha escogido trabajar con los valores de  $h_e y h_g$  mostrados en la Tabla 4.

| Numero Muestra | h <sub>e</sub> | $h_g$ |
|----------------|----------------|-------|
| 1              | 0.01           | 0.01  |
| 2              | 0.026          | 0.042 |
| 3              | 0.058          | 0.074 |
| 4              | 0.09           | 0.09  |

Tabla 4 Valores de los parámetros  $h_e y h_g$  usados en las gráficas tipo dos.

# 4.2.1 Resultados y discusión para la frecuencia de resonancia y velocidad mecánica efectiva.

La velocidad mecánica efectiva viene determinada como se define en la ecuación 4-1, donde *f* es la frecuencia de resonancia obtenida por simulación (o medida experimentalmente) y  $\lambda$  la longitud de onda de los dispositvos.

$$v = f * \lambda$$
 4-1

De lo anterior y teniendo en cuenta la forma de cálculo de la frecuencia de resonancia teórica (ecuación 3-1), se puede ver que la relación entre la velocidad mecánica efectiva y esta frecuencia es directamente proporcional. Desde la perspectiva teórica el cálculo inicial de la frecuencia de resonancia, viene dado con la suposición de que el espesor de los electrodos es infinitesimal, por lo cual, no se tiene una función analítica de la influencia de este parámetro sobre la frecuencia de resonancia. Así como se planteó en la sección 3.1.2, se espera físicamente que la frecuencia de resonancia sea siempre menor a la teórica. De allí que el comportamiento de la frecuencia de resonancia sea monotónicamente decreciente alrededor de la frecuencia máxima alcanzada. Para el cálculo de la frecuencia de resonancia teórica se

el nitruro de aluminio (sección 2.1.14) y su densidad como se muestra en la ecuación 4-2. Cabe aclarar que la longitud de onda de los dispositivos simulados es de 4µm (sección 4.1).

$$f = \frac{\sqrt{\frac{3.45*10^{11}}{3260}}}{4*10^{-6}} Hz = 2573684070 Hz = 2.571 GHz$$
 4-2

Las Fig. 4-2 y 4-3 presentan el comportamiento de la frecuencia de resonancia para dispositivos con electrodos de aluminio y molibdeno respectivamente, en función de los espesores de los electrodos y variando por subfigura el espesor del piezoeléctrico, allí, se puede observar cómo se cumple que la frecuencia de resonancia siempre es menor a la calculada teóricamente, puesto que, para las simulaciones con electrodos de aluminio y molibdeno la máxima obtenida fue de 2.497GHz y 2.558 GHz respectivamente, siendo inferiores a la calculada en la ecuación 4-2. Estas graficas también permiten observar que la contribución al desfase de frecuencia dada por el electrodo superior es igual a la del electrodo inferior, matemáticamente:  $f_r(h_e, h_g) \cong f_r(h_g, h_e)$ .También cabe resaltar que el comportamiento de la frecuencia de resonancia es siempre monotónicamente decreciente. Lo anterior es posible demostrarse si se hace una translación de los espesores que producen la máxima frecuencia al origen.

Las Fig. 4-4 y 4-5 muestran el comportamiento de la frecuencia de resonancia en términos del espesor del piezoeléctrico dados ciertos espesores de electrodos de aluminio y molibdeno respectivamente. Se debe destacar que el comportamiento de la frecuencia de resonancia sigue dos patrones, el primero de alta no linealidad si se cumple que la frecuencia de resonancia es cercana a la teórica, o el espesor del piezoeléctrico normalizado es inferior a 0.3; y la segunda forma es de orden lineal y se da cuando se tiene que el espesor del piezoeléctrico normalizado es superior a 0.3. Para comprobar las afirmaciones realizadas, se hiso un estudio sistemático de graficas dentro y fuera del intervalo mencionado, encontrando que en general, los resultados cumplen la afirmación como se puede observar en la Fig. 4-6.



Fig. 4-2 Frecuencia de resonancia con electrodos de aluminio a)hp=0.1, b)hp=0.366, c)hp=0.566 y d)hp=0.766. Gráfica tipo 1.



Fig. 4-3 Frecuencia de resonancia con electrodos de molibdeno a)hp=0.1, b)hp=0.366, c)hp=0.566 y d)hp=0.766. Gráfica tipo 1.



Fig. 4-4 Frecuencia de resonancia con electrodos de aluminio. Muestras seleccionadas según la Tabla 4. Gráfica tipo 2.



Fig. 4-5 Frecuencia de resonancia con electrodos de molibdeno. Muestras seleccionadas según la Tabla 3. Gráfica tipo 2.



Fig. 4-6 Frecuencia de resonancia en función del espesor normalizado del electrodo superior para resonadores con electrodos de molibdeno y aluminio.

En las Fig. 4-7 a 4-10 se pueden observar los datos presentados para la frecuencia de resonancia, pero ahora mostrando la velocidad mecánica efectiva conservando el mismo orden antes mencionado, allí se puede observar que su comportamiento es proporcional a la frecuencia de resonancia y se relacionan mediante la ecuación  $v = f * \lambda$ .



Fig. 4-7 Velocidad mecánica con electrodos de aluminio a)hp=0.1, b)hp=0.366, c)hp=0.566 y d)hp=0.766. Gráfica tipo 1.



Fig. 4-8 Velocidad mecánica con electrodos de molibdeno a)hp=0.1, b)hp=0.366, c)hp=0.566 y d)hp=0.766. Gráfica tipo 1.



Fig. 4-9 Velocidad mecánica efectiva con electrodos de aluminio. Muestras seleccionadas según la Tabla 3. Gráfica tipo dos.



Fig. 4-10 Velocidad mecánica con electrodos de molibdeno. Muestras seleccionadas según la Tabla 3. Gráfica tipo dos.

4.2.2 Resultados y discusión para el factor de acople electromecánico.



Fig. 4-11 Factor de acople con electrodos de aluminio y a)hp=0.1, b)hp=0.366, c)hp=0.566 y d)hp=0.766. Gráfica tipo uno.



Fig. 4-12 Factor de acople con electrodos de molibdeno a)hp=0.1, b)hp=0.366, c)hp=0.566 y d)hp=0.766. Gráfica tipo uno.

En las Fig. 4-11 y 4-12 se muestra cómo varía el factor de acople electromecánico para dispositivos con electrodos de aluminio y molibdeno respectivamente, estos en función de los espesores normalizados de electrodos donde cada subgráfica, viene dada por un espesor de piezoeléctrico diferente. Se debe observar cómo los valores del factor van cambiando en función de los espesores de los electrodos sin seguir un patrón funcional bien definido, sin embargo, de las Fig. 4-13 y 4-14 se nota como la variación del factor sigue un patrón funcional resaltante en términos del espesor del piezoeléctrico, esto es, cuadrático para espesores de piezoeléctrico pequeños y decáe linealmente al llegar al máximo de su valor alrededor de 0.35 para  $h_p$ .

Cabe resaltar que el factor de acople electromecánico cumple con  $k_{eff}^2(h_e, h_g) \cong k_{eff}^2(h_g, h_e)$ , esto se puede deducir al observar las Fig. 4-11 y 4-12, donde los valores dados en las gráficas de contorno cumplen la ecuación mencionada. Lo anterior se traduce en que las contribuciones tanto del electrodo superior como del inferior, son equivalentes para valores iguales de estos parámetros.

El comportamiento de este factor a lo largo de variaciones del espesor del electrodo superior puede verse en la Fig. 4-15, donde se puede notar que el comportamiento en general, para dispositivos con electrodos de aluminio es siempre creciente en el rango simulado, mientras que para dispositivos con electrodos de molibdeno, crece hasta el máximo de 0.059 para  $h_e = 0.044$ , y empieza a decrecer.

Los valores esperados para el factor de acople electromecánico reportados en la literatura son inferiores al 6% lo cual concuerda con los resultados obtenidos, sin embargo, para el caso de la investigación en general se obtuvieron valores muy inferiores a los esperados, debido a que en las simulaciones por primera vez se incluyeron pérdidas tanto mecánicas como dieléctricas (sección 3.1.1, [21]).



Fig. 4-13 Factor de acople electromecánico con electrodos de Al. Muestras seleccionadas según la Tabla 3. Gráfica tipo dos.



Fig. 4-14 Factor electromecánico con electrodos de Mo. Muestras seleccionadas según la Tabla 3. Gráfica tipo dos.



Fig. 4-15 Factor de acople electromecánico en función del espesor del electrodo superior para resonadores con electrodos de aluminio y molibdeno.

4.2.3 Resultados y discusión para el factor de calidad. De las Fig. 4-16 y 4-17 se observa que el comportamiento del factor de calidad en función de los espesores de los electrodos no tiene ninguna característica funcional que resalte. En las Fig. 4-18 y 4-19 se observa el factor de calidad, pero esta vez en función del espesor normalizado para el piezoeléctrico, donde claramente se evidencia la falta de un patrón funcional. En la 4-20 se muestra la variación de este parámetro respecto al espesor normalizado del electrodo superior, allí tampoco se nota una característica funcional predominante en términos de  $h_e$ .

Los valores esperados para el factor de calidad deben estar en el rango de 1100 hasta 4500 debido a que son los reportados en la literatura, para el caso de la investigación en general se obtuvieron factores de calidad inferiores a los esperados, debido a que en las simulaciones por primera vez se incluyeron perdidas tanto mecánicas como dieléctricas (sección 3.1.1, [21]).



Fig. 4-16 Factor de calidad con electrodos de aluminio a)hp=0.1, b)hp=0.366, c)hp=0.566 y d)hp=0.766. Gráfica tipo uno.



Fig. 4-17 Factor de calidad con electrodos de molibdeno a)hp=0.1, b)hp=0.366, c)hp=0.566 y d)hp=0.766. Gráfica tipo uno.



Fig. 4-18 Factor de calidad con electrodos de aluminio. Muestras seleccionadas según la Tabla 3. Gráfica tipo dos.



Fig. 4-19 Factor de calidad con electrodos de molibdeno. Muestras seleccionadas según la Tabla 3. Gráfica tipo dos.



Fig. 4-20 Factor de Calidad en función del espesor del electrodo superior. Los espesores de piezoeléctrico y electrodo inferior son de 0.4 y 0.05 respectivamente. Electrodos de aluminio.

4.3 Modelo de la frecuencia de resonancia.

A partir del grupo de resultados obtenidos, los cuales abarcan las variaciones mencionadas en la Tabla 2, se realizó el cálculo del modelo predictivo mencionado en la sección 3.3 para la frecuencia de resonancia. El grupo de simulaciones (observaciones) permitió el cálculo óptimo de la función analítica que representa la frecuencia de resonancia, en términos de los espesores normalizados de electrodos y piezoeléctrico con el error mínimo posible.

# 4.3.1 Modelo de contribuciones lineales.

Para el cálculo de este modelo se utilizó el método de mínimos cuadrados generalizados teniendo como observaciones el cuarteto formado por los tres valores de los espesores (electrodo superior, inferior y el del piezoeléctrico) y el valor de la frecuencia de resonancia simulada para dichos espesores. Los datos utilizados para el cálculo de los coeficientes  $\lambda_{i,j}$  son los mostrados en la Tabla 5.

| Material  | Densidad ( $kg/m^3$ ) | Módulo de Young (Pa) |
|-----------|-----------------------|----------------------|
| Aluminio  | 2700                  | 70 * 10 <sup>9</sup> |
| Molibdeno | 10200                 | $3.12 * 10^{11}$     |

Tabla 5 Propiedades físicas de los materiales, valores por defecto en COMSOL 5.3a.

$$f - f_0 = -D_e h_e - D_g h_g - D_p h_p \tag{4-3}$$

$$f - f_0 = -\sqrt{\frac{E_e}{\rho_e}} \frac{h_e}{\lambda_e} - \sqrt{\frac{E_g}{\rho_g}} \frac{h_g}{\lambda_g} - \sqrt{\frac{E_p}{\rho_p}} \frac{h_p}{\lambda_p} + O_f$$

$$4-4$$

El modelo de contribuciones lineales se plantea en la ecuación 4-3, y se pone de manera explícita en la ecuación 4-4, donde los subíndices e, g y p indican pertenencia a la contribución del electrodo superior, inferior y al espesor del piezoeléctrico utilizado respectivamente (sección 3.3.1).

Los valores de  $\lambda_e$ ,  $\lambda_g$ ,  $\lambda_p$  y  $O_f$  obtenidos a partir del grupo de simulaciones (sección 3.2), son mostrados en la Tabla 6 para el modelo de contribuciones lineales de un resonador piezoeléctrico con electrodos de aluminio y molibdeno; con estos valores se tiene que los modelos de la frecuencia de resonancia para los resonadores con electrodos de aluminio y molibdeno son los mostrados en las ecuaciones 4-5 y 4-6 respectivamente.

Tabla 6 Coeficientes para el modelo de contribuciones lineales de un resonador piezoeléctrico LWR.

| Coeficiente           | Electrodos de<br>Aluminio | Electrodos de<br>Molibdeno |
|-----------------------|---------------------------|----------------------------|
| $\lambda_e$           | 4.315 µm                  | 1.629 µm                   |
| $\lambda_g$           | 4.658 µm                  | 1.688 µm                   |
| $\lambda_p$           | 8.338 µm                  | 7.13 µm                    |
| <b>O</b> <sub>f</sub> | 0.195 GHz                 | 0.306 GHz                  |

$$f = 2.766 \ GHz - \sqrt{\frac{70*10^9}{2700}} \left(\frac{h_e}{4.315} + \frac{h_g}{4.658}\right) \frac{Hz}{10^{-6}} - \sqrt{\frac{3.45*10^{11}}{3260}} \frac{h_p}{8.338*10^{-6}} Hz$$
 4-5

$$f = 2.877 \ GHz - \sqrt{\frac{3.12*10^{11}}{10200}} \left(\frac{h_e}{1.629} + \frac{h_g}{1.688}\right) \frac{Hz}{10^{-6}} - \sqrt{\frac{3.45*10^{11}}{3260}} \frac{h_p}{7.13*10^{-6}} Hz$$
 4-6

En las Fig. 4-21 y 4-22 se muestra la frecuencia de resonancia calculada con los modelos en las ecuaciones 4-5 y 4-6, versus la frecuencia de resonancia dada por las simulaciones, si la estimación fuese perfecta, las figuras mencionadas deberían de ser líneas rectas con pendiente unitaria.

En las Fig. 4-23 y 4-24 se muestran los errores porcentuales del modelo respecto a las frecuencias de resonancia simuladas. Debido al comportamiento altamente no lineal en los rangos descritos en la sección 4.2.1, se tienen errores sobre las frecuencias de resonancia cercanas a la teórica, llegando incluso, a errores por encima del 100%. El error porcentual promedio del modelo para dispositivos con electrodos de aluminio fue del 14.24%, mientras que su desviación estándar fue de 0.18. El error porcentual promedio del modelo para los dispositivos con electrodos de molibdeno fue del 18.71%, mientras que su desviación estándar fue de 0.39.



Fig. 4-21 Frecuencia de resonancia calculada por la ecuación 4-5 versus frecuencia resonancia simulada. Electrodos de aluminio.



Fig. 4-22 Frecuencia de resonancia calculada por la ecuación 4-6 versus frecuencia mmresonancia simulada. Electrodos de olibdeno.



Fig. 4-23 Error porcentual (1/100) versus la frecuencia de resonancia simulada. Electrodos de aluminio.



Fig. 4-24 Error porcentual (1/100) versus la frecuencia de resonancia simulada. Electrodos de molibdeno.

Teniendo en cuenta que los errores obtenidos son significativamente altos, se limitó el modelo propuesto a aquel donde el error porcentual promedio respecto a la frecuencia de resonancia real sea de alrededor del 5%. Para lograrlo es necesario remover las frecuencias que se encuentran entre 2.365GHz y la frecuencia teórica de 2.571GHz, para el caso de los dispositivos con electrodos de aluminio, y las frecuencias que se encuentran entre 2.182GHz y la frecuencia teórica de 2.571GHz, para el caso de los dispositivos con electrodos de molibdeno. Lo anterior se traduce en una reducción del 8% del espectro frecuencial para el caso del aluminio, y del 18% para el caso del molibdeno.



Fig. 4-25 Error porcentual (1/100) versus la frecuencia de resonancia simulada. Electrodos de aluminio. Se retiró el 8% de frecuencias por debajo de la teórica.



Fig. 4-26 Error porcentual (1/100) versus la frecuencia de resonancia simulada. Electrodos de molibdeno. Se retiro el 18% de frecuencias por debajo de la teorica.

En las Fig. 4-25 y 4-26 se observa el error porcentual versus la frecuencia de resonancia de la simulación, luego de la remoción de las frecuencias cercanas a la teórica. El error porcentual obtenido luego de la reducción frecuencial para los resonadores con electrodos de aluminio es del 4.42%, mientras que para los resonadores con electrodos de molibdeno es de 5.13%, cada uno con una desviación estándar de 0.032 y 0.045 respectivamente. La comparativa de errores entre los diferentes modelos puede observarse en la Tabla 7.

Las ecuaciones que modelan el comportamiento de la frecuencia de resonancia, luego de la remoción de las frecuencias mencionadas para dispositivos con electrodos de aluminio y molibdeno son las ecuaciones 4-7 y 4-8 respectivamente, los coeficientes de estos modelos se encuentran en la Tabla 8.

$$f = 2.866 \ GHz - \sqrt{\frac{70 \times 10^9}{2700}} \left(\frac{h_e}{3.929} + \frac{h_g}{4.11}\right) \frac{Hz}{10^{-6}} - \sqrt{\frac{3.45 \times 10^{11}}{3260}} \frac{h_p}{7.492 \times 10^{-6}} Hz$$
 4-7

$$f = 2.683 \ GHz - \sqrt{\frac{3.12*10^{11}}{10200}} \left(\frac{h_e}{1.587} + \frac{h_g}{1.655}\right) \frac{Hz}{10^{-6}} - \sqrt{\frac{3.45*10^{11}}{3260}} \frac{h_p}{8.957*10^{-6}} Hz$$
 4-8

Tabla 7 Errores de los modelos de contribución lineales para la frecuencia de resonancia, luego de la remoción frecuencial.

| Material  | Error porcentual<br>promedio<br>Modelo lineal | Porcentaje de<br>frecuencias<br>removidas | Error porcentual<br>promedio Modelo<br>lineal luego de<br>remoción |
|-----------|-----------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|
| Aluminio  | 14.24%                                        | 8%                                        | 4.42%                                                              |
| Molibdeno | 18.71%                                        | 18%                                       | 5.13%                                                              |

Tabla 8 Coeficientes para el modelo de contribuciones lineales luego de remover las frecuencias cercanas a la teórica de resonancia para el aluminio y molibdeno.

| Coeficiente           | Electrodos de<br>Aluminio | Electrodos de<br>Molibdeno |
|-----------------------|---------------------------|----------------------------|
| $\lambda_e$           | 3.929 µm                  | 1.587 µm                   |
| $\lambda_{g}$         | 4.11 µm                   | 1.655 µm                   |
| $\lambda_p$           | 7.492 µm                  | 8.957 µm                   |
| <b>O</b> <sub>f</sub> | 0.295 GHz                 | 0.112 GHz                  |

#### 4.3.2 Modelo de contribuciones Generalizado.

Para el caso de la generalización del modelo, se escogió trabajar con uno de orden tres debido a que tanto los errores porcentuales presentados, como la complejidad computacional del modelo son bajos. Siguiendo el planteamiento de la sección 3.3.2, en las ecuaciones 4-9 y 4-10, se muestra el modelo de orden tres obtenido para los resonadores con electrodos de aluminio y molibdeno respectivamente, el valor de los coeficientes se muestra en la Tabla 9.

$$f = f_0 + O_{f-Al} - 5091 \sum_{j=1}^{3} \left( \frac{h_e^j}{\lambda_{e,j}} + \frac{h_g^j}{\lambda_{g,j}} \right) Hz - 10287 \sum_{j=1}^{3} \frac{h_p^j}{\lambda_{p,j}} Hz$$
 4-9

$$f = f_0 + O_{f-Mo} - 5530 \sum_{j=1}^3 \left( \frac{h_e^j}{\lambda_{e,j}} + \frac{h_g^j}{\lambda_{g,j}} \right) Hz - 10287 \sum_{j=1}^3 \frac{h_p^j}{\lambda_{p,j}} Hz$$
 4-10

| Tabla 9 Coeficientes del modelo generalizado de orden tres para la predicción | de la |
|-------------------------------------------------------------------------------|-------|
| frecuencia de resonancia, Ecuaciones 4-9 y 4-10.                              |       |

| Coeficiente           | Electrodos de<br>Aluminio | Electrodos de<br>Molibdeno |
|-----------------------|---------------------------|----------------------------|
| $\lambda_{e,1}$       | 3.122µm                   | 0.768µm                    |
| $\lambda_{e,2}$       | -3.825µm                  | -0.183µm                   |
| $\lambda_{e,3}$       | 5.54µm                    | 0.152µm                    |
| $\lambda_{g,1}$       | 6.105µm                   | 1.092µm                    |
| $\lambda_{g,2}$       | -3.825µm                  | -0.518µm                   |
| $\lambda_{g,3}$       | 1.325µm                   | 0.321µm                    |
| $\lambda_{p,1}$       | -20.05µm                  | -3.501µm                   |
| $\lambda_{p,2}$       | 2.730µm                   | 6.848 µm                   |
| $\lambda_{p,3}$       | -4.399µm                  | -828µm                     |
| <b>0</b> <sub>f</sub> | -19.26MHz                 | 0.702GHz                   |

El cálculo de los modelos mostrados arriba se realizó con el total de las simulaciones obteniendo errores porcentuales promedio de 5.1% y 5.05%, para los resonadores con electrodos de aluminio y molibdeno respectivamente. En las Fig. 4-27 y 4-28 se observan los errores porcentuales obtenidos respecto a las simulaciones usadas como observaciones, donde la

desviación estándar respecto al promedio fue de 0.07 y 0.08 para aluminio y molibdeno.



Fig. 4-27 Error porcentual (1/100) versus la frecuencia de resonancia simulada. Electrodos de aluminio, Modelo general de orden tres.



Fig. 4-28 Error porcentual (1/100) versus la frecuencia de resonancia simulada. Electrodos de molibdeno, Modelo general de orden tres.
#### 4.4 Validación del modelo de contribuciones.

El modelo planteado en la sección 3.3.2 es un modelo de contribuciones generalizado para la frecuencia de resonancia en términos de los parámetros de espesor de electrodos y piezoeléctrico, de allí se sigue que la validación frente a resultados de simulación se deba realizar con la metodología planteada en la sección 3.3.3.

La validación se basa en suponer que un diseñador de resonadores desea una frecuencia de resonancia específica, la cual es calculada mediante el modelo y al simularse, la frecuencia de resonancia obtenida debe coincidir con la calculada por el diseñador. Los valores de los parámetros utilizados para las simulaciones de validación se muestran en el anexo 6.3. Se tomaron un total de 401 simulaciones de validación tanto para resonadores con electrodos de aluminio, como con electrodos de molibdeno.

Los errores encontrados tras comparar la estimación usando los modelos hallados 4-5, 4-6, 4-7, 4-8, 4-9 y 4-10 con los resultados de simulación se muestran en la Tabla 10.

| Material  | Error porcentual<br>promedio<br>Modelo lineal<br>antes de<br>remoción | Porcentaje<br>de<br>frecuencias<br>removidas | Error porcentual<br>promedio Modelo<br>lineal luego de<br>remoción | Error porcentual<br>Promedio Modelo<br>De orden tres (No<br>remoción<br>frecuencial) |
|-----------|-----------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Aluminio  | 15.9%                                                                 | 8%                                           | 4.85%                                                              | 5.1%                                                                                 |
| Molibdeno | 19%                                                                   | 18%                                          | 5.85%                                                              | 5.05%                                                                                |

Tabla 10 Errores para los modelos de frecuencia de resonancia con electrodos de aluminio y molibdeno.

#### 4.4.1 Validación del modelo: Electrodos de Aluminio.

A partir de los parámetros de espesores en la sección 6.3 y usando el modelo 4-9, se calculó la frecuencia de resonancia del dispositivo y se validó frente a los resultados obtenidos de las 401 simulaciones de validación. Se obtuvo la Fig. 4-29 donde se muestra el error porcentual para cada frecuencia, obteniendo un promedio de 5.1% cumpliendo con la restricción mencionada en la sección 4.3.1.



Error porcentual para la validacion de Aluminio



#### 4.4.2 Validación del modelo: Electrodos de Molibdeno.

De manera análoga a la validación realizada para los resonadores con electrodos de aluminio, se realizaron simulaciones con los parámetros de espesor dados en la sección 6.3 para los resonadores con electrodos de molibdeno, de allí, se calculó la frecuencia de resonancia usando la ecuación 4-10. En la Fig. 4-30 se ve el error porcentual versus la frecuencia de resonancia simulada. El error porcentual promedio obtenido del modelo 4-10 fue de 5.01%, cumpliendo con la restricción de un error de alrededor del 5% mencionada en la sección 4.3.1.



Fig. 4-30 Error porcentual en la frecuencia de resonancia versus frecuencia de resonancia simulada. Datos de validación para electrodos de molibdeno. Modelo de orden tres.

## 5. Conclusiones y trabajo futuro.

Se analizó la dependencia de la frecuencia de resonancia, factor de calidad y el factor de acople electromecánico respecto a variaciones en los espesores normalizados de los electrodos y del piezoeléctrico. Se incluyó en las simulaciones un factor de perdidas dieléctricas y mecánicas isotrópico para acercar a la realidad el comportamiento del dispositivo, además, se construyó un modelo semiempírico para la predicción de la frecuencia de resonancia, este incluye los efectos de los electrodos y el espesor del piezoeléctrico siendo este el mayor aporte debido a que en la literatura no se reporta ningún estudio bajo estas características.

#### 5.1 Frecuencia de resonancia.

Se realizaron variaciones de los espesores de los electrodos y del piezoeléctrico, se observó que el comportamiento de la frecuencia de resonancia es siempre monotónicamente decreciente cuando se hace una translación de los espesores que producen la máxima frecuencia al origen del espacio solución.

La frecuencia de resonancia obtenida siempre será menor a la frecuencia de resonancia teórica, debido a que los electrodos tienen un espesor infinitesimal en dicho calculo, y según las observaciones experimentales, la frecuencia de resonancia es monotónicamente decreciente.

El comportamiento de la frecuencia de resonancia es no lineal cuando se tienen resonancias cercanas a la teórica, sin embargo, al alejarse un cierto porcentaje de la frecuencia teórica se obtiene un comportamiento altamente lineal, este alejamiento varía según el material de los electrodos: 8% o 18% de la frecuencia teórica para el aluminio o molibdeno respectivamente.

Las variaciones de la frecuencia de resonancia en función de los espesores del electrodo superior e inferior cumple con  $f_r(h_e, h_g) \cong f_r(h_g, h_e)$ , lo cual

permite que un modelo de contribuciones lineales, en términos de estos parámetros pueda dar como resultado errores bajos en las predicciones.

El modelo de contribuciones generalizado para el aluminio y el molibdeno obtenido se muestra en las ecuaciones 4-9 y 4-10 respectivamente, el valor de sus coeficientes se muestra en la Tabla 9.

$$f = f_0 + O_{f-Al} - 5091 \sum_{j=1}^3 \left( \frac{h_e^j}{\lambda_{e,j}} + \frac{h_g^j}{\lambda_{g,j}} \right) Hz - 10287 \sum_{j=1}^3 \frac{h_p^j}{\lambda_{p,j}} Hz$$
 4-9

$$f = f_0 + O_{f-Mo} - 5530 \sum_{j=1}^{3} \left( \frac{h_e^j}{\lambda_{e,j}} + \frac{h_g^j}{\lambda_{g,j}} \right) Hz - 10287 \sum_{j=1}^{3} \frac{h_p^j}{\lambda_{p,j}} Hz$$
 4-10

Para la validación se empleó la metodología descrita en la sección 3.3.3, los datos usados para las simulaciones son los mostrados en el anexo 6.3. Los errores porcentuales promedio obtenidos, para la validación de los resonadores con electrodos de aluminio y molibdeno fueron de 5.1% y 5.05% respectivamente.

Se debe destacar que, en todos los casos de los modelos calculados, se cumple que las longitudes de onda efectivas de la contribución de los electrodos son menores que la del espesor de piezoeléctrico, por lo cual, se concluye que, los espesores de electrodos tienen una mayor influencia sobre el cambio de la frecuencia de resonancia que el espesor del piezoeléctrico. Análogamente la longitud de onda efectiva para el electrodo superior fue siempre menor que para el electrodo inferior, por lo cual, el orden de dependencia de la frecuencia de resonancia de mayor a menor para estos tres parámetros es  $h_e$ ,  $h_g$  y  $h_p$ .

Debido a los porcentajes de remoción del espectro frecuencial de resonancia, se concluye que el molibdeno es el material que presenta la más alta no linealidad cerca a la frecuencia de resonancia teórica.

#### 5.2 Factor de acople electromecánico.

Al igual que la frecuencia de resonancia, el factor de acople electromecánico cumple que las variaciones de su valor dependen de manera isomorfa de los espesores de los electrodos, esto es  $k_{eff}^2(h_e, h_g) \cong k_{eff}^2(h_g, h_e)$ .

Los valores obtenidos para este factor en la literatura varían desde 0.1% hasta llegar al 7%, mientras que los datos obtenidos de las simulaciones van desde 0.02% hasta 5.32% para resonadores con electrodos de aluminio, y 0.4% hasta 7.1% para resonadores con electrodos de molibdeno. En las simulaciones realizadas, en general, los rangos de este factor son cercanos a los reportados en la literatura de simulaciones y experimentos, pero un poco más bajos debido a las perdidas isotrópicas mecánicas y dieléctricas incluidas en las simulaciones.

Al observar el comportamiento del factor de acople en función del espesor del piezoeléctrico, se deduce que tiene un comportamiento funcional marcado, en general los resonadores con electrodos de molibdeno y aluminio, tienen un factor de acople creciente hasta llegar al máximo y luego monotónicamente decreciente en función del espesor del piezoeléctrico.

#### 5.3 Factor de Calidad.

En general, de acuerdo a los resultados obtenidos, el factor de calidad no sigue un patrón funcional definido para ninguno de los tres parámetros analizados (espesor de piezoeléctrico y de electrodo superior e inferior). Sin embargo, sí es clave que las contribuciones realizadas por los espesores de los electrodos a este factor son isomorfas en términos funcionales, esto es:  $Q_s(h_e, h_g) \cong$  $Q_s(h_g, h_e)$ .

Desde la literatura el rango de factores de calidad para dispositivos con características geométricas dentro de los rangos simulados, van desde 1100 hasta 4500, sin embargo, para las simulaciones de resonadores con electrodos de aluminio se obtuvo un factor de calidad mínimo de 1024 y un

máximo de 2950, y para las simulaciones de resonadores con electrodos de molibdeno se obtuvo un factor de calidad mínimo de 693 y un máximo de 3593. De lo anterior puede notarse que los rangos de valores obtenidos son inferiores a los reportados en la literatura, esto es atribuido a las perdidas isotrópicas dieléctricas y mecánicas incluidas en las simulaciones, debido a que el factor de calidad es la razón entre la energía máxima almacenada por ciclo y la energía disipada por ciclo, de allí, si su valor baja, puede entenderse como perdidas por absorción (disipación) en el material.

#### 5.4 Trabajo Futuro.

Se hace necesario comprobar la viabilidad del modelo predictivo para la frecuencia de resonancia experimentalmente, por ello, se debe de realizar un número suficiente de fabricaciones para caracterizar el comportamiento dentro y fuera de los intervalos de linealidad y no linealidad para la frecuencia de resonancia.

Es fundamental realizar el estudio análogo al realizado para la frecuencia de resonancia, pero enfocado al comportamiento de la impedancia mecánica de resonancia (sección 2.1.13), ya que esta es la impedancia que posee el dispositivo en la frecuencia de resonancia, así, si se desea, se podría establecer un acople de impedancias casi ideal desde el proceso de fabricación entre el dispositivo y su circuito de control.

## 6. Anexos.

6.1 Diseño de la simulación base sobre COMSOL

Multiphysics®.

El simulador utilizado es COMSOL Multiphysics® 5.3a y los pasos para reproducir los resultados de simulación que se presentan en este trabajo son los siguientes:

a) Definición del tipo de simulación:

Se debe crear un proyecto nuevo en el software, y se seleccionar geometría 2D, la física seleccionada son Dispositivos piezoeléctricos y el estudio es Dominio de la frecuencia.

 b) Se deben agregar los siguientes parámetros en la sección de parámetros de "Definiciones Globales":

| р      | 2E-6       | 2E-6   | Pitch del resonador              |
|--------|------------|--------|----------------------------------|
| lda    | 2*p        | 4E-6   | Longitud de onda del resonador   |
| he_lda | 0.05       | 0.05   | Relacion he/Ida                  |
| hp_lda | 0.35       | 0.35   | Relacion hp/Ida                  |
| hg_lda | 0.05       | 0.05   | Relacion hg/lda                  |
| he     | he_lda*lda | 2E-7   | Espesor de electrodos superiores |
| hp     | hp_lda*lda | 1.4E-6 | Espesor del piezo electrico      |
| hg     | hg_lda*lda | 2E-7   | Espesor del electroddo inferior  |
| w      | Ida        | 4E-6   | Ancho de la unidad base          |
| L      | 2E-3       | 0.002  | Longitud del resonador           |

c) Definición de la geometría

Se deben crear los elementos geométricos mencionados a continuación.

| #<br>Elemento | Tipo<br>Elemento | Obj.<br>Entrada | Desplaza-<br>miento | Ancho | Altura   | Base X  | Base Y    |
|---------------|------------------|-----------------|---------------------|-------|----------|---------|-----------|
| 1             | Rectángulo       | N/A             | N/A                 | w     | hp       | 0       | -hp       |
| 2             | Rectángulo       | N/A             | N/A                 | lda   | lda/2+hp | 0       | -hp-lda/4 |
| 3             | Rectángulo       | N/A             | N/A                 | p/2   | he       | lda/8   | 0         |
| 4             | Copiar           | Rectángulo<br>3 | Х=р                 | N/A   | N/A      | N/A     | N/A       |
| 5             | Rectángulo       | N/A             | N/A                 | p/2   | hg       | 5*lda/8 | -hp-hg    |
| 6             | Copiar           | Rectángulo<br>5 | X=-Ida/2            | N/A   | N/A      | N/A     | N/A       |

d) Definición de elementos:

Se debe incluir un nuevo material en la biblioteca, por lo cual se debe ir a la sección de Componente 1->Materiales y dar click derecho "Agregar un material desde la biblioteca". Se debe de buscar cualquier material piezoeléctrico anisótropo y darle click derecho "Agregar al modelo".

Posteriormente se debe de ir a la Forma Tensión-Carga y allí cambiar la Matriz de elasticidad, Matriz de acoplamiento y la de permitividades relativas por los valores mencionados en la sección 2.1.14. Adicionalmente se debe cambiar la densidad del material en el mismo menú.

Desde la biblioteca de material se deben agregar el aire y los materiales de los electrodos.

Se debe seleccionar para el material piezoeléctrico el dominio 2, y para los electrodos 4, 5, 6 y 7 mientras que al aire le pertenecen los dominios 1 y 3.

e) Definición de condiciones de frontera e iniciales del sistema:

-En la sección de mecánica de solidos se debe incluir todo el dispositivo.
-En material elástico lineal deben aparecen todos a excepción del piezoeléctrico (Dominio 2).

-Valores iniciales por defecto (deberán estar en ceros).

-En materiales piezoeléctricos se debe seleccionar solo el dominio 2 y verificar que el sistema de coordenadas sea "Material en sistema planar XZ". Allí mismo se debe dar click derecho y agregar perdidas dieléctricas y mecánicas isotrópicas de 0.005 y 0.0005 respectivamente.

-Se debe agregar una condición de frontera periódicas y seleccionar las aristas: 1, 3, 5, 28, 29 y 40.

-En la sección de electroestática se debe verificar que solo los dominios 1, 2 y 3 se encuentren seleccionados, y en la sección de grosor se debe poner L.

-En la sección de Valores iniciales se debe poner 0V

-En la conservación de la carga eléctrica, piezoeléctrica se debe verificar que solo este el dominio 2.

-Se debe incluir una condición de frontera tipo Tierra y añadir las aristas 11, 12, 13, 16, 18, 19, 20 y 24.

-Agregar una condición de tipo terminar superficial y seleccionar terminal de voltaje con amplitud unitaria.

-Análogamente a la condición periódica de mecánica de solidos se selecciona la misma y con los mismos parámetros para la física de electroestática.

e) Mallado:

Se eligió trabajar por mallado automáticamente construido por el software, por lo cual se debe de selección "Malla 1" y escoger el tipo de secuencia como "Malla controlada por la física" de un tamaño normal.

- f) Se debe seleccionar el paso de dominio en frecuencia y agregar el valor de las frecuencias a analizar con la siguiente instrucción "range(120000000,1000000,2.9e9)".
- g) Se debe dar click derecho sobre el estudio 1 e dejar que el cálculo termine.

6.2 Ejemplo de obtención del sistema de ecuaciones diferenciales para el fenómeno piezoeléctrico para un material hexagonal.

Supongamos un material piezoeléctrico cristalino con celda unitaria de tipo hexagonal, puede demostrarse que su matriz de elasticidad C es de la forma:

$$C = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0\\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0\\ C_{13} & C_{12} & C_{33} & 0 & 0 & 0\\ 0 & 0 & 0 & C_{44} & 0 & 0\\ 0 & 0 & 0 & 0 & C_{44} & 0\\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}$$
(1)

Además, su matriz de acople debe ser como se muestra a continuación:

$$e = \begin{bmatrix} 0 & 0 & e_{31} \\ 0 & 0 & e_{31} \\ 0 & 0 & e_{33} \\ 0 & e_{15} & 0 \\ e_{15} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(2)

Ahora, demos por entendido que el comportamiento del campo eléctrico es anisótropico de forma axial, así su matriz de permitividades relativas es:

$$\varepsilon = \begin{bmatrix} \varepsilon_{11} & 0 & 0\\ 0 & \varepsilon_{11} & 0\\ 0 & 0 & \varepsilon_{33} \end{bmatrix}$$
(3)

Supongamos un sistema de coordenadas generalizado  $x_1, x_2 y x_3$  donde los desplazamientos en dichas coordenadas son  $u_1$ ,  $u_2$  y  $u_3$  así se tendrá entonces, que las ecuaciones constitutivas del efecto piezoeléctrico son las siguientes:

$$\begin{bmatrix} T_{11} \\ T_{22} \\ T_{33} \\ T_{23} \\ T_{31} \\ T_{12} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{13} & C_{12} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} e_{11} \\ e_{22} \\ e_{33} \\ e_{31} \\ e_{12} \end{bmatrix} - \begin{bmatrix} 0 & 0 & \epsilon_{33} \\ 0 & \epsilon_{15} & 0 \\ \epsilon_{15} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$$

$$\begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & \epsilon_{15} & 0 \\ 0 & 0 & 0 & \epsilon_{15} & 0 & 0 \\ \epsilon_{31} & \epsilon_{31} & \epsilon_{33} & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} e_{11} \\ e_{22} \\ e_{33} \\ e_{31} \\ e_{23} \\ e_{31} \\ e_{12} \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} & 0 & 0 \\ 0 & \varepsilon_{13} \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$$

$$(4)$$

Donde  $T_{ij}$  en coordenadas generalizadas representa la fuerza aplicada en dirección i por unidad de área en el plano cuyo vector normal va en dirección j, y  $e_{ij}$  son las proyecciones de las deformaciones en dirección i sobre la dirección j y se calculan de la forma mostrada en la ecuación (5),  $E_i$  es la magnitud del campo eléctrico en dirección i y  $D_i$  es la magnitud del vector desplazamiento en dirección i.

$$e_{ij} = \begin{cases} \frac{du_i}{dx_j}, i = j\\ \frac{du_i}{dx_j} + \frac{du_j}{dx_i}, i \neq j \end{cases}$$
(5)

Para describir el comportamiento armónico de un sistema físico es necesario utilizar la ecuación general de ondas propuesta por D'alambert la cual es mostrada en (6), donde U es la magnitud física de interés para el análisis armónico. Se puede demostrar físicamente que la ecuación (6) aplicada al efecto piezoeléctrico en las coordenadas generalizadas  $x_1, x_2 y x_3$  para el análisis ondulatorio sobre las ondas mecánicas ( $u_1, u_2 y u_3$ ), da como resultado el sistema de ecuaciones en derivadas parciales planteado en (7).

$$\frac{\partial^2 U}{\partial t^2} = c^2 \nabla^2 U \quad (6)$$

$$\rho \frac{\partial^2 u_1}{\partial t^2} = \frac{\partial T_{11}}{\partial x_1} + \frac{\partial T_{12}}{\partial x_2} + \frac{\partial T_{31}}{\partial x_3}$$
$$\rho \frac{\partial^2 u_2}{\partial t^2} = \frac{\partial T_{12}}{\partial x_1} + \frac{\partial T_{22}}{\partial x_2} + \frac{\partial T_{23}}{\partial x_3} \quad (7)$$
$$\rho \frac{\partial^2 u_3}{\partial t^2} = \frac{\partial T_{11}}{\partial x_1} + \frac{\partial T_{21}}{\partial x_2} + \frac{\partial T_{33}}{\partial x_3}$$

Así pues, si se desea hallar el sistema de ecuaciones en derivadas parciales que defina el comportamiento mecánico con un enfoque armónico, sobre un material piezoeléctrico hexagonal se deben resolver las ecuaciones matriciales (4) y reemplazar sus valores en el sistema de ecuaciones plateado en (7).

Para resolver el sistema de ecuaciones matriciales planteado en (4) empecemos por evaluar las proyecciones de las deformaciones así:

$$\begin{bmatrix} e_{11} \\ e_{22} \\ e_{33} \\ e_{23} \\ e_{31} \\ e_{12} \end{bmatrix} = \begin{bmatrix} \frac{du_1}{dx_1} \\ \frac{du_2}{dx_2} \\ \frac{du_3}{dx_3} \\ \frac{du_3}{dx_3} \\ \frac{du_2}{dx_3} + \frac{du_3}{dx_2} \\ \frac{du_3}{dx_1} + \frac{du_1}{dx_3} \\ \frac{du_1}{dx_2} + \frac{du_2}{dx_1} \end{bmatrix}$$
(8)

Ahora al evaluar las tensiones producto de las deformaciones se tendrá que:

$$\begin{bmatrix} T_{11} \\ T_{22} \\ T_{33} \\ T_{23} \\ T_{31} \\ T_{12} \end{bmatrix} = \begin{bmatrix} C_{11}e_{11} + C_{12}e_{22} + C_{13}e_{33} - \epsilon_{31}E_3 \\ C_{12}e_{11} + C_{11}e_{22} + C_{12}e_{33} - \epsilon_{31}E_3 \\ C_{13}e_{11} + C_{12}e_{22} + C_{33}e_{33} - \epsilon_{33}E_3 \\ C_{44}e_{23} - \epsilon_{15}E_2 \\ C_{44}e_{31} - \epsilon_{15}E_2 \\ C_{66}e_{12} \end{bmatrix}$$
(9)

Donde al reemplazar los valores de  $e_{ij}$  según las igualdades mostradas en (8) se obtiene:

$$\begin{bmatrix} T_{11} \\ T_{22} \\ T_{33} \\ T_{23} \\ T_{12} \end{bmatrix} = \begin{bmatrix} C_{11} \frac{du_1}{dx_1} + C_{12} \frac{du_2}{dx_2} + C_{13} \frac{du_3}{dx_3} - \epsilon_{31} E_3 \\ C_{12} \frac{du_1}{dx_1} + C_{11} \frac{du_2}{dx_2} + C_{12} \frac{du_3}{dx_3} - \epsilon_{31} E_3 \\ C_{13} \frac{du_1}{dx_1} + C_{12} \frac{du_2}{dx_2} + C_{33} \frac{du_3}{dx_3} - \epsilon_{33} E_3 \\ C_{44} \left( \frac{du_2}{dx_3} + \frac{du_3}{dx_2} \right) - \epsilon_{15} E_2 \\ C_{44} \left( \frac{du_3}{dx_1} + \frac{du_1}{dx_3} \right) - \epsilon_{15} E_2 \\ C_{66} \left( \frac{du_1}{dx_2} + \frac{du_2}{dx_1} \right) \end{bmatrix}$$
(10)

Ahora, el sistema de ecuaciones diferenciales en derivadas parciales que modela el efecto piezoeléctrico para un material hexagonal se obtiene reemplazando los valores de (10) en (7) dando como resultado después de una simplificación básica las ecuaciones (11), (12) y (13).

$$\rho \frac{\partial^2 u_1}{\partial t^2} = C_{11} \frac{\partial^2 u_1}{\partial x_1^2} + C_{12} \frac{\partial^2 u_2}{\partial x_1 \partial x_2} + C_{13} \frac{\partial^2 u_3}{\partial x_1 \partial x_3} + C_{44} \left( \frac{\partial^2 u_1}{\partial x_3^2} + \frac{\partial^2 u_1}{\partial x_1 \partial x_3} \right) + C_{66} \left( \frac{\partial^2 u_1}{\partial x_2^2} + \frac{\partial^2 u_2}{\partial x_1 \partial x_2} \right) - \left( \epsilon_{31} \frac{\partial E_3}{\partial x_1} + \epsilon_{15} \frac{\partial E_1}{\partial x_1} \right)$$
(11)  
$$\rho \frac{\partial^2 u_2}{\partial t^2} = C_{11} \frac{\partial^2 u_2}{\partial x_2^2} + C_{12} \left( \frac{\partial^2 u_1}{\partial x_1 \partial x_2} + \frac{\partial^2 u_3}{\partial x_2 \partial x_3} \right) + C_{44} \left( \frac{\partial^2 u_2}{\partial x_3^2} + \frac{\partial^2 u_3}{\partial x_2 \partial x_3} \right) + C_{66} \left( \frac{\partial^2 u_2}{\partial x_1^2} + \frac{\partial^2 u_1}{\partial x_1 \partial x_2} \right) - \left( \epsilon_{31} \frac{\partial E_3}{\partial x_2} + \epsilon_{15} \frac{\partial E_2}{\partial x_3} \right)$$
(12)

$$\rho \frac{\partial^2 u_3}{\partial t^2} = C_{13} \frac{\partial^2 u_1}{\partial x_1 \partial x_3} + C_{12} \frac{\partial^2 u_2}{\partial x_2 \partial x_3} + C_{33} \frac{\partial^2 u_3}{\partial x_3^2} + C_{44} \left( \frac{\partial^2 u_3}{\partial x_1^2} + \frac{\partial^2 u_3}{\partial x_2^2} + \frac{\partial^2 u_1}{\partial x_1 \partial x_3} + \frac{\partial^2 u_2}{\partial x_2 \partial x_3} \right) - \epsilon_{15} \left( \frac{\partial E_1}{\partial x_1} + \frac{\partial E_2}{\partial x_2} \right)$$
(13)

Ahora, para completar el sistema de ecuaciones se debe resolver la segunda ecuación planteada en (4) obteniendo (14), (15) y (16).

$$D_{1} = \epsilon_{15} \left( \frac{du_{3}}{dx_{1}} + \frac{du_{1}}{dx_{3}} \right) + \epsilon_{11} E_{1} \quad (14)$$
$$D_{2} = \epsilon_{15} \left( \frac{du_{2}}{dx_{3}} + \frac{du_{3}}{dx_{2}} \right) + \epsilon_{11} E_{2} \quad (15)$$
$$D_{3} = \epsilon_{31} \frac{du_{1}}{dx_{1}} + \epsilon_{31} \frac{du_{2}}{dx_{2}} + \epsilon_{33} \frac{du_{3}}{dx_{3}} + \epsilon_{33} E_{3} \quad (16)$$

Así pues, para realizar un estudio armónico del efecto piezoeléctrico sobre un material hexagonal con anisotropía dieléctrica en dirección  $x_3$  se debe resolver el sistema de ecuaciones diferenciales en derivadas parciales compuesto por las ecuaciones (11) a (16).

6.3 Valores de los espesores utilizados para las simulaciones

de validación.

Parámetros de espesor para las validaciones con electrodos de aluminio.

| SIM. # | HE      | HG     | HP      | SIM. # | HE      | HG      | HP      |
|--------|---------|--------|---------|--------|---------|---------|---------|
| 1      | 0.07833 | 0.0135 | 0.70045 | 36     | 0.07911 | 0.03102 | 0.13235 |
| 2      | 0.08652 | 0.0589 | 0.14932 | 37     | 0.06754 | 0.06546 | 0.41478 |
| 3      | 0.01643 | 0.0474 | 0.15574 | 38     | 0.03354 | 0.06756 | 0.14436 |
| 4      | 0.0872  | 0.0676 | 0.62665 | 39     | 0.09052 | 0.01112 | 0.15106 |
| 5      | 0.06191 | 0.068  | 0.34593 | 40     | 0.0081  | 0.02793 | 0.75599 |
| 6      | 0.01378 | 0.0625 | 0.63843 | 41     | 0.04449 | 0.02516 | 0.31241 |
| 7      | 0.03007 | 0.008  | 0.72422 | 42     | 0.03934 | 0.06511 | 0.59318 |
| 8      | 0.05422 | 0.0112 | 0.57487 | 43     | 0.0739  | 0.081   | 0.91798 |
| 9      | 0.09118 | 0.0338 | 0.71603 | 44     | 0.07657 | 0.036   | 0.43924 |
| 10     | 0.09184 | 0.0528 | 0.26134 | 45     | 0.02182 | 0.07525 | 0.67528 |
| 11     | 0.01919 | 0.0639 | 0.71146 | 46     | 0.04908 | 0.06578 | 0.73229 |
| 12     | 0.09235 | 0.0417 | 0.92354 | 47     | 0.0451  | 0.0056  | 0.43938 |
| 13     | 0.09115 | 0.0788 | 0.83024 | 48     | 0.06317 | 0.0592  | 0.63995 |
| 14     | 0.04868 | 0.0697 | 0.12761 | 49     | 0.06884 | 0.03981 | 0.14878 |
| 15     | 0.07703 | 0.0922 | 0.37979 | 50     | 0.07292 | 0.08744 | 0.89038 |
| 16     | 0.01777 | 0.0528 | 0.38228 | 51     | 0.02984 | 0.0051  | 0.21871 |
| 17     | 0.04296 | 0.0343 | 0.66653 | 52     | 0.06617 | 0.04662 | 0.28956 |
| 18     | 0.08742 | 0.0145 | 0.58815 | 53     | 0.06396 | 0.04319 | 0.76805 |
| 19     | 0.0763  | 0.06   | 0.76043 | 54     | 0.01964 | 0.04648 | 0.48884 |
| 20     | 0.09135 | 0.0751 | 0.38089 | 55     | 0.01571 | 0.07431 | 0.74206 |
| 21     | 0.06402 | 0.0431 | 0.23543 | 56     | 0.04985 | 0.03402 | 0.40641 |
| 22     | 0.00821 | 0.0132 | 0.128   | 57     | 0.09138 | 0.07563 | 0.29564 |
| 23     | 0.08142 | 0.029  | 0.74474 | 58     | 0.03564 | 0.04742 | 0.08351 |
| 24     | 0.08906 | 0.0188 | 0.23511 | 59     | 0.05767 | 0.00822 | 0.65597 |
| 25     | 0.06609 | 0.0303 | 0.39944 | 60     | 0.02514 | 0.02083 | 0.43661 |
| 26     | 0.0732  | 0.0446 | 0.5466  | 61     | 0.07261 | 0.06996 | 0.45657 |
| 27     | 0.07188 | 0.0524 | 0.25606 | 62     | 0.02796 | 0.04761 | 0.59887 |
| 28     | 0.0403  | 0.0462 | 0.62775 | 63     | 0.05054 | 0.01875 | 0.10346 |
| 29     | 0.06399 | 0.0838 | 0.48603 | 64     | 0.06792 | 0.0357  | 0.33423 |
| 30     | 0.02041 | 0.0516 | 0.18666 | 65     | 0.08518 | 0.05967 | 0.74545 |
| 31     | 0.06854 | 0.0899 | 0.75374 | 66     | 0.09134 | 0.02226 | 0.67679 |
| 32     | 0.00787 | 0.0624 | 0.14055 | 67     | 0.05425 | 0.07146 | 0.1628  |
| 33     | 0.02992 | 0.0912 | 0.31466 | 68     | 0.01748 | 0.02686 | 0.16714 |
| 34     | 0.00916 | 0.0267 | 0.26364 | 69     | 0.01844 | 0.08757 | 0.13312 |
| 35     | 0.01374 | 0.0659 | 0.52779 | 70     | 0.02818 | 0.02922 | 0.05704 |

| SIM. # | Не       | Hg     | Нр      | Sim. # | Не       | Hg      | Нр       |
|--------|----------|--------|---------|--------|----------|---------|----------|
| 71     | 0.08067  | 0.0739 | 0.4308  | 113    | 0.02561  | 0.06989 | 0.834    |
| 72     | 0.02789  | 0.022  | 0.64002 | 114    | 0.0872   | 0.05203 | 0.3657   |
| 73     | 0.07829  | 0.0309 | 0.70063 | 115    | 0.01871  | 0.09443 | 0.66698  |
| 74     | 0.02692  | 0.0132 | 0.52809 | 116    | 0.07932  | 0.02468 | 0.31473  |
| 75     | 0.08863  | 0.0569 | 0.14794 | 117    | 0.05345  | 0.01452 | 0.52757  |
| 76     | 0.0365   | 0.0665 | 0.61859 | 118    | 0.09465  | 0.01487 | 0.79918  |
| 77     | 0.02269  | 0.0542 | 0.16385 | 119    | 0.01204  | 0.01072 | 0.58774  |
| 78     | 0.0276   | 0.0433 | 0.17087 | 120    | 0.04484  | 0.04141 | 0.35178  |
| 79     | 0.06044  | 0.063  | 0 13873 | 121    | 0.0146   | 0.04535 | 0 3193   |
| 80     | 0.0476   | 0.0633 | 0 17782 | 122    | 0.09157  | 0.03792 | 0.015733 |
| 00     | 0.0470   | 0.0055 | 0.17702 | 122    | 0.005137 | 0.03732 | 0.42029  |
| 01     | 0.03003  | 0.0001 | 0.20143 | 123    | 0.00342  | 0.07372 | 0.43036  |
| 82     | 0.07978  | 0.0622 | 0.22002 | 124    | 0.07474  | 0.00151 | 0.37305  |
| 83     | 0.05767  | 0.0901 | 0.335/3 | 125    | 0.07856  | 0.07448 | 0.55249  |
| 84     | 0.05448  | 0.0238 | 0.33479 | 126    | 0.08318  | 0.08896 | 0.71829  |
| 85     | 0.08755  | 0.0688 | 0.24581 | 127    | 0.0126   | 0.09255 | 0.4319   |
| 86     | 0.03073  | 0.0263 | 0.27594 | 128    | 0.04098  | 0.02228 | 0.43642  |
| 87     | 0.07315  | 0.0157 | 0.85363 | 129    | 0.02839  | 0.0175  | 0.16239  |
| 88     | 0.07284  | 0.0597 | 0.6829  | 130    | 0.07701  | 0.06766 | 0.07199  |
| 89     | 0.03924  | 0.0455 | 0.55016 | 131    | 0.04383  | 0.01344 | 0.31117  |
| 90     | 0.0561   | 0.0463 | 0.21599 | 132    | 0.08696  | 0.05229 | 0.33577  |
| 91     | 0.01183  | 0.0646 | 0.24083 | 133    | 0.02137  | 0.05273 | 0.63832  |
| 92     | 0.00986  | 0.0743 | 0.11961 | 134    | 0.02874  | 0.0825  | 0.91124  |
| 93     | 0.05277  | 0.0365 | 0.87242 | 135    | 0.0181   | 0.04864 | 0.89216  |
| 94     | 0.07513  | 0.0646 | 0.68604 | 136    | 0.01725  | 0.04041 | 0.4621   |
| 95     | 0.08906  | 0.0425 | 0.55201 | 137    | 0.08324  | 0.06543 | 0.26643  |
| 96     | 0.01669  | 0.0808 | 0.33209 | 138    | 0.05717  | 0.07171 | 0.73751  |
| 97     | 0.05619  | 0.08   | 0.19958 | 139    | 0.05449  | 0.05181 | 0.73339  |
| 99     | 0.004723 | 0.0201 | 0.01023 | 1/1    | 0.021005 | 0.03025 | 0 71032  |
| 100    | 0.00007  | 0.0002 | 0.33314 | 142    | 0.06000  | 0.0105  | 0.14522  |
| 100    | 0.05554  | 0.0574 | 0.20333 | 142    | 0.00099  | 0.03773 | 0.14555  |
| 101    | 0.0196   | 0.0537 | 0.28201 | 143    | 0.03659  | 0.02859 | 0.6634   |
| 102    | 0.07649  | 0.0833 | 0.40712 | 144    | 0.05119  | 0.009   | 0.46693  |
| 104    | 0.05257  | 0.0336 | 0.66569 | 146    | 0.01184  | 0.02685 | 0 13867  |
| 105    | 0.03237  | 0.0350 | 0.00505 | 140    | 0.01104  | 0.02003 | 0.70122  |
| 105    | 0.01991  | 0.0157 | 0.41215 | 147    | 0.02059  | 0.04462 | 0.79122  |
| 106    | 0.05918  | 0.0896 | 0.93455 | 148    | 0.0161   | 0.0669  | 0.20751  |
| 107    | 0.02867  | 0.0631 | 0.41197 | 149    | 0.02155  | 0.03733 | 0.19721  |
| 108    | 0.06387  | 0.0482 | 0.6086  | 150    | 0.0266   | 0.07127 | 0.64939  |
| 109    | 0.00703  | 0.0023 | 0.10033 | 151    | 0.04255  | 0.04032 | 0.03495  |
| 110    | 0.07233  | 0.054  | 0.39321 | 152    | 0.00947  | 0.06651 | 0.5149   |
| 111    | 0.04555  | 0.0633 | 0.19502 | 153    | 0.08624  | 0.06836 | 0.68243  |
| 112    | 0.01254  | 0.054  | 0.7323  | 154    | 0.09003  | 0.04481 | 0.18823  |

| SIM. # | He      | Hg     | Нр      | Sim. # | He      | Hg      | Нр      |
|--------|---------|--------|---------|--------|---------|---------|---------|
| 155    | 0.04918 | 0.0068 | 0.90811 | 197    | 0.05077 | 0.04955 | 0.10402 |
| 156    | 0.04903 | 0.0348 | 0.5368  | 198    | 0.05097 | 0.01829 | 0.83007 |
| 157    | 0.0354  | 0.0432 | 0.66176 | 199    | 0.07859 | 0.00995 | 0.61807 |
| 158    | 0.08601 | 0.0293 | 0.08291 | 200    | 0.07654 | 0.08156 | 0.36957 |
| 159    | 0.03823 | 0.0227 | 0.77828 | 201    | 0.06299 | 0.05545 | 0.9473  |
| 160    | 0.01501 | 0.079  | 0.72376 | 202    | 0.03908 | 0.08867 | 0.25175 |
| 161    | 0.07522 | 0.0437 | 0.15817 | 203    | 0.07804 | 0.0677  | 0.63721 |
| 162    | 0.04008 | 0.0849 | 0.52254 | 204    | 0.05295 | 0.05745 | 0.59449 |
| 163    | 0.02675 | 0.0402 | 0.34325 | 205    | 0.03657 | 0.07839 | 0.39852 |
| 164    | 0.04135 | 0.0742 | 0.5418  | 206    | 0.08951 | 0.08411 | 0.17797 |
| 165    | 0.01368 | 0.0407 | 0.40899 | 207    | 0.08384 | 0.094   | 0.07262 |
| 166    | 0.01688 | 0.0778 | 0.42358 | 208    | 0.05451 | 0.00505 | 0.429   |
| 167    | 0.08979 | 0.073  | 0.21266 | 209    | 0.06102 | 0.08289 | 0.21569 |
| 168    | 0.09105 | 0.039  | 0.27985 | 210    | 0.05783 | 0.06013 | 0.7032  |
| 169    | 0.05677 | 0.0244 | 0.06848 | 211    | 0.0237  | 0.0941  | 0.38333 |
| 170    | 0.01038 | 0.0761 | 0.88131 | 212    | 0.03211 | 0.05249 | 0.8074  |
| 171    | 0.02613 | 0.0904 | 0.63833 | 213    | 0.04738 | 0.04816 | 0.71081 |
| 172    | 0.03678 | 0.0345 | 0.88935 | 214    | 0.02574 | 0.07712 | 0.56392 |
| 173    | 0.07891 | 0.0654 | 0.19716 | 215    | 0.08099 | 0.02551 | 0.20917 |
| 174    | 0.00639 | 0.0445 | 0.87899 | 216    | 0.02253 | 0.04983 | 0.91165 |
| 175    | 0.00887 | 0.08   | 0.76519 | 217    | 0.02533 | 0.08608 | 0.28879 |
| 176    | 0.02021 | 0.0742 | 0.56965 | 218    | 0.02036 | 0.05672 | 0.88212 |
| 177    | 0.06342 | 0.0201 | 0.44603 | 219    | 0.02549 | 0.08107 | 0.25139 |
| 178    | 0.07086 | 0.0826 | 0.28185 | 220    | 0.04421 | 0.07148 | 0.38621 |
| 179    | 0.0633  | 0.0941 | 0.72675 | 221    | 0.033   | 0.05774 | 0.12875 |
| 180    | 0.04558 | 0.0513 | 0.2558  | 222    | 0.0881  | 0.02721 | 0.6261  |
| 181    | 0.05423 | 0.0846 | 0.10777 | 223    | 0.04372 | 0.06498 | 0.21256 |
| 182    | 0.03167 | 0.0579 | 0.7406  | 224    | 0.02163 | 0.01251 | 0.09055 |
| 183    | 0.07202 | 0.0189 | 0.65408 | 225    | 0.08644 | 0.06134 | 0.70086 |
| 184    | 0.02201 | 0.023  | 0.69369 | 226    | 0.09318 | 0.06449 | 0.36269 |
| 185    | 0.06681 | 0.0416 | 0.62785 | 227    | 0.0445  | 0.07068 | 0.64456 |
| 186    | 0.02152 | 0.0724 | 0.42/14 | 228    | 0.015   | 0.08517 | 0.39548 |
| 18/    | 0.03816 | 0.0793 | 0.40169 | 229    | 0.02823 | 0.09341 | 0.61461 |
| 188    | 0.06131 | 0.0761 | 0.78453 | 230    | 0.04179 | 0.07421 | 0.06949 |
| 189    | 0.07522 | 0.0337 | 0.33569 | 231    | 0.05854 |         | 0.86951 |
| 190    | 0.0125  | 0.0551 | 0.76509 | 252    | 0.0200  | 0.06655 | 0.7705  |
| 191    | 0.08805 | 0.0131 | 0.76017 | 233    | 0.05920 | 0.05721 | 0.72120 |
| 193    | 0.04881 | 0.0173 | 0.50507 | 234    | 0.02496 | 0.01588 | 0.39498 |
| 194    | 0.04423 | 0.0661 | 0.6221  | 236    | 0.01557 | 0.08264 | 0.60555 |
| 195    | 0.04521 | 0.0496 | 0.9058  | 237    | 0.0317  | 0.04859 | 0.56795 |
| 196    | 0.03257 | 0.0221 | 0.44957 | 238    | 0.03369 | 0.08104 | 0.52705 |

| SIM. # | He      | Hg     | Нр      | Sim. #     | He      | Hg      | Нр      |
|--------|---------|--------|---------|------------|---------|---------|---------|
| 239    | 0.04318 | 0.0238 | 0.29756 | 281        | 0.00775 | 0.01071 | 0.72547 |
| 240    | 0.05071 | 0.0547 | 0.27377 | 282        | 0.07197 | 0.08244 | 0.57518 |
| 241    | 0.0127  | 0.0617 | 0.45647 | 283        | 0.05    | 0.0891  | 0.54661 |
| 242    | 0.02862 | 0.0079 | 0.25494 | 284        | 0.04819 | 0.0936  | 0.57521 |
| 243    | 0.07709 | 0.0603 | 0.774   | 285        | 0.08643 | 0.0823  | 0.51064 |
| 244    | 0.00763 | 0.0376 | 0.93749 | 286        | 0.05989 | 0.0757  | 0.12433 |
| 245    | 0.0886  | 0.0095 | 0.07699 | 287        | 0.06059 | 0.0512  | 0.69761 |
| 246    | 0.07073 | 0.0491 | 0.5321  | 288        | 0.08235 | 0.02098 | 0.94654 |
| 247    | 0.04898 | 0.0223 | 0.12837 | 289        | 0.07749 | 0.04087 | 0.36908 |
| 248    | 0.05707 | 0.0161 | 0.77188 | 290        | 0.05691 | 0.01705 | 0.92413 |
| 249    | 0.02636 | 0.0235 | 0.94023 | 291        | 0.02146 | 0.00778 | 0.3618  |
| 250    | 0.0463  | 0.0182 | 0.11025 | 292        | 0.02659 | 0.08952 | 0.84789 |
| 251    | 0.09168 | 0.022  | 0.89546 | 293        | 0.08479 | 0.03212 | 0.45923 |
| 252    | 0.05421 | 0.0088 | 0.06636 | 294        | 0.00758 | 0.0316  | 0.42208 |
| 253    | 0.0519  | 0.0622 | 0.66545 | 295        | 0.04909 | 0.03496 | 0.24596 |
| 254    | 0.02584 | 0.0304 | 0.75536 | 296        | 0.02011 | 0.04704 | 0.16309 |
| 255    | 0.049   | 0.0535 | 0.53072 | 297        | 0.09308 | 0.06334 | 0.32802 |
| 256    | 0.06117 | 0.0676 | 0.84682 | 298        | 0.06914 | 0.00727 | 0.70349 |
| 257    | 0.06612 | 0.0499 | 0.8591  | 299        | 0.05004 | 0.0808  | 0.75458 |
| 258    | 0.0406  | 0.0532 | 0.61334 | 300        | 0.0474  | 0.05531 | 0.67441 |
| 259    | 0.03807 | 0.0451 | 0.17408 | 301        | 0.01037 | 0.08187 | 0.05882 |
| 260    | 0.09392 | 0.0162 | 0.24602 | 302        | 0.06638 | 0.03631 | 0.80889 |
| 261    | 0.0084  | 0.0491 | 0.21393 | 303        | 0.00882 | 0.04514 | 0.8801  |
| 262    | 0.08467 | 0.0818 | 0.08764 | 304        | 0.01143 | 0.00988 | 0.74386 |
| 263    | 0.0872  | 0.0837 | 0.14625 | 305        | 0.05195 | 0.02094 | 0.08839 |
| 264    | 0.07666 | 0.0293 | 0.6048  | 306        | 0.01371 | 0.06465 | 0.39037 |
| 265    | 0.01388 | 0.0238 | 0.89569 | 307        | 0.07863 | 0.03478 | 0.68391 |
| 266    | 0.02857 | 0.0558 | 0.36901 | 308        | 0.07858 | 0.08586 | 0.70656 |
| 267    | 0.03518 | 0.0626 | 0.41957 | 309        | 0.07002 | 0.01563 | 0.25185 |
| 268    | 0.06618 | 0.0425 | 0.93591 | 310        | 0.01849 | 0.09396 | 0.29215 |
| 269    | 0.01729 | 0.0235 | 0.90102 | 311<br>212 | 0.06436 | 0.0530  | 0.05573 |
| 270    | 0.00331 | 0.0303 | 0.03898 | 312        | 0.03107 | 0.00802 | 0.47974 |
| 272    | 0.06384 | 0.0124 | 0.74015 | 314        | 0.06341 | 0.03091 | 0.2628  |
| 273    | 0.04948 | 0.0178 | 0.35303 | 315        | 0.07703 | 0.04231 | 0.20941 |
| 274    | 0.07512 | 0.02   | 0.64614 | 316        | 0.04584 | 0.04684 | 0.79668 |
| 275    | 0.06935 | 0.0609 | 0.26975 | 317        | 0.04392 | 0.07376 | 0.74023 |
| 276    | 0.08634 | 0.0566 | 0.31596 | 318        | 0.07928 | 0.07864 | 0.89103 |
| 277    | 0.08518 | 0.0097 | 0.66216 | 319        | 0.01251 | 0.01402 | 0.1471  |
| 278    | 0.03508 | 0.0888 | 0.52506 | 320        | 0.01699 | 0.02103 | 0.214   |
| 279    | 0.06789 | 0.0706 | 0.42043 | 321        | 0.02061 | 0.03737 | 0.13919 |
| 280    | 0.0228  | 0.0714 | 0.59237 | 322        | 0.04018 | 0.0101  | 0.49079 |

| SIM. # | He      | Hg     | Нр      | Sim. # | He      | Hg      | Нр      |
|--------|---------|--------|---------|--------|---------|---------|---------|
| 323    | 0.07982 | 0.052  | 0.22392 | 365    | 0.02214 | 0.05304 | 0.60752 |
| 324    | 0.0773  | 0.0352 | 0.8563  | 366    | 0.0382  | 0.01482 | 0.37457 |
| 325    | 0.01044 | 0.0208 | 0.13918 | 367    | 0.04647 | 0.07932 | 0.73086 |
| 326    | 0.04093 | 0.0238 | 0.08975 | 368    | 0.09335 | 0.03543 | 0.42251 |
| 327    | 0.05242 | 0.0865 | 0.55157 | 369    | 0.01908 | 0.03146 | 0.49311 |
| 328    | 0.04251 | 0.0658 | 0.74525 | 370    | 0.082   | 0.07217 | 0.67527 |
| 329    | 0.06412 | 0.0472 | 0.33075 | 371    | 0.06303 | 0.00593 | 0.92546 |
| 330    | 0.06152 | 0.0871 | 0.21108 | 372    | 0.03886 | 0.00936 | 0.34498 |
| 331    | 0.03128 | 0.0144 | 0.35506 | 373    | 0.02218 | 0.06511 | 0.80402 |
| 332    | 0.04385 | 0.0721 | 0.23913 | 374    | 0.04354 | 0.05931 | 0.71517 |
| 333    | 0.00639 | 0.0713 | 0.50914 | 375    | 0.04838 | 0.05235 | 0.90876 |
| 334    | 0.09357 | 0.0556 | 0.86573 | 376    | 0.01586 | 0.07067 | 0.07873 |
| 335    | 0.02005 | 0.0216 | 0.61603 | 377    | 0.05806 | 0.06865 | 0.37118 |
| 336    | 0.01456 | 0.0587 | 0.14138 | 378    | 0.02536 | 0.07532 | 0.64639 |
| 337    | 0.03852 | 0.032  | 0.40177 | 379    | 0.03962 | 0.03092 | 0.30335 |
| 338    | 0.02283 | 0.0171 | 0.09916 | 380    | 0.05747 | 0.06733 | 0.25734 |
| 339    | 0.04907 | 0.0241 | 0.50115 | 381    | 0.02766 | 0.0551  | 0.69002 |
| 340    | 0.03555 | 0.0855 | 0.43855 | 382    | 0.03114 | 0.04069 | 0.61212 |
| 341    | 0.09065 | 0.0114 | 0.9478  | 383    | 0.06054 | 0.01054 | 0.58155 |
| 342    | 0.08783 | 0.0268 | 0.78044 | 384    | 0.02888 | 0.07522 | 0.64439 |
| 343    | 0.00974 | 0.0098 | 0.48709 | 385    | 0.07919 | 0.03538 | 0.0928  |
| 344    | 0.07141 | 0.0448 | 0.855   | 386    | 0.09344 | 0.05971 | 0.36391 |
| 345    | 0.02922 | 0.0062 | 0.17379 | 387    | 0.07072 | 0.07171 | 0.45621 |
| 346    | 0.04306 | 0.0857 | 0.401   | 388    | 0.03595 | 0.01443 | 0.26681 |
| 347    | 0.05431 | 0.0227 | 0.88462 | 389    | 0.05757 | 0.01651 | 0.69354 |
| 348    | 0.08985 | 0.0134 | 0.87574 | 390    | 0.0147  | 0.05446 | 0.82056 |
| 349    | 0.0426  | 0.0327 | 0.69222 | 391    | 0.08657 | 0.04867 | 0.30336 |
| 350    | 0.09348 | 0.046  | 0.6065  | 392    | 0.08417 | 0.08514 | 0.70795 |
| 351    | 0.03213 | 0.0142 | 0.35896 | 393    | 0.0786  | 0.07691 | 0.17399 |
| 352    | 0.0681  | 0.0946 | 0.89242 | 394    | 0.02847 | 0.0/109 | 0.80305 |
| 353    | 0.06497 | 0.0349 | 0.1623  | 395    | 0.05849 | 0.00962 | 0.1/4/4 |
| 354    | 0.05552 | 0.0516 | 0.70755 | 390    | 0.00705 | 0.01130 | 0.37959 |
| 356    | 0.06499 | 0.0318 | 0.79984 | 398    | 0.03315 | 0.07685 | 0.77608 |
| 357    | 0.02103 | 0.0092 | 0.40845 | 399    | 0.01953 | 0.08987 | 0.5034  |
| 358    | 0.01652 | 0.0505 | 0.72484 | 400    | 0.02109 | 0.06653 | 0.49063 |
| 359    | 0.09492 | 0.0735 | 0.8017  | 401    | 0.04306 | 0.01689 | 0.83934 |
| 360    | 0.0204  | 0.0618 | 0.34021 |        |         |         |         |
| 361    | 0.00793 | 0.0131 | 0.54704 |        |         |         |         |
| 362    | 0.05551 | 0.0123 | 0.93122 |        |         |         |         |
| 363    | 0.08437 | 0.075  | 0.54438 |        |         |         |         |
| 364    | 0.06523 | 0.0865 | 0.34738 |        |         |         |         |

Parámetros de espesor para las simulaciones de validación de resonadores con electrodos de molibdeno.

| SIM. # | HE      | HG      | HP      | SIM. # | HE      | HG     | НР      |
|--------|---------|---------|---------|--------|---------|--------|---------|
| 1      | 0.03678 | 0.00588 | 0.36501 | 41     | 0.06982 | 0.0761 | 0.23333 |
| 2      | 0.04545 | 0.05291 | 0.30838 | 42     | 0.06996 | 0.0262 | 0.79449 |
| 3      | 0.09172 | 0.03015 | 0.88474 | 43     | 0.084   | 0.0453 | 0.65828 |
| 4      | 0.00881 | 0.09016 | 0.09618 | 44     | 0.05742 | 0.0562 | 0.27405 |
| 5      | 0.09257 | 0.08658 | 0.5834  | 45     | 0.01136 | 0.0105 | 0.47821 |
| 6      | 0.02203 | 0.04034 | 0.19661 | 46     | 0.08805 | 0.0497 | 0.40917 |
| 7      | 0.06504 | 0.00724 | 0.80457 | 47     | 0.07703 | 0.0628 | 0.58949 |
| 8      | 0.05778 | 0.06543 | 0.2008  | 48     | 0.03074 | 0.0249 | 0.77047 |
| 9      | 0.06576 | 0.08035 | 0.50198 | 49     | 0.05393 | 0.0803 | 0.14456 |
| 10     | 0.03749 | 0.09244 | 0.9494  | 50     | 0.09363 | 0.0924 | 0.7893  |
| 11     | 0.06083 | 0.01012 | 0.36987 | 51     | 0.06941 | 0.0812 | 0.80698 |
| 12     | 0.078   | 0.04553 | 0.09237 | 52     | 0.08051 | 0.0505 | 0.36906 |
| 13     | 0.00673 | 0.05742 | 0.24229 | 53     | 0.04399 | 0.0301 | 0.43706 |
| 14     | 0.01255 | 0.0668  | 0.40806 | 54     | 0.04736 | 0.0722 | 0.56502 |
| 15     | 0.09273 | 0.06975 | 0.3503  | 55     | 0.05546 | 0.0263 | 0.68074 |
| 16     | 0.06362 | 0.0635  | 0.25664 | 56     | 0.02922 | 0.0912 | 0.71822 |
| 17     | 0.02581 | 0.07042 | 0.89251 | 57     | 0.07241 | 0.0608 | 0.7321  |
| 18     | 0.04131 | 0.03865 | 0.66487 | 58     | 0.05035 | 0.059  | 0.40022 |
| 19     | 0.01598 | 0.05734 | 0.9159  | 59     | 0.06321 | 0.0205 | 0.43637 |
| 20     | 0.02916 | 0.01545 | 0.44418 | 60     | 0.0327  | 0.0131 | 0.91071 |
| 21     | 0.02821 | 0.01019 | 0.8963  | 61     | 0.01749 | 0.028  | 0.56567 |
| 22     | 0.03485 | 0.09318 | 0.05525 | 62     | 0.0478  | 0.0823 | 0.81475 |
| 23     | 0.0187  | 0.03063 | 0.59928 | 63     | 0.03762 | 0.087  | 0.29871 |
| 24     | 0.03632 | 0.05855 | 0.77097 | 64     | 0.07593 | 0.068  | 0.61009 |
| 25     | 0.01595 | 0.09159 | 0.25968 | 65     | 0.07523 | 0.0703 | 0.57953 |
| 26     | 0.08457 | 0.02172 | 0.88922 | 66     | 0.06517 | 0.0257 | 0.91712 |
| 2/     | 0.01349 | 0.02237 | 0.73694 | 67     | 0.01/02 | 0.0568 | 0.12/31 |
| 20     | 0.0887  | 0.03373 | 0.7938  | 69     | 0.00094 | 0.078  | 0.50045 |
| 30     | 0.04031 | 0.04016 | 0.76332 | 70     | 0.03307 | 0.0413 | 0.31343 |
| 31     | 0.03581 | 0.02959 | 0.34614 | 70     | 0.08955 | 0.0131 | 0.8642  |
| 32     | 0.07124 | 0.01868 | 0.25112 | 72     | 0.09328 | 0.0339 | 0.84595 |
| 33     | 0.07652 | 0.04074 | 0.33115 | 73     | 0.0308  | 0.051  | 0.44509 |
| 34     | 0.05404 | 0.03873 | 0.57607 | 74     | 0.07707 | 0.0105 | 0.75355 |
| 35     | 0.06676 | 0.0168  | 0.79692 | 75     | 0.08565 | 0.0703 | 0.18362 |
| 36     | 0.08543 | 0.04415 | 0.31142 | 76     | 0.05878 | 0.0551 | 0.60783 |
| 37     | 0.00993 | 0.01324 | 0.4123  | 77     | 0.08456 | 0.0526 | 0.28456 |
| 38     | 0.03233 | 0.06032 | 0.82585 | 78     | 0.08994 | 0.0797 | 0.45109 |
| 39     | 0.00916 | 0.00599 | 0.60327 | 79     | 0.05442 | 0.0823 | 0.8096  |
| 40     | 0.02259 | 0.05659 | 0.94207 | 80     | 0.07056 | 0.076  | 0.22658 |

| SIM. # | He      | Hg      | Нр      | Sim. # | He      | Hg     | Нр       |
|--------|---------|---------|---------|--------|---------|--------|----------|
| 81     | 0.05691 | 0.03361 | 0.32347 | 123    | 0.03065 | 0.0394 | 0.67668  |
| 82     | 0.00733 | 0.0457  | 0.48497 | 124    | 0.06559 | 0.0761 | 0.51774  |
| 83     | 0.04519 | 0.0727  | 0.35403 | 125    | 0.06479 | 0.0378 | 0.10313  |
| 84     | 0.06317 | 0.01489 | 0.76864 | 126    | 0.01605 | 0.0529 | 0.85103  |
| 85     | 0.05191 | 0.01488 | 0.93874 | 127    | 0.04166 | 0.069  | 0.34718  |
| 86     | 0.03851 | 0.02929 | 0.19314 | 128    | 0.02978 | 0.0834 | 0.25673  |
| 87     | 0.08934 | 0.05222 | 0.26319 | 129    | 0.0695  | 0.0346 | 0.15255  |
| 88     | 0.07966 | 0.09254 | 0.68201 | 130    | 0.03051 | 0.0635 | 0.32983  |
| 89     | 0.08142 | 0.06894 | 0.38792 | 131    | 0.08566 | 0.0927 | 0.25559  |
| 90     | 0.03853 | 0.03307 | 0.92633 | 132    | 0.07939 | 0.0118 | 0.6368   |
| 91     | 0.05839 | 0.03123 | 0.92508 | 133    | 0.0401  | 0.0578 | 0.10954  |
| 92     | 0.08353 | 0.08153 | 0.62933 | 134    | 0.04981 | 0.0423 | 0.29789  |
| 93     | 0.08902 | 0.08705 | 0.82409 | 135    | 0.06753 | 0.0328 | 0.30364  |
| 94     | 0.06516 | 0.06254 | 0.4117  | 136    | 0.08009 | 0.0287 | 0.84206  |
| 95     | 0.02361 | 0.02798 | 0.61874 | 137    | 0.05987 | 0.0733 | 0.4499   |
| 96     | 0.06385 | 0.01298 | 0.93671 | 138    | 0.05673 | 0.0946 | 0.73032  |
| 97     | 0.01149 | 0.08044 | 0.55353 | 139    | 0.03434 | 0.0218 | 0.59297  |
| 98     | 0.04161 | 0.05763 | 0.89023 | 140    | 0.04608 | 0.0753 | 0.75494  |
| 99     | 0.06502 | 0.09033 | 0.69831 | 141    | 0.06924 | 0.0226 | 0.15254  |
| 100    | 0.08904 | 0.01049 | 0.48563 | 142    | 0.0846  | 0.0943 | 0.93071  |
| 101    | 0.07799 | 0.05762 | 0.62513 | 143    | 0.06988 | 0.0772 | 0.81374  |
| 102    | 0.04861 | 0.03066 | 0.84887 | 144    | 0.00668 | 0.0432 | 0.095582 |
| 103    | 0.07311 | 0.0795  | 0.22886 | 145    | 0.06573 | 0.0706 | 0.46958  |
| 104    | 0.04253 | 0.02219 | 0.40583 | 146    | 0.04447 | 0.0499 | 0.34309  |
| 105    | 0.09246 | 0.04483 | 0.94296 | 147    | 0.0444  | 0.0778 | 0.61/18  |
| 100    | 0.09592 | 0.04041 | 0.41212 | 140    | 0.01555 | 0.0371 | 0.23727  |
| 108    | 0.00277 | 0.06592 | 0.86121 | 150    | 0.03424 | 0.0582 | 0.59284  |
| 109    | 0.04593 | 0.02368 | 0.94584 | 151    | 0.02716 | 0.0869 | 0.58989  |
| 110    | 0.0272  | 0.03363 | 0.63785 | 152    | 0.03584 | 0.0224 | 0.45359  |
| 111    | 0.0756  | 0.01704 | 0.14759 | 153    | 0.03881 | 0.0439 | 0.081881 |
| 112    | 0.08446 | 0.06543 | 0.0825  | 154    | 0.05419 | 0.0724 | 0.51243  |
| 113    | 0.08723 | 0.05639 | 0.60628 | 155    | 0.05557 | 0.0085 | 0.41696  |
| 114    | 0.05525 | 0.02028 | 0.56043 | 156    | 0.04062 | 0.0902 | 0.14724  |
| 115    | 0.0589  | 0.01829 | 0.91577 | 157    | 0.04083 | 0.0737 | 0.46389  |
| 116    |         | 0.04/85 | 0.72149 | 158    | 0.05138 | 0.0553 | 0.45579  |
| 110    | 0.06597 | 0.06075 | 0.04020 | 159    | 0.00418 | 0.0213 | 0.34003  |
| 110    | 0.04554 | 0.0347  | 0.52096 | 161    | 0.09058 | 0.0496 | 0.77460  |
| 120    | 0.08597 | 0.00985 | 0.91579 | 162    | 0.04101 | 0.0945 | 0.83501  |
| 121    | 0.07363 | 0.07746 | 0.53618 | 163    | 0.07987 | 0.0819 | 0.096973 |
| 122    | 0.08442 | 0.04562 | 0.07724 | 164    | 0.01709 | 0.0916 | 0.24771  |
|        |         |         |         |        |         |        |          |

| SIM. # | He      | Hg      | Нр      | Sim. # | He      | Hg     | Нр      |
|--------|---------|---------|---------|--------|---------|--------|---------|
| 165    | 0.01044 | 0.06611 | 0.46368 | 207    | 0.06759 | 0.0604 | 0.61651 |
| 166    | 0.01258 | 0.04132 | 0.91268 | 208    | 0.06982 | 0.0389 | 0.76656 |
| 167    | 0.01975 | 0.08915 | 0.76104 | 209    | 0.03622 | 0.0839 | 0.67207 |
| 168    | 0.03418 | 0.04815 | 0.45669 | 210    | 0.05153 | 0.0756 | 0.36078 |
| 169    | 0.03216 | 0.02586 | 0.35009 | 211    | 0.0551  | 0.0468 | 0.90214 |
| 170    | 0.00605 | 0.04067 | 0.10319 | 212    | 0.01909 | 0.0783 | 0.51817 |
| 171    | 0.05359 | 0.06846 | 0.71681 | 213    | 0.05559 | 0.0859 | 0.90843 |
| 172    | 0.01358 | 0.05527 | 0.50612 | 214    | 0.06753 | 0.0436 | 0.11624 |
| 173    | 0.01819 | 0.0731  | 0.22993 | 215    | 0.04338 | 0.0351 | 0.23633 |
| 174    | 0.0618  | 0.09459 | 0.43447 | 216    | 0.08026 | 0.0587 | 0.74753 |
| 175    | 0.08234 | 0.09162 | 0.20182 | 217    | 0.07083 | 0.0862 | 0.87277 |
| 176    | 0.09268 | 0.05316 | 0.72653 | 218    | 0.0374  | 0.0682 | 0.7543  |
| 177    | 0.05638 | 0.09175 | 0.38152 | 219    | 0.04588 | 0.039  | 0.31598 |
| 178    | 0.09472 | 0.01541 | 0.89764 | 220    | 0.03978 | 0.0711 | 0.18666 |
| 179    | 0.05482 | 0.00963 | 0.06546 | 221    | 0.0748  | 0.0909 | 0.81312 |
| 180    | 0.05139 | 0.03239 | 0.79615 | 222    | 0.07108 | 0.0539 | 0.75637 |
| 181    | 0.03476 | 0.05722 | 0.61393 | 223    | 0.04373 | 0.0536 | 0.29375 |
| 182    | 0.0437  | 0.05279 | 0.53487 | 224    | 0.06744 | 0.033  | 0.25503 |
| 183    | 0.04926 | 0.08611 | 0.63546 | 225    | 0.09007 | 0.0114 | 0.33892 |
| 184    | 0.01139 | 0.05365 | 0.70397 | 226    | 0.07558 | 0.0214 | 0.79661 |
| 185    | 0.0849  | 0.04388 | 0.13504 | 227    | 0.0685  | 0.0134 | 0.78996 |
| 186    | 0.01082 | 0.05384 | 0.83982 | 228    | 0.01484 | 0.0467 | 0.56361 |
| 187    | 0.04426 | 0.06912 | 0.06293 | 229    | 0.04009 | 0.0058 | 0.56465 |
| 188    | 0.0794  | 0.0065  | 0.31487 | 230    | 0.05818 | 0.0874 | 0.30742 |
| 189    | 0.04051 | 0.07708 | 0.21192 | 231    | 0.04634 | 0.0628 | 0.6/922 |
| 190    | 0.00021 | 0.01783 | 0.88300 | 232    | 0.00953 | 0.0051 | 0.70003 |
| 191    | 0.07000 | 0.04000 | 0.57208 | 233    | 0.02000 | 0.0077 | 0.44745 |
| 192    | 0.00470 | 0.02012 | 0.67230 | 234    | 0.00000 | 0.0250 | 0.45155 |
| 193    | 0.02217 | 0.06456 | 0.63614 | 235    | 0.08273 | 0.0165 | 0.30114 |
| 195    | 0.02827 | 0.02027 | 0.82816 | 237    | 0.01203 | 0.0058 | 0.65784 |
| 196    | 0.08581 | 0.03009 | 0.10036 | 238    | 0.06521 | 0.0704 | 0.8633  |
| 197    | 0.0584  | 0.02284 | 0.78517 | 239    | 0.05002 | 0.0369 | 0.86767 |
| 198    | 0.05035 | 0.02256 | 0.52603 | 240    | 0.02462 | 0.0752 | 0.72248 |
| 199    | 0.06015 | 0.03442 | 0.67492 | 241    | 0.05645 | 0.0443 | 0.28446 |
| 200    | 0.07875 | 0.08423 | 0.24116 | 242    | 0.016   | 0.0443 | 0.67067 |
| 201    | 0.05287 | 0.0474  | 0.53895 | 243    | 0.06541 | 0.0094 | 0.16865 |
| 202    | 0.02319 | 0.04130 | 0.08227 | 244    | 0.05896 | 0.0095 | 0.10115 |
| 203    | 0.04351 | 0.0922  | 0.45009 | 245    | 0.01007 | 0.0585 | 0.18116 |
| 205    | 0.09195 | 0.04167 | 0.12686 | 247    | 0.01873 | 0.0267 | 0.57654 |
| 206    | 0.06081 | 0.081   | 0.10161 | 248    | 0.00677 | 0.0807 | 0.11603 |

| SIM. # | He      | Hg      | Нр      | Sim. # | He      | Hg     | Нр       |
|--------|---------|---------|---------|--------|---------|--------|----------|
| 249    | 0.04417 | 0.08215 | 0.79009 | 291    | 0.04495 | 0.0305 | 0.17241  |
| 250    | 0.0799  | 0.09173 | 0.70061 | 292    | 0.03202 | 0.017  | 0.76     |
| 251    | 0.06057 | 0.049   | 0.88327 | 293    | 0.04113 | 0.0667 | 0.13316  |
| 252    | 0.05181 | 0.02483 | 0.49337 | 294    | 0.08    | 0.0869 | 0.26408  |
| 253    | 0.08275 | 0.02536 | 0.63939 | 295    | 0.04133 | 0.06   | 0.26928  |
| 254    | 0.01379 | 0.05331 | 0.85111 | 296    | 0.04012 | 0.086  | 0.14434  |
| 255    | 0.08673 | 0.07359 | 0.53467 | 297    | 0.03744 | 0.0224 | 0.82252  |
| 256    | 0.01472 | 0.03628 | 0.30398 | 298    | 0.01762 | 0.0729 | 0.67838  |
| 257    | 0.05153 | 0.04651 | 0.92836 | 299    | 0.02841 | 0.0362 | 0.71037  |
| 258    | 0.01788 | 0.06254 | 0.08278 | 300    | 0.01281 | 0.0427 | 0.63548  |
| 259    | 0.05534 | 0.08756 | 0.34362 | 301    | 0.04365 | 0.019  | 0.51464  |
| 260    | 0.00541 | 0.01954 | 0.92571 | 302    | 0.02816 | 0.0787 | 0.34375  |
| 261    | 0.074   | 0.06941 | 0.37853 | 303    | 0.03178 | 0.0612 | 0.6456   |
| 262    | 0.08138 | 0.057   | 0.32823 | 304    | 0.04324 | 0.0715 | 0.15581  |
| 263    | 0.08751 | 0.044   | 0.15882 | 305    | 0.01573 | 0.0775 | 0.18304  |
| 264    | 0.09383 | 0.08458 | 0.87419 | 306    | 0.04956 | 0.0111 | 0.067788 |
| 265    | 0.05046 | 0.04038 | 0.17193 | 307    | 0.06858 | 0.0906 | 0.91786  |
| 266    | 0.02943 | 0.02111 | 0.34891 | 308    | 0.02692 | 0.0498 | 0.92334  |
| 267    | 0.01407 | 0.062   | 0.85773 | 309    | 0.07566 | 0.073  | 0.16147  |
| 268    | 0.05071 | 0.06116 | 0.49968 | 310    | 0.01167 | 0.0718 | 0.47067  |
| 269    | 0.05771 | 0.03452 | 0.60376 | 311    | 0.04045 | 0.0798 | 0.64102  |
| 270    | 0.07366 | 0.07727 | 0.57482 | 312    | 0.00531 | 0.0191 | 0.31117  |
| 271    | 0.01247 | 0.09495 | 0.67843 | 313    | 0.02486 | 0.0462 | 0.72908  |
| 272    | 0.06454 | 0.09329 | 0.0764  | 314    | 0.00512 | 0.0606 | 0.55231  |
| 2/3    | 0.05153 | 0.01643 | 0.52509 | 315    | 0.02203 | 0.0889 | 0.43501  |
| 274    | 0.02039 | 0.0259  | 0.07887 | 217    | 0.01/82 | 0.0802 | 0.29047  |
| 275    | 0.00347 | 0.00713 | 0.75443 | 210    | 0.02913 | 0.0850 | 0.72030  |
| 270    | 0.03814 | 0.03307 | 0.33333 | 310    | 0.02074 | 0.0574 | 0.83834  |
| 278    | 0.08977 | 0.04167 | 0.27146 | 320    | 0.0589  | 0.0819 | 0.41615  |
| 279    | 0.06403 | 0.08457 | 0.57334 | 321    | 0.0861  | 0.0081 | 0.89448  |
| 280    | 0.04568 | 0.05433 | 0.89391 | 322    | 0.08954 | 0.0847 | 0.27988  |
| 281    | 0.08057 | 0.03821 | 0.09301 | 323    | 0.02491 | 0.0417 | 0.52985  |
| 282    | 0.05294 | 0.02375 | 0.09858 | 324    | 0.04844 | 0.0083 | 0.90928  |
| 283    | 0.05485 | 0.04469 | 0.06856 | 325    | 0.03884 | 0.0722 | 0.29097  |
| 284    | 0.06621 | 0.09106 | 0.66333 | 326    | 0.05214 | 0.0189 | 0.27508  |
| 285    | 0.03805 | 0.01616 | 0.58877 | 327    | 0.02884 | 0.018  | 0.88491  |
| 286    | 0.02654 | 0.04737 | 0.15263 | 328    | 0.01115 | 0.0595 | 0.11172  |
| 287    | 0.0571  | 0.08212 | 0.76662 | 329    | 0.04427 | 0.0279 | 0.31946  |
| 288    | 0.08302 | 0.00891 | 0.60607 | 330    | 0.02065 | 0.0342 | 0.58243  |
| 289    | 0.04161 | 0.06725 | 0.11319 | 331    | 0.00/35 | 0.0412 | 0.23297  |
| 290    | 0.01514 | 0.09311 | 0.11235 | 332    | 0.09092 | 0.0416 | 0.62229  |

| 333         0.04375         0.03976         0.76853         374         0.07868         0.0343         0.17357           334         0.09154         0.05988         0.50153         375         0.07054         0.0136         0.50426           335         0.07362         0.02002         0.63573         376         0.02082         0.0723         0.41446           336         0.0566         0.02133         0.76636         377         0.03743         0.0724         0.20621           337         0.0662         0.01352         0.26004         378         0.0219         0.0539         0.56767           338         0.06854         0.03409         0.59076         379         0.0511         0.0354         0.5956           339         0.06306         0.7426         0.15122         380         0.0348         0.0799         0.243           344         0.02451         0.06735         0.87871         383         0.05388         0.49092           344         0.03438         0.07952         0.29985         385         0.0307         0.542         0.42028           344         0.04250         0.56207         0.5886         388         0.07362         0.0818         0.3                                                                                                                           | SIM. # | He      | Hg      | Нр      | Sim. # | He      | Hg     | Нр       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------|---------|--------|---------|--------|----------|
| 334         0.09154         0.05988         0.50153         375         0.07054         0.0136         0.50426           335         0.07362         0.02020         0.63573         376         0.02082         0.0723         0.41446           336         0.0666         0.02133         0.76636         377         0.03743         0.0724         0.20621           337         0.0662         0.01352         0.26004         378         0.02199         0.539         0.55767           338         0.06306         0.07426         0.15122         380         0.03348         0.0799         0.243           340         0.05471         0.0607         0.51419         381         0.0677         0.0547         0.51794           341         0.02635         0.87871         383         0.0384         0.49092           344         0.03838         0.07952         0.29985         385         0.03087         0.42028           344         0.03838         0.07952         0.29985         385         0.03087         0.0542         0.42028           344         0.03818         0.0314         0.6377         386         0.0545         0.0611         0.31355           344 <th>333</th> <th>0.04375</th> <th>0.03976</th> <th>0.76853</th> <th>374</th> <th>0.07868</th> <th>0.0343</th> <th>0.17357</th>        | 333    | 0.04375 | 0.03976 | 0.76853 | 374    | 0.07868 | 0.0343 | 0.17357  |
| 335         0.07362         0.02002         0.63573         376         0.02082         0.0723         0.41446           336         0.00566         0.02193         0.76636         377         0.03743         0.0724         0.20621           337         0.0662         0.01352         0.26004         378         0.02199         0.539         0.56767           338         0.06854         0.03409         0.59076         379         0.00511         0.0534         0.5956           339         0.06306         0.07426         0.15122         380         0.0348         0.0799         0.243           340         0.5471         0.02607         0.51419         381         0.06177         0.912         0.94027           342         0.07451         0.6735         0.87871         383         0.0538         0.08513         0.0362         0.08129           344         0.03838         0.07917         0.49841         384         0.04451         0.371         0.6733           345         0.08207         0.03844         0.8757         387         0.0767         0.7713           348         0.03262         0.07793         0.1507         391         0.0611         0.31355                                                                                                                           | 334    | 0.09154 | 0.05988 | 0.50153 | 375    | 0.07054 | 0.0136 | 0.50426  |
| 336       0.00566       0.02193       0.76636       377       0.03743       0.0724       0.20211         337       0.0662       0.01352       0.26004       378       0.02199       0.0539       0.56767         338       0.06854       0.03409       0.59076       379       0.00511       0.0354       0.5956         339       0.06306       0.07426       0.15122       380       0.03348       0.0799       0.243         340       0.05471       0.02607       0.51419       381       0.06797       0.0912       0.94027         341       0.02463       0.07163       0.87871       383       0.0388       0.0854       0.49092         343       0.02552       0.07917       0.49841       384       0.04451       0.0371       0.67539         344       0.03838       0.07952       0.29985       385       0.0307       0.0312       0.42028         345       0.08207       0.03244       0.87577       387       0.07354       0.0611       0.3155         344       0.0422       0.03284       0.82077       389       0.05685       0.0721       0.36185         349       0.05978       0.07987       0.22755                                                                                                                                                                                                            | 335    | 0.07362 | 0.02002 | 0.63573 | 376    | 0.02082 | 0.0723 | 0.41446  |
| 337         0.0662         0.01352         0.26004         378         0.02199         0.0539         0.56767           338         0.06854         0.03409         0.59076         379         0.00511         0.0354         0.5956           339         0.06306         0.07426         0.15122         380         0.03348         0.0799         0.243           340         0.05471         0.02607         0.51419         381         0.06797         0.5179           342         0.07451         0.06735         0.87871         383         0.05388         0.49092           343         0.02552         0.07917         0.49841         384         0.04121         0.47539           344         0.0383         0.07952         0.29985         385         0.0307         0.0542         0.42028           345         0.08207         0.03284         0.87557         387         0.0754         0.0611         0.31355           347         0.04122         0.05207         0.5886         388         0.0729         0.0163         0.12498           350         0.08692         0.07793         0.15007         391         0.0611         0.31815           354         0.08682 </th <th>336</th> <th>0.00566</th> <th>0.02193</th> <th>0.76636</th> <th>377</th> <th>0.03743</th> <th>0.0724</th> <th>0.20621</th> | 336    | 0.00566 | 0.02193 | 0.76636 | 377    | 0.03743 | 0.0724 | 0.20621  |
| 338       0.06854       0.03409       0.59076       379       0.00511       0.0354       0.5956         339       0.06306       0.07426       0.15122       380       0.03448       0.0799       0.243         340       0.05471       0.02607       0.51419       381       0.06797       0.0547       0.51794         341       0.02453       0.07163       0.80406       382       0.06127       0.912       0.94027         342       0.07451       0.06735       0.87871       383       0.05388       0.0854       0.49092         343       0.02552       0.07917       0.49841       384       0.04451       0.06735       0.6739         344       0.03838       0.07920       0.2985       385       0.0307       0.0542       0.42029         344       0.03838       0.07927       0.5886       388       0.07362       0.08129         344       0.03620       0.03248       0.92677       389       0.05685       0.0721       0.36185         344       0.0362       0.0793       0.15007       391       0.0631       0.079       0.51         355       0.08682       0.05513       0.31762       392       0.01                                                                                                                                                                                                          | 337    | 0.0662  | 0.01352 | 0.26004 | 378    | 0.02199 | 0.0539 | 0.56767  |
| 339         0.06306         0.07426         0.15122         380         0.03348         0.0799         0.243           340         0.05471         0.02607         0.51419         381         0.06797         0.0547         0.51794           341         0.02463         0.07163         0.80406         382         0.06127         0.0912         0.94027           342         0.07551         0.6735         0.87871         383         0.05388         0.0854         0.49092           343         0.02552         0.07917         0.49841         384         0.04121         0.67339           344         0.03838         0.07952         0.29985         385         0.03087         0.0542         0.42028           345         0.08207         0.03284         0.87557         387         0.07154         0.0611         0.31355           347         0.04122         0.05207         0.50886         388         0.0762         0.07713           348         0.0362         0.07973         0.1275         390         0.07229         0.0163         0.12498           350         0.08692         0.0793         0.1507         391         0.0631         0.079         0.513                                                                                                                                      | 338    | 0.06854 | 0.03409 | 0.59076 | 379    | 0.00511 | 0.0354 | 0.5956   |
| 340       0.05471       0.02607       0.51419       381       0.06797       0.0547       0.51794         341       0.02463       0.07163       0.80406       382       0.06127       0.0912       0.94027         342       0.07451       0.06735       0.87871       383       0.05388       0.0854       0.49092         343       0.02552       0.07917       0.49841       384       0.04451       0.0371       0.67339         344       0.03838       0.07920       0.29985       385       0.03067       0.0542       0.40208         345       0.08518       0.0314       0.63727       386       0.05015       0.0362       0.42028         346       0.08207       0.02247       0.5086       388       0.07362       0.0717         348       0.03362       0.03428       0.92677       389       0.05685       0.0721       0.36185         349       0.05978       0.07987       0.22755       390       0.07229       0.0163       0.12498         350       0.08692       0.07793       0.1507       391       0.0611       0.3031       0.38015         353       0.08682       0.05513       0.31762       392                                                                                                                                                                                                            | 339    | 0.06306 | 0.07426 | 0.15122 | 380    | 0.03348 | 0.0799 | 0.243    |
| 341       0.02463       0.07163       0.80406       382       0.06127       0.0912       0.94027         342       0.07451       0.06735       0.87871       383       0.05388       0.0854       0.49092         343       0.02552       0.07917       0.49841       384       0.04451       0.0371       0.67539         344       0.03838       0.07952       0.29985       385       0.03087       0.0542       0.42028         345       0.08018       0.0314       0.63727       386       0.05015       0.0362       0.08129         346       0.08027       0.05284       0.87577       387       0.0734       0.0611       0.12498         349       0.0362       0.03428       0.92677       389       0.05685       0.0721       0.36185         349       0.05978       0.07987       0.22755       390       0.07229       0.0163       0.12498         350       0.08692       0.07793       0.15007       391       0.0631       0.079       0.513         351       0.08682       0.05513       0.31762       392       0.01609       0.0773       0.77407         355       0.0482       0.02667       0.40678                                                                                                                                                                                                            | 340    | 0.05471 | 0.02607 | 0.51419 | 381    | 0.06797 | 0.0547 | 0.51794  |
| 342       0.07451       0.06735       0.87871       383       0.05388       0.0854       0.49092         343       0.02552       0.07917       0.49841       384       0.04451       0.0371       0.67539         344       0.03838       0.07952       0.29985       385       0.03087       0.0542       0.42028         345       0.08518       0.0314       0.63727       386       0.05015       0.0362       0.081299         346       0.08207       0.03284       0.87557       387       0.07354       0.0611       0.31355         347       0.04122       0.05207       0.50886       388       0.07229       0.0163       0.12498         348       0.0362       0.0793       0.15007       391       0.0631       0.079       0.38015         349       0.05862       0.07513       0.31762       392       0.01609       0.073       0.38015         351       0.08682       0.05513       0.31762       392       0.0163       0.079       0.38015         352       0.0584       0.02867       0.40678       393       0.0541       0.0423       0.71553         353       0.03493       0.06625       0.42868                                                                                                                                                                                                             | 341    | 0.02463 | 0.07163 | 0.80406 | 382    | 0.06127 | 0.0912 | 0.94027  |
| 343       0.02552       0.07917       0.49841       384       0.04451       0.0371       0.67539         344       0.03838       0.07952       0.29985       385       0.0307       0.0542       0.42028         345       0.08518       0.0314       0.63727       386       0.05015       0.0362       0.081299         346       0.08207       0.03284       0.87557       387       0.07354       0.0611       0.31355         347       0.04122       0.05207       0.50886       388       0.07362       0.0767       0.7713         348       0.03362       0.03428       0.92677       389       0.05685       0.0721       0.36185         349       0.05978       0.07987       0.22755       390       0.07229       0.0163       0.12498         350       0.08692       0.07793       0.15007       391       0.0631       0.079       0.511         351       0.08682       0.05513       0.31762       392       0.01609       0.0073       0.38015         352       0.05844       0.02607       0.4286       394       0.03625       0.0708       0.5227         354       0.08178       0.026347       0.4486                                                                                                                                                                                                            | 342    | 0.07451 | 0.06735 | 0.87871 | 383    | 0.05388 | 0.0854 | 0.49092  |
| 344       0.03838       0.07952       0.29985       385       0.03087       0.0542       0.42028         345       0.08518       0.0314       0.63727       386       0.05015       0.0362       0.081299         346       0.08207       0.03284       0.87557       387       0.07354       0.0611       0.13355         347       0.04122       0.05207       0.50886       388       0.07362       0.0767       0.7713         348       0.0362       0.03428       0.92677       389       0.05685       0.0721       0.36185         349       0.05978       0.07937       0.15007       391       0.0631       0.079       0.511         351       0.08692       0.07793       0.15007       391       0.0631       0.073       0.38015         352       0.08682       0.05513       0.31762       392       0.01609       0.073       0.38015         353       0.03493       0.06625       0.4268       394       0.03625       0.0783       0.77407         355       0.04482       0.02603       0.33033       395       0.01329       0.0753       0.77407         355       0.04482       0.04608       0.67446       <                                                                                                                                                                                                      | 343    | 0.02552 | 0.07917 | 0.49841 | 384    | 0.04451 | 0.0371 | 0.67539  |
| 345         0.08518         0.0314         0.63727         386         0.05015         0.0362         0.081299           346         0.08207         0.03284         0.87557         387         0.07354         0.0611         0.31355           347         0.04122         0.05207         0.50886         388         0.07362         0.0777         0.7713           348         0.0362         0.03428         0.92677         389         0.05685         0.0721         0.36185           349         0.05978         0.07937         0.22755         390         0.07229         0.0163         0.12498           350         0.08692         0.0773         0.15007         391         0.0631         0.079         0.511           351         0.08682         0.05513         0.31762         392         0.01609         0.0073         0.38015           352         0.05824         0.02667         0.40678         393         0.0544         0.423         0.71553           353         0.03493         0.06625         0.42868         394         0.03625         0.0703         0.7247           355         0.04482         0.4608         0.67446         396         0.01831         0.                                                                                                                           | 344    | 0.03838 | 0.07952 | 0.29985 | 385    | 0.03087 | 0.0542 | 0.42028  |
| 346       0.08207       0.03284       0.87557       387       0.07354       0.0611       0.31355         347       0.04122       0.05207       0.50886       388       0.07362       0.0767       0.7713         348       0.03362       0.03428       0.92677       389       0.05685       0.0721       0.36185         349       0.05978       0.07987       0.22755       390       0.07229       0.0163       0.12498         350       0.08692       0.07793       0.15007       391       0.0631       0.079       0.51         351       0.08682       0.05513       0.31762       392       0.01609       0.0073       0.38015         352       0.05824       0.02867       0.40678       393       0.0504       0.0423       0.71553         353       0.03493       0.6625       0.42868       394       0.03625       0.0708       0.5227         354       0.08178       0.02603       0.33033       395       0.01329       0.0753       0.77407         355       0.04482       0.4608       0.67446       396       0.01831       0.0381       0.7822         356       0.08639       0.03941       0.13268 <t< th=""><th>345</th><th>0.08518</th><th>0.0314</th><th>0.63727</th><th>386</th><th>0.05015</th><th>0.0362</th><th>0.081299</th></t<>                                                                        | 345    | 0.08518 | 0.0314  | 0.63727 | 386    | 0.05015 | 0.0362 | 0.081299 |
| 347       0.04122       0.05207       0.50886       388       0.07362       0.0767       0.7713         348       0.03362       0.03428       0.92677       389       0.05685       0.0721       0.36185         349       0.05978       0.07987       0.22755       390       0.07229       0.0163       0.12498         350       0.08692       0.07793       0.15007       391       0.0631       0.079       0.51         351       0.08682       0.05513       0.31762       392       0.01609       0.0073       0.38015         352       0.05824       0.02867       0.40678       393       0.0504       0.0423       0.71553         353       0.03493       0.06625       0.42868       394       0.03625       0.0708       0.5227         354       0.08178       0.02603       0.33033       395       0.01329       0.0753       0.77407         355       0.04482       0.04608       0.67446       396       0.01831       0.0381       0.78522         356       0.08639       0.03961       0.13268       397       0.02284       0.072       0.22052         357       0.00799       0.05347       0.41188                                                                                                                                                                                                             | 346    | 0.08207 | 0.03284 | 0.87557 | 387    | 0.07354 | 0.0611 | 0.31355  |
| 348       0.03362       0.03428       0.92677       389       0.05685       0.0721       0.36185         349       0.05978       0.07987       0.22755       390       0.07229       0.0163       0.12498         350       0.08692       0.07793       0.15007       391       0.0631       0.079       0.51         351       0.08682       0.05513       0.31762       392       0.01609       0.0073       0.38015         352       0.05824       0.02867       0.40678       393       0.0504       0.0423       0.71553         353       0.03493       0.06625       0.42868       394       0.03625       0.0708       0.52227         354       0.08178       0.02603       0.33033       395       0.01329       0.0753       0.77407         355       0.04482       0.04608       0.67446       396       0.01831       0.0381       0.78522         356       0.08639       0.03961       0.13268       397       0.02284       0.072       0.22052         357       0.00799       0.05347       0.41188       398       0.0655       0.0853       0.16132         358       0.05292       0.09425       0.31566                                                                                                                                                                                                            | 347    | 0.04122 | 0.05207 | 0.50886 | 388    | 0.07362 | 0.0767 | 0.7713   |
| 349       0.05978       0.07987       0.22755       390       0.07229       0.0163       0.12498         350       0.08692       0.07793       0.15007       391       0.0631       0.079       0.51         351       0.08682       0.05513       0.31762       392       0.01609       0.0073       0.38015         352       0.05824       0.02867       0.40678       393       0.0504       0.0423       0.71553         353       0.03493       0.06625       0.42868       394       0.03625       0.0708       0.5227         354       0.08178       0.02603       0.33033       395       0.01329       0.0753       0.77407         355       0.04482       0.04608       0.67446       396       0.01831       0.0381       0.78522         356       0.08639       0.03961       0.13268       397       0.02284       0.072       0.22052         357       0.00799       0.05347       0.41188       398       0.0655       0.0853       0.16132         358       0.5292       0.09425       0.31566       399       0.04384       0.0268       0.7889         359       0.66499       0.07297       0.32585 <t< th=""><th>348</th><th>0.03362</th><th>0.03428</th><th>0.92677</th><th>389</th><th>0.05685</th><th>0.0721</th><th>0.36185</th></t<>                                                                        | 348    | 0.03362 | 0.03428 | 0.92677 | 389    | 0.05685 | 0.0721 | 0.36185  |
| 350       0.08692       0.07793       0.15007       391       0.0631       0.079       0.51         351       0.08682       0.05513       0.31762       392       0.01609       0.0073       0.38015         352       0.05824       0.02867       0.40678       393       0.0504       0.0423       0.71553         353       0.03493       0.06625       0.42868       394       0.03625       0.0708       0.52227         354       0.08178       0.02603       0.33033       395       0.01329       0.0753       0.77407         355       0.04482       0.04608       0.67446       396       0.01831       0.0381       0.78522         356       0.08639       0.03961       0.13268       397       0.02284       0.072       0.22052         357       0.00799       0.05347       0.41188       398       0.0655       0.0853       0.16132         358       0.05292       0.09425       0.31566       399       0.04384       0.0268       0.7889         359       0.06949       0.07297       0.32585       400       0.0675       0.0167       0.62411         360       0.02144       0.09257       0.30445       <                                                                                                                                                                                                      | 349    | 0.05978 | 0.07987 | 0.22755 | 390    | 0.07229 | 0.0163 | 0.12498  |
| 351       0.08682       0.05513       0.31762       392       0.01609       0.0073       0.38015         352       0.05824       0.02867       0.40678       393       0.0504       0.0423       0.71553         353       0.03493       0.06625       0.42868       394       0.03625       0.0708       0.52227         354       0.08178       0.02603       0.33033       395       0.01329       0.0753       0.77407         355       0.04482       0.04608       0.67446       396       0.01831       0.0381       0.78522         356       0.08639       0.03961       0.13268       397       0.02284       0.072       0.22052         357       0.00799       0.05347       0.41188       398       0.0655       0.0853       0.16132         358       0.05292       0.09425       0.31566       399       0.04384       0.0268       0.7889         359       0.06949       0.07297       0.32585       400       0.0675       0.0167       0.62411         360       0.02114       0.09324       0.14501       401       0.0253       0.064508         361       0.03397       0.02613       0.58444       0.4135                                                                                                                                                                                                         | 350    | 0.08692 | 0.07793 | 0.15007 | 391    | 0.0631  | 0.079  | 0.51     |
| 352       0.05824       0.02867       0.40678       393       0.0504       0.0423       0.71553         353       0.03493       0.06625       0.42868       394       0.03625       0.0708       0.52227         354       0.08178       0.02603       0.33033       395       0.01329       0.0753       0.77407         355       0.04482       0.04608       0.67446       396       0.01831       0.0381       0.78522         356       0.08639       0.03961       0.13268       397       0.02284       0.072       0.22052         357       0.00799       0.05347       0.41188       398       0.0655       0.0853       0.16132         358       0.05292       0.09425       0.31566       399       0.04384       0.0268       0.7889         359       0.06949       0.07297       0.32585       400       0.0675       0.0167       0.62411         360       0.02114       0.09324       0.14501       401       0.02811       0.0253       0.064508         361       0.03397       0.02613       0.58444                                                                                                                                                                                                                                                                                                                 | 351    | 0.08682 | 0.05513 | 0.31762 | 392    | 0.01609 | 0.0073 | 0.38015  |
| 353       0.03493       0.06625       0.42868       394       0.03625       0.0708       0.52227         354       0.08178       0.02603       0.33033       395       0.01329       0.0753       0.77407         355       0.04482       0.04608       0.67446       396       0.01831       0.0381       0.78522         356       0.08639       0.03961       0.13268       397       0.02284       0.072       0.22052         357       0.00799       0.05347       0.41188       398       0.0655       0.0853       0.16132         358       0.05292       0.09425       0.31566       399       0.04384       0.0268       0.7889         359       0.06949       0.07297       0.32585       400       0.0675       0.0167       0.62411         360       0.02114       0.09324       0.14501       401       0.02811       0.0253       0.064508         361       0.03529       0.02613       0.58444                                                                                                                                                                                                                                                                                                                                                                                                                         | 352    | 0.05824 | 0.02867 | 0.40678 | 393    | 0.0504  | 0.0423 | 0.71553  |
| 354       0.08178       0.02603       0.33033       395       0.01329       0.0753       0.77407         355       0.04482       0.04608       0.67446       396       0.01831       0.0381       0.78522         356       0.08639       0.03961       0.13268       397       0.02284       0.072       0.22052         357       0.00799       0.05347       0.41188       398       0.0655       0.0853       0.16132         358       0.05292       0.09425       0.31566       399       0.04384       0.0268       0.7889         359       0.06949       0.07297       0.32585       400       0.0675       0.0167       0.62411         360       0.02114       0.09324       0.14501       401       0.02811       0.0253       0.064508         361       0.03529       0.02613       0.58444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 353    | 0.03493 | 0.06625 | 0.42868 | 394    | 0.03625 | 0.0708 | 0.52227  |
| 355       0.04482       0.04608       0.67446       396       0.01831       0.0381       0.78522         356       0.08639       0.03961       0.13268       397       0.02284       0.072       0.22052         357       0.00799       0.05347       0.41188       398       0.0655       0.0853       0.16132         358       0.05292       0.09425       0.31566       399       0.04384       0.0268       0.7889         359       0.06949       0.07297       0.32585       400       0.0675       0.0167       0.62411         360       0.02114       0.09324       0.14501       401       0.02811       0.0253       0.064508         361       0.03529       0.02613       0.58444       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                           | 354    | 0.08178 | 0.02603 | 0.33033 | 395    | 0.01329 | 0.0753 | 0.77407  |
| 356       0.08639       0.03961       0.13268       397       0.02284       0.072       0.22052         357       0.00799       0.05347       0.41188       398       0.0655       0.0853       0.16132         358       0.05292       0.09425       0.31566       399       0.04384       0.0268       0.7889         359       0.06949       0.07297       0.32585       400       0.0675       0.0167       0.62411         360       0.02114       0.09324       0.14501       401       0.02811       0.0253       0.064508         361       0.03529       0.02613       0.58444                       0.0253       0.064508             0.0253       0.064508             0.0253       0.064508             0.0253       0.064508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 355    | 0.04482 | 0.04608 | 0.67446 | 396    | 0.01831 | 0.0381 | 0.78522  |
| 357       0.00799       0.05347       0.41188       398       0.0655       0.0853       0.16132         358       0.05292       0.09425       0.31566       399       0.04384       0.0268       0.7889         359       0.06949       0.07297       0.32585       400       0.0675       0.0167       0.62411         360       0.02114       0.09324       0.14501       401       0.02811       0.0253       0.064508         361       0.03529       0.02613       0.58444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 356    | 0.08639 | 0.03961 | 0.13268 | 397    | 0.02284 | 0.072  | 0.22052  |
| 358       0.05292       0.09425       0.31566       399       0.04384       0.0268       0.7889         359       0.06949       0.07297       0.32585       400       0.0675       0.0167       0.62411         360       0.02114       0.09324       0.14501       401       0.02811       0.0253       0.064508         361       0.03529       0.02613       0.58444       401       0.02811       0.0253       0.064508         362       0.02189       0.05257       0.30445       5       5       5       5         363       0.03397       0.00963       0.1897       5       5       5       5         364       0.04135       0.07312       0.05059       5       5       5       5         366       0.00939       0.08215       0.54573       5       5       5       5         367       0.05475       0.09395       0.83381       5       5       5       5         368       0.02973       0.08865       0.08803       5       5       5       5         369       0.02674       0.04186       0.86425       5       5       5       5         370                                                                                                                                                                                                                                                                           | 357    | 0.00799 | 0.05347 | 0.41188 | 398    | 0.0655  | 0.0853 | 0.16132  |
| 359       0.06949       0.07297       0.32585       400       0.0675       0.0167       0.62411         360       0.02114       0.09324       0.14501       401       0.02811       0.0253       0.064508         361       0.03529       0.02613       0.58444       401       0.02811       0.0253       0.064508         362       0.02189       0.05257       0.30445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 358    | 0.05292 | 0.09425 | 0.31566 | 399    | 0.04384 | 0.0268 | 0.7889   |
| 360       0.02114       0.09324       0.14501       401       0.02811       0.0253       0.064508         361       0.03529       0.02613       0.58444         362       0.02189       0.05257       0.30445         363       0.03397       0.00963       0.1897         364       0.04135       0.07312       0.05059         365       0.05437       0.05918       0.30524         366       0.00939       0.08215       0.54573         367       0.05475       0.09395       0.83381         368       0.02973       0.08865       0.08803         369       0.02674       0.04186       0.86425         370       0.02688       0.00503       0.16788         371       0.01887       0.0237       0.77042         373       0.08921       0.02474       0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 359    | 0.06949 | 0.07297 | 0.32585 | 400    | 0.0675  | 0.0167 | 0.62411  |
| 361       0.03529       0.02613       0.58444         362       0.02189       0.05257       0.30445         363       0.03397       0.00963       0.1897         364       0.04135       0.07312       0.05059         365       0.05437       0.05918       0.30524         366       0.00939       0.08215       0.54573         367       0.05475       0.09395       0.83381         368       0.02973       0.08865       0.08803         369       0.02674       0.04186       0.86425         370       0.02688       0.00503       0.16788         371       0.01887       0.05368       0.80036         372       0.09108       0.0237       0.77042         373       0.08921       0.02474       0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 360    | 0.02114 | 0.09324 | 0.14501 | 401    | 0.02811 | 0.0253 | 0.064508 |
| 362       0.02189       0.05257       0.30445         363       0.03397       0.00963       0.1897         364       0.04135       0.07312       0.05059         365       0.05437       0.05918       0.30524         366       0.00939       0.08215       0.54573         367       0.05475       0.09395       0.83381         368       0.02973       0.08865       0.08803         369       0.02674       0.04186       0.86425         370       0.02688       0.00503       0.16788         371       0.01887       0.05368       0.80036         372       0.09108       0.0237       0.77042         373       0.08921       0.02474       0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 361    | 0.03529 | 0.02613 | 0.58444 |        |         |        |          |
| 363       0.03397       0.00963       0.1897         364       0.04135       0.07312       0.05059         365       0.05437       0.05918       0.30524         366       0.00939       0.08215       0.54573         367       0.05475       0.09395       0.83381         368       0.02973       0.08865       0.08803         369       0.02674       0.04186       0.86425         370       0.02688       0.00503       0.16788         371       0.01887       0.0237       0.77042         373       0.08921       0.02474       0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 362    | 0.02189 | 0.05257 | 0.30445 |        |         |        |          |
| 364       0.04135       0.07312       0.05059         365       0.05437       0.05918       0.30524         366       0.00939       0.08215       0.54573         367       0.05475       0.09395       0.83381         368       0.02973       0.08865       0.08803         369       0.02674       0.04186       0.86425         370       0.02688       0.00503       0.16788         371       0.01887       0.05368       0.80036         372       0.09108       0.0237       0.77042         373       0.08921       0.02474       0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 363    | 0.03397 | 0.00963 | 0.1897  |        |         |        |          |
| 365       0.03437       0.03918       0.30324         366       0.00939       0.08215       0.54573         367       0.05475       0.09395       0.83381         368       0.02973       0.08865       0.08803         369       0.02674       0.04186       0.86425         370       0.02688       0.00503       0.16788         371       0.01887       0.05368       0.80036         372       0.09108       0.0237       0.77042         373       0.08921       0.02474       0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 364    | 0.04135 | 0.07312 | 0.05059 |        |         |        |          |
| 366       0.00939       0.08213       0.34373         367       0.05475       0.09395       0.83381         368       0.02973       0.08865       0.08803         369       0.02674       0.04186       0.86425         370       0.02688       0.00503       0.16788         371       0.01887       0.05368       0.80036         372       0.09108       0.0237       0.77042         373       0.08921       0.02474       0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 305    | 0.05437 | 0.05918 | 0.30524 |        |         |        |          |
| 367       0.05475       0.09395       0.83381         368       0.02973       0.08865       0.08803         369       0.02674       0.04186       0.86425         370       0.02688       0.00503       0.16788         371       0.01887       0.05368       0.80036         372       0.09108       0.0237       0.77042         373       0.08921       0.02474       0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300    | 0.00939 | 0.08215 | 0.04073 |        |         |        |          |
| 368       0.02973       0.08865       0.08803         369       0.02674       0.04186       0.86425         370       0.02688       0.00503       0.16788         371       0.01887       0.05368       0.80036         372       0.09108       0.0237       0.77042         373       0.08921       0.02474       0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 367    | 0.05475 | 0.09395 | 0.00000 |        |         |        |          |
| 370       0.02688       0.00503       0.16788         371       0.01887       0.05368       0.80036         372       0.09108       0.0237       0.77042         373       0.08921       0.02474       0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 368    | 0.02973 | 0.08865 | 0.08803 |        |         |        |          |
| 371         0.01887         0.05368         0.80036           372         0.09108         0.0237         0.77042           373         0.08921         0.02474         0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 270    | 0.02074 | 0.04100 | 0.00423 |        |         |        |          |
| <b>372</b> 0.09108 0.0237 0.77042<br><b>373</b> 0.08921 0.02474 0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 370    | 0.02088 | 0.00503 | 0.10/98 |        |         |        |          |
| <b>373</b> 0.08921 0.02474 0.87609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 372    | 0.09108 | 0.0237  | 0.77042 |        |         |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 373    | 0.08921 | 0.02474 | 0.87609 |        |         |        |          |

# 7. Índice de Figuras

| Fig. 1-1 Micro-maquinado superficial para diseño de dispositivos MEMS [10].                                                 |
|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                             |
| Fig. 1-2 a) Estructura 3D de un resonador piezoeléctrico SAW con reflectores                                                |
| de Bragg b) El mismo resonador con un mallado libre tetraédrico 16                                                          |
| Fig. 2-1 Modos de actuación sobre materiales piezoeléctricos. A) Modo                                                       |
| paralelo de compresión, B) modo transversal de compresión, C) Modo                                                          |
| transversal de cizallamiento25                                                                                              |
| Fig. 2-2 Ondas acústicas de cuerpo y superficiales                                                                          |
| Fig. 2-3 Características geométricas de los resonadores SAW                                                                 |
| Fig. 2-4 Resonador de modos acústicos de contorno liberado del substrato                                                    |
| [10]                                                                                                                        |
| Fig. 2-5 Respuesta genérica de un resonador piezoeléctrico                                                                  |
| Fig. 2-6 Modelo Butterworth-Van Dyke Modificado para resonadores                                                            |
| piezoeléctricos                                                                                                             |
| Fig. 3-1 Campos de desplazamiento del resonador piezoeléctrico para a)                                                      |
| frecuencia de resonancia y b) frecuencia de anti-resonancia                                                                 |
| Fig. 4-1 Espacio solución hallado a partir del conjunto de simulaciones                                                     |
| propuestas                                                                                                                  |
| Fig. 4-2 Frecuencia de resonancia con electrodos de aluminio a)hp=0.1,                                                      |
| b)hp=0.366, c)hp=0.566 y d)hp=0.766. Gráfica tipo 153                                                                       |
| Fig. 4-3 Frecuencia de resonancia con electrodos de molibdeno a)hp=0.1,                                                     |
| b)hp=0.366, c)hp=0.566 y d)hp=0.766. Gráfica tipo 153                                                                       |
| Fig. 4-4 Frecuencia de resonancia con electrodos de aluminio. Muestras                                                      |
|                                                                                                                             |
| seleccionadas según la Tabla 4. Gráfica tipo 254                                                                            |
| seleccionadas según la Tabla 4. Gráfica tipo 254<br>Fig. 4-5 Frecuencia de resonancia con electrodos de Molibdeno. Muestras |

Fig. 4-6 Frecuencia de resonancia en función del espesor normalizado del electrodo superior para resonadores con electrodos de molibdeno y aluminio.

Fig. 4-7 Velocidad mecánica con electrodos de aluminio a)hp=0.1, b)hp=0.366, Fig. 4-8 Velocidad mecánica con electrodos de molibdeno a)hp=0.1, Fig. 4-9 Velocidad mecánica efectiva con electrodos de aluminio. Muestras Fig. 4-10 Velocidad mecánica con electrodos de molibdeno. Muestras seleccionadas según la Tabla 3. Gráfica tipo dos......57 Fig. 4-11 Factor de acople con electrodos de aluminio y a)hp=0.1, b)hp=0.366, Fig. 4-12 Factor de acople con electrodos de molibdeno a)hp=0.1, b)hp=0.366, Fig. 4-13 Factor de acople electromecánico con electrodos de Al. Muestras Fig. 4-14 Factor electromecánico con electrodos de Mo. Muestras Fig. 4-15 Factor de acople electromecánico en función del espesor del electrodo superior para resonadores con electrodos de aluminio y molibdeno. Fig. 4-16 Factor de calidad con electrodos de aluminio a)hp=0.1, b)hp=0.366, Fig. 4-17 Factor de calidad con electrodos de molibdeno a)hp=0.1, b)hp=0.366, Fig. 4-18 Factor de calidad con electrodos de aluminio. Muestras Fig. 4-19 Factor de calidad con electrodos de Molibdeno. Muestras 

| Fig. 4-20 Factor de Calidad en función del espesor del electrodo superior. Los   |
|----------------------------------------------------------------------------------|
| espesores de piezoeléctrico y electrodo inferior son de 0.4 y 0.05               |
| respectivamente. Electrodos de aluminio 64                                       |
| Fig. 4-21 Frecuencia de resonancia calculada por la ecuación 4-5 versus          |
| frecuencia resonancia simulada. Electrodos de aluminio                           |
| Fig. 4-22 Frecuencia de resonancia calculada por la ecuación 4-6 versus          |
| frecuencia mmresonancia simulada. Electrodos de olibdeno                         |
| Fig. 4-23 Error porcentual (1/100) versus la frecuencia de resonancia simulada.  |
| Electrodos de aluminio67                                                         |
| Fig. 4-24 Error porcentual (1/100) versus la frecuencia de resonancia simulada.  |
| Electrodos de Molibdeno                                                          |
| Fig. 4-25 Error porcentual (1/100) versus la frecuencia de resonancia simulada.  |
| Electrodos de aluminio. Se retiró el 8% de frecuencias por debajo de la teórica. |
|                                                                                  |
| Fig. 4-26 Error porcentual (1/100) versus la frecuencia de resonancia simulada.  |
| Electrodos de Molibdeno. Se retiro el 18% de frecuencias por debajo de la        |
| teorica                                                                          |
| Fig. 4-27 Error porcentual (1/100) versus la frecuencia de resonancia simulada.  |
| Electrodos de aluminio, Modelo general de orden tres72                           |
| Fig. 4-28 Error porcentual (1/100) versus la frecuencia de resonancia            |
| simulada. Electrodos de Molibdeno, Modelo general de orden tres72                |
| Fig. 4-29 Error porcentual en la frecuencia de resonancia versus frecuencia de   |
| resonancia simulada. Datos de validación para electrodos de aluminio. Modelo     |
| de orden tres74                                                                  |
| Fig. 4-30 Error porcentual en la frecuencia de resonancia versus frecuencia de   |
| resonancia simulada. Datos de validación para electrodos de Molibdeno.           |
| Modelo de orden tres75                                                           |

# 8. Índice de Tablas

| Tabla 1. Características principales de los piezoeléctricos comúnmente usados   |
|---------------------------------------------------------------------------------|
| en la industria14                                                               |
| Tabla 2 Conjunto de simulaciones. Barrido de parámetros.       41               |
| Tabla 3. Rangos de valores aleatorios para los parámetros de estudio en las     |
| simulaciones de validación 46                                                   |
| Tabla 4 Valores de los parámetros $he y hg$ usados en las gráficas tipo dos. 51 |
| Tabla 5 Propiedades físicas de los materiales, valores por defecto en           |
| COMSOL                                                                          |
| Tabla 6 Coeficientes para el modelo de contribuciones lineales de un            |
| resonador piezoeléctrico LWR65                                                  |
| Tabla 7 Errores de los modelos de contribución lineales para la frecuencia de   |
| resonancia, luego de la remoción frecuencial70                                  |
| Tabla 8 Coeficientes para el modelo de contribuciones lineales luego de         |
| remover las frecuencias cercanas a la teórica de resonancia para el aluminio    |
| y molibdeno70                                                                   |
| Tabla 9 Coeficientes del modelo generalizado de orden tres para la predicción   |
| de la frecuencia de resonancia, Ecuaciones 4-9 y 4-1071                         |
| Tabla 10 Errores para los modelos de frecuencia de resonancia con electrodos    |
| de Aluminio y Molibdeno73                                                       |

### 9. Referencias

- [1] Gemalto, «Introducing 5G networks Characteristics and usages,» June 2018. [En línea]. Available: https://www.gemalto.com/mobile/inspired/5G.
- [2] S. YOST, «MMWAVE: BATTLE OF BANDS,» National Instruments, pp. 333-339, June 2007.
- [3] R. Abdolvand, H. M. Lavasani, G. K. Ho y a. F. Ayazi, "Thin-Film Piezoelectricon-Silicon Resonators for High-Frequency Reference Oscillator Applications," *IEEE Transactions on Ultrasonics*, vol. 55, nº 12, pp. 2596-2606, 2008.
- [4] D. C. Abeysinghe, S. Dasgupta, J. T. Boyd y H. E. Jackson, «A novel MEMS pressure sensor fabricated on an optical fiber,» *IEEE Photonics Technology Letters*, vol. 13, nº 9, 2001.
- [5] R. Hulsing, «MEMS inertial rate and acceleration sensor,» IEEE Aerospace and Electronic Systems Magazine, vol. 13, nº 11, 1998.
- [6] N. T. Nguyen, «Micromachined flow sensors—a review,» Flow Measurement and Instrumentation, vol. 8, nº 1, pp. 7-16, 1997.
- [7] S. Equipment and Material International y I. Developpement Yole, «Global MEMS/Microsystems Markets and Opportunities,» 2012.
- [8] R. V. Snyder, A. Mortazawi, I. Hunter, S. Bastioli, G. Macchiarella y K. Wu, «Present and Future Trends in Filters and Multiplexers,» *IEEE TRANSACTIONS* ON MICROWAVE THEORY AND TECHNIQUES, pp. 1-37, 2015.
- [9] B. Rayleigh, Theory of Sound, vol. 1, MacMillan And CO, 1877.
- [10] J. Zou, High Quality Factor Lamb Wave Resonators, University of California at Berkeley, 2014.
- [11] F. Voltmer, E. Ippen y R. White, "Measured and calculated surface-wave velocities," Proceedings of the IEEE, vol. 56, nº 9, pp. 1634-1635, 1968.
- [12] N. F. Foster, «Piezoelectricity in thin film materials,» The Journal of the Acoustical Society of America, 1980.
- [13] T. Y. T. O. a. A. K. T. Shiosaki, «Low-temperature growth of piezoelectric AIN film by rf reactive planar magnetron sputtering,» *Applied Physics Letters*, vol. 36, 1980.
- [14] L. Brillouin, Tensors in Mechanics and Elasticity, New York: Academic Press, 1964.

- [15] K. Lakin, G. Kline y K. McCarron, "Development of miniature filters for wireless applications," *IEEE Transactions on Microwave Theory and Techniques*, vol. 43, n<sup>o</sup> 12, pp. 2933-2939, 1995.
- [16] M. D. S.E. Korshunov, "Experimental measurements of SMR-BAW resonators at 10 GHz," de Microwave & Telecommunication Technology, Sevastopol, Ukraine, 2013.
- [17] W. Smith, H. Gerard, J. Collins, T. Reeder y H. Shaw, "Design of Surface Wave Delay Lines with Interdigital Transducers," *IEEE Transactions on Microwave Theory and Techniques*, vol. 17, nº 11, pp. 865-873, 1969.
- [18] R. Rosenberg y L. Coldren, «Scattering Analysis and Design of SAW Resonator Filters,» *IEEE Transactions on Sonics and Ultrasonics*, vol. 26, nº 3, pp. 205-229, 1979.
- [19] K. Yashiro y N. Goto, «Analysis of bulk waves in surface-acoustic wave devices,» IEE Journal on Microwaves, Optics and Acoustics, vol. 2, nº 6, pp. 187-193, 1978.
- [20] G. Piazza, P. J. Stephanou y A. P. Pisano, «AIN Contour-Mode Vibrating RF MEMS for Next Generation Wireless Communications,» de *European Solid-State Device Research Conference*, Montreux, Switzerland, 2007.
- [21] C. L. J. Zou, "Electrode Design of AIN Lamb Wave Resonators," de Frequency Control Symposium (IFCS), 2016.
- [22] G. Pillai, A. A. Zope, J. M.-L. Tsai y S.-S. Li, "Design and Optimization of SHF Composite FBAR Resonators," *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,* vol. 64, nº 12, pp. 1864-1873, 2017.
- [23] G. Piazza, P. J. Stephanou y A. P. Pisano, «Single-Chip Multiple-Frequency ALN MEMS Filters Based on Contour-Mode Piezoelectric Resonators,» *Journal of Microelectromechanical Systems*, vol. 16, nº 2, pp. 319-328, 2017.
- [24] W. Zhoua, A. Khaliqa, Y. Tanga, H. Jiac y R. R.Selmicab, «Simulation and design of piezoelectric microcantilever chemical sensors,» Sensors and Actuators A: *Physical*, vol. 125, nº 1, pp. 69-75, 2005.
- [25] J.-M. Kang, «Piezoelectric MEMS Resonator Characterization and Filter Design,» Massachusetts Institute of Technology, Massachusetts, 2004.
- [26] A. Potter, «Report of Summer Fellowship: Fabrication and Modeling of Piezoelectric RF MEMS Resonators,» Department of Physics and Division Engineering – Brown University, 2007.

- [27] G. Piazza y A. P. Pisano, "Dry-released post-CMOS compatible contour-mode aluminum nitride micromechanical resonator for VHF applications," de Actuator Microsystems Workshop, 2004.
- [28] M. Turner, R. W. Clough, H. C. Martin y L. J. Topp, «Stiffness and Deflection Analysis of Complex Structures,» *Journal Aeronautical Science*, vol. 23, nº 9, pp. 805-823, 1956.
- [29] M. Umeda, K. Nakamura y S. Ueha, «Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator,» *Journal of Applied Physics*, vol. 35, nº 5, pp. 3267-3273, 1996.