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Abstract—We have developed several methods of designing 
sparse periodic arrays based upon the polynomial factorization 
method. In these methods, transmit and receive aperture poly-
nomials are selected such that their product results in a poly-
nomial representing the desired combined transmit/receive 
(T/R) effective aperture function. A desired combined T/R 
effective aperture is simply an aperture with an appropriate 
width exhibiting a spectrum that corresponds to the desired 
two-way radiation pattern. At least one of the two aperture 
functions that constitute the combined T/R effective aperture 
function will be a sparse polynomial. A measure of sparsity of 
the designed array is defined in terms of the element reduction 
factor. We show that elements of a linear array can be reduced 
with varying degrees of beam mainlobe width to sidelobe re-
duction properties.

I. Introduction

The design of linear phased arrays has been of interest 
for many years with applications in imaging systems 

using ultrasound, radar, sonar, and seismic signals [1]–[3]. 
For example, such arrays are used to electronically steer 
or focus the received signals to enhance ultrasound image 
resolution. The number of elements, their weights, and 
element spacing in the array generally determine the level 
of control over the ultrasound beam. The cost of a scan-
ner, especially for 2-D imaging, can be reduced by using 
sparse arrays with multiple missing elements. However, 
periodic sparse arrays obtained either algorithmically or 
by using heuristic optimization techniques can result in 
unwanted grating lobes in the radiation pattern. One way 
to avoid such a grating lobe in a periodic array is to use a 
two-way radiation pattern generated by a pair of transmit 
and receive arrays with proper periodicities and different 
spacings [4]. The convolution of these arrays can result in 
a full array or a near-full array with minimum mainlobe 
width, high sidelobe rejection, and control over unwanted 
grating lobes.

An objective of sparse array design is to enhance image 
resolution, which is achieved through minimizing the peak 
sidelobe height and mainlobe width. Additionally, focused 
beamforming for elimination of interference signals is an-
other major goal. Many well-known researchers have for-
mulated algorithms for optimized array design. Steinberg 
[1], [5] introduced design of thinned arrays with randomly 
located elements to reduce peak sidelobe and compared it 
with existing algorithmic techniques. Linear programming 
based algorithms have been used by [6] and [7] for reduced 
sidelobe thinned array design. Haupt and others [8]–[13] 
showed how to optimally thin large arrays using genetic 
algorithms (GA). Simulated annealing-based techniques 
to synthesize the position and weight coefficients of a lin-
ear array that minimizes peak sidelobes were proposed by 
Trucco, et al. [14], [15]. Austeng, et al. [16] proposed the 
design of 2-D radially sparse periodic and non-overlapping 
layouts with the possibility of trading off between sidelobe 
peaks and sidelobe energy. Caorsi, et al. [12] applied a 
customized GA to adaptively eliminate interfering signals 
in 3-D scanner design. Recently a hybrid approach [17] 
combining particle swarm optimization (PSO) with com-
binatorial techniques has been proposed for the synthesis 
of planar thinned arrays.

Lockwood, et al. [4] proposed multiple algorithmic 
strategies for designing sparse periodic arrays using the 
combined transmit/receive (T/R) effective aperture func-
tion. The strategies proposed (except for synthetic aper-
ture) are somewhat intuitive and it is not obvious how to 
extend them to any arbitrary array size. Their proposed 
vernier interpolation technique has been used in commer-
cial scanner designs with a 31–element sparse array and 
was extended to 2-D array designs [8]. Although vernier 
interpolation leads to excellent image resolution, other 
techniques such as staircase effective aperture function 
obtained through rectangular interpolation [18]–[22] can 
also lead to good designs.

In a manner analogous to window-based finite impulse 
response (FIR) filter design [18], a sparse array based com-
bined T/R effective aperture function can be chosen based 
upon the requirements on sidelobe rejection and main-
lobe width. Further optimization of the beampattern can 
be undertaken using optimization techniques proposed in 
several papers including [10]. Minimization of the number 
of transducers beyond optimization of sparse array sizes 
also needs to be addressed to reduce the cost of high-speed 
imaging systems.

Limiting the number of elements in 1-D arrays has not 
been a major issue for ultrasound imaging for about a 
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decade. With new transducer technologies and software 
beamformers working on general purpose processors, sparse 
1-D arrays are not of great interest. However, this is not 
the case for 2-D arrays [16], [17]. Large, fully sampled 2-D 
arrays still require electronic channel counts beyond the 
current state of the art. Approximation methods are used 
in current clinical systems, hence, a robust approach to 
creating sparse arrays may still be interesting for clinical 
applications. Because 2-D arrays can be formed out of 1-D 
arrays, assuming the 2-D array to be separable, simple 
design of robust 1-D array as postulated in this paper will 
be of interest to the ultrasound imaging practitioners.

The main contributions from this paper are as follows. 
After introducing the mathematical notations in Section 
II, we describe a general polynomial factorization scheme 
[19] in Section III and apply it to the design of different 
periodic linear sparse arrays. Sections IV through VII in-
clude the designs of uniform, linearly tapered, staircase, 
and mixed tapered staircase arrays proposed in [19]–[22] 
under a common framework with specific design steps and 
illustrative examples. Our polynomial factorization-based 
mathematical framework is extended to the previously 
proposed [4] triangular and vernier interpolation schemes. 
Some properties of triangular and vernier interpolations 
became obvious from this formulation and are described 
under Sections VIII and IX. In Section X, we compare all 
of the sparse arrays designed in the examples as well as 
those for a combined T/R effective 85-element-long full ar-
ray. The comparison table could be used as a guideline to 
choosing one or more design techniques to be used for the 
specific image scanner or antenna beamformer design.

II. Mathematical Notations

The far-field radiation pattern at an angle θ away from 
the broadside of a linear array [2] with N isotropic, equis-
paced elements is given by

	 P u w n e j u d n

n

N

( ) ( )eff
[ ( / ) ]=

=

-

å 2

0

1
p l ,	 (1)

where the aperture function weff(n) is the element weight-
ing function which depends on the element position n, λ 
is the wavelength, u = sinθ, and d is the inter-element 
spacing. We consider here the case of a two-way radia-
tion pattern generated by a pair of transmit and receive 
arrays. In this case, the design reduces to the design of a 
combined T/R effective aperture function weff(n) given by 
the convolution of the transmit and receive aperture func-
tions, wT(n) and wR(n), respectively [4]:

	 w n w n w neff T R( ) ( ) ( )= * .	 (2)

The number of elements N in a single array with a 
combined T/R effective aperture function weff(n) is given 
by N = T + R – 1, where T is the number of elements (in-

cluding the missing elements) in the transmit array wT(n) 
and R is the number of elements (including the missing 
elements) in the receive array wR(n).

By substituting

	 x e j ud= 2p l/ ,	 (3)

the combined T/R effective, transmit, and receive aper-
ture functions can be expressed as polynomials:
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It follows that (2) can be rewritten in the form

	 P x P x P xeff T R( ) ( ) ( )= .	 (7)

It has been shown that in such cases, it is possible to 
use sparse transmit and receive arrays with a combined 
T/R effective aperture function that is a close equivalent 
to that of a single array with no missing elements [4], 
[18]–[22], i.e., a full array.

In this paper, we outline methods of designing sparse 
transmit and receive arrays based on the factorization of 
polynomial Peff(x) as a product of two lower order poly-
nomials, PT(x) and PR(x), with some zero-valued coef-
ficients. Each of the methods described herein results in 
arrays with different layouts of varying properties; one 
could either use the designed arrays as is or use them as a 
starting point for further optimization.

III. A General Factorization Method

Our sparse array design methods are based on the fac-
torization of a polynomial PM(x) of degree M in positive 
powers of x and with unity coefficients [18], [19]:

	 P x xM
i

i

M

( ) =
=
å

0

.	 (8)

The number of coefficients in PM(x) is given by M + 1.

Theorem [19]: Let the positive integer M + 1 be 
expressible as a product of K + 1 irreducible positive 
integers Mk + 1, 0 ≤ k ≤ K, i.e.,

	
M Mk

k

K

+ = +
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(9)
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Then PM(x) can be expressed in the form
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where

	 S M Mk j
j

k

= + =- -
=
Õ( ), ,1 1

0

1 0 	 (11)

Proof: The proof of the decomposition in (10) is by 
induction and is included in [19].

The factorization of a specified composite number M + 
1 into a product of irreducible integers can be carried out 
using Euclid’s algorithm. A special case is when M + 1 
can be expressed as a power of two, namely

	 M + =1 2n,	 (12)

where ν is an integer. Then the factorization in (10) re-
duces to

	 P x x x xM( ) = + + +
-

( )( ) ( ).1 1 12 2 1


n
	 (13)

The decomposition in (13) has been used in designing 
sparse antenna arrays with a uniform aperture function 
and a linearly tapered aperture function [18].

IV. Sparse Array Design With Uniform Effective 
Aperture Function

The design steps based upon discussions of the previous 
sections are outlined here.

	 1) 	Determine or choose the order M of the combined 
T/R effective aperture function Peff(x). Compute 
the parameters sidelobe rejection (SR) and mainlobe 
width (MW), defined in Section X, to make sure that 
choice of M + 1 meets the design specifications.

	 2) 	Factorize M + 1 into K + 1 prime integers M0 + 
1, M1 + 1, …, MK + 1 using (9). It is obvious that no 
further design steps can be taken if M + 1 is a prime 
number.

	 3) 	Factorize Peff(x) into K + 1 prime factors as in 
(10).

	 4) 	Associate KT prime factors with PT(x) so that the 
smaller aperture is for the transmit array and the 
remaining K + 1 − KT factors are with PR(x).

	 5) 	Compute the sparsity factor (SF) parameter, defined 
in Section X, to determine acceptability of the de-
sign. If it is not acceptable, go back to step 4 to find 
another sparse solution.

Example 1:

Consider M = 17, i.e., P x x i
i17 0
17( ) .= =å  In this case, K 

= 2 and one factorization is given by

	 P x x x x x x17
2 4 6 121 1 1( ) ( )( )( ).= + + + + + 	

There are three possible practical array designs resulting 
from this factorization.

Design #1: We can choose
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This design uses 11 antenna elements, 2 in the transmit 
array and 9 in the receive array, resulting in an SF of 
18/11 = 1.636. Both receive and transmit arrays are peri-
odic, which is characteristic of the uniform effective aper-
ture function. The transmit array elements are λ/2 apart, 
whereas those of the receive array are λ apart. The array 
patterns are shown in Fig. 1.

Design #2: Now we choose
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The total number of antenna elements needed for this 
design is 9, leading to an SF of 18/9 = 2. The SF for 
this design is better than that obtained in Design #1. In 
this case, receive and transmit array elements are respec-
tively 3λ and λ/2 apart. The array patterns are shown in  
Fig. 2.

Design #3: A third design with 9 elements is also pos-
sible. The arrays are shown in Fig. 3. This exhibits a dif-
ferent spacing pattern of array elements compared with 
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Fig. 1. Design #1 of Example 1.



that shown in Figs. 1 and 2. Here, the receive array does 
not exhibit a uniform spacing although the transmit array 
elements are λ apart.

Example 2:

In this example, we again choose K = 2 and
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Again, there are three different designs possible and all of 
them require 12 antenna elements, giving an SF of 27/12 
= 2.25. For the design given,
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the pattern of the combined T/R effective aperture func-
tion and the corresponding transmit and receive apertures 
are shown in Fig. 4. Clearly, the transmit array elements 
are λ/2 apart, whereas the receive elements are 9λ/2 
apart.

It should be noted from Examples 1 and 2 that an 
increase in M (from 17 to 26) improves the MW (from 
0.0938 to 0.0625) of the design without affecting the SR 
of −13.2 dB. This is due to the property of the uniform 
effective aperture function. The design in Example 2 with 
a larger M also exhibits a better SF.

V. Sparse Array Design With Linearly Tapered 
Effective Aperture Function

For the design of a sparse array pair with a linearly 
tapered effective aperture function Peff(x), we choose

	 P x P x P xr seff( ) ( ) ( )= ,	 (14)

where
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The number of elements in the combined T/R effective 
aperture function is then

	 N r s= + - 1.	 (16)

The parameter s must satisfy the condition

	 s r> - 1.	 (17)
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Fig. 2. Design #2 of Example 1.

Fig. 3. Design #3 of Example 1.

Fig. 4. Transmit, receive, and combined T/R apertures for Example 2.



The design steps are as follows.

	 1) 	Determine or choose the order N of the combined 
T/R effective aperture function Peff(x). Compute 
the parameters SR and MW to make sure that the 
choice of N meets the design specifications.

	 2) 	Divide N into two components r and s satisfying (16) 
and (17) and making sure that at least one of these 
components is a composite number like M + 1 that 
can be factorized using (9).

	 3) 	Select Pr(x) and Ps(x) using (15).
	 4) 	Factorize Pr(x) and/or Ps(x) into factors as in (10).
	 5) 	Associate some factors from Pr(x) and Ps(x) with 

PT(x) and the rest of the factors with PR(x) so that 
the transmit array has a smaller aperture than the 
receive array.

	 6) 	Compute the SF parameter to determine acceptabil-
ity of the design. If it is not acceptable, go back to 
step 5 to find another sparse solution.

Example 3:

As an example of designing a linearly tapered array, we 
choose r = 36, s = 50.

Thus 	
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The SR has improved to −31 dB as seen from Table I.
The transmit and receive arrays could also be cho-

sen as
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Plots of the corresponding transmit and receive array 
patterns are shown in Fig. 5. In this case, the element re-
duction factor (ERF, defined in Section X) is (36 + 50)/
(30 + 20) = 1.72. The transmit array is periodic with 
elements spaced λ/2 apart, but the receive array is not 
equally spaced.

VI. Sparse Array Design With Staircase 
Effective Aperture Function

For the design of an array pair with a staircase effective 
aperture function, there are three possible cases described 
in this section.

A. Even Number of Unequal Step Sizes

In this case, the factor Pr(x) is of the form
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(18)
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TABLE I. Summary of Results From Design Examples in This Paper. 

Example Type NT NR Neff SF ERF

Leakage 
factor 
(%)

Mainlobe 
width 
(rad)

Sidelobe 
rejection 

(dB)

SNR 
loss 
(dB)

Composite 
SNR loss 

(dB)

1 #1 Uniform 2 9 18 1.64 9.53 0.0977 −13.2 0 2.7621
1 #2 Uniform 6 3 18 2.00 9.53 0.0977 −13.2 0 6.3682
1 #3 Uniform 3 6 18 2.00 9.53 0.0977 −13.2 0 8.1167
2 Uniform 9 3 27 2.25 9.54 0.0645 −13.2 0 8.0163
3 Linearly tapered 20 30 85 1.70 1.72 0.14 0.0273 −31.8 1.1137 3.4242
4 Staircase 16 18 60 1.76 1.2 1.41 0.0371 −21 0.826 6.6511
5 Staircase 18 17 81 2.31 1.63 0.58 0.0273 −30.9 0.8811 9.8623
5 Staircase 

with 
apodization

18 17 81 2.31 1.63 0.14 0.0332 −36.7 1.5727 9.8623

6 Mixed  
tapered 
staircase

25 68 144 1.55 1.13 0.26 0.0166 −31.3 1.1194 7.8395

6 Mixed tapered 
staircase with 
apodization

25 68 144 1.55 1.13 0.05 0.0186 −35.3 1.6611 7.8395

7 Triangular 7 5 23 1.92 0.34 0.1055 −26.1 1.0796 5.3148
8 Triangular 21 19 119 2.98 0.28 0.0195 −26.5 1.2136 12.8433
9 Vernier (p = 3) 15 22 85 2.30 2.24 1.00 0.0273 −26.4 1.0882 12.058
9 Vernier  

with  
apodization

15 22 85 2.30 2.24 0.39 0.0313 −32.4 1.4995 12.058

10 Vernier (p = 4) 22 17 128 3.28 3.13 1.68 0.0176 −26.4 1.1192 14.8957



The number r of elements (including zero-valued ones) in 
Pr(x) is given by

	 r ki
i

= +
=
å2 1

1



.	 (19)

Note that different choices for integer values of ki can lead 
to different designs. A proper choice of ki can lead to opti-
mizing either the MW or the SR.

Because Pr(x) may already be sparse by choice, we use 
ERF for staircase-like combined T/R effective aperture 
function designs. The ERF and SF are identical in the 
cases of uniform and linear tapered effective aperture 
functions.

An example design of sparse arrays with a staircase 
effective aperture function for ℓ = 2 is included in [21, 
Example 3]. We present another, more complex, design 
example to introduce ERF (in comparison with SF) as a 
figure of merit.

Example 4: Let k1 = 2, k2 = 3, k3 = 4, k4 = 5, ℓ = 4, 
and s = 32. Here 
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The SR obtained in this case is −21 dB which is worse 
than the design in [21] by almost 3 dB, although the cur-
rent design uses more full array elements (60 versus 26).

One possible efficient factorization of Peff(x) is giv-
en by
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A plot of the transmit, receive, and combined T/R de-
signed arrays is shown in Fig. 6. Here the ERF is given 
by (9 + 32)/(18 + 16) = 1.2 although the SF is 60/34 = 
1.8.

Obviously, neither receive nor the transmit array ex-
hibit equal spacing in this example.

B. Odd Number of Unequal Step Sizes

In this case, the factor Pr(x) is of the form
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The number r of elements (including zero-valued ones) in 
Pr(x) is given by

	 r k ki
i

= + +
=

-

å2 1
1

1



.	 (21)

For a staircase effective aperture function Peff(x), the num-
ber s of elements in Ps(x) of (15) must satisfy the condi-
tion in (17).

An example design of sparse arrays with a staircase ef-
fective aperture function using an odd number of unequal 
step sizes is included as [21, Example 4].
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Fig. 5. Linearly tapered array design of Example 3. Fig. 6. Staircase array design for Example 4.



C. Equal Step Sizes

In this case, the factor Pr(x) is of the form

	P x x x x xr
k k k k( ) [ ( ( ( ) ))]=

+
+ + + + +-

1
1

1 1 1 11 2 1
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  .			

		  (22)

The number r of elements (including zero-valued ones) in 
Pr(x) is given by

	 r k= + 1.	 (23)

The number of elements in the combined T/R effective 
aperture function in this case is then N = ℓk + s.

We illustrate the design of sparse arrays with a stair-
case effective aperture function for equal kr values in the 
following example.

Example 5: Let kr = 6, and r = 1, …, 5. Then Pr(x) = 
1/6(1 + x6 + x12 + x18 + x24 + x30) and Ps(x) = x i

i=å 0
50 , 

which corresponds to s = 51. One possible efficient factor-
ization of Peff(x) is given in [21] to be
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The shape of the combined T/R effective aperture func-
tion, being a staircase, is considered somewhat ragged as 
seen in Fig. 7(a). Note that Fig. 7(b) shows the beamform-
ing gain for an equivalent 79-element full array normalized 
to 0 dB, and the relative gain of the designed array with 
its combined T/R effective aperture function as shown in 
Fig. 7(a). The designed overall staircase array exhibits a 
different beam pattern and an SNR loss (as defined in Sec-
tion X) of 0.8811 dB compared with the full array.

A cosine2 apodization function can be applied as pro-
posed in [4] which smoothes the overall aperture function. 
This requires application of cosine apodization on both 
receive and transmit apertures. Apodization increases the 
complexity of the feed network, if applied to the transmit 
aperture, and consequently there will be some energy loss 
compared with the uniform excitation distribution. Appli-
cation of apodization on the receive aperture avoids this 
issue. As such, we will only apply cosine apodization on 
the receive aperture in the rest of the paper. An example 
weighting function for the even-order (NR even) polyno-
mial PR(x) leading to a cosine apodization is noted here:

	 w i i N NR R R( ) /= + -0 15 0 85 2 2. . cos[ ( ) ].p 	 (24)

For such apodization, the resultant plot for this example 
is shown in Fig. 8. The SR has increased to −36.7 dB with 
no change in the SF. After apodization, all the receive ele-
ment values are, in general, non-integer quantities. Thus, 
the signals from different receive antennas need to be 
weighted by the computed weight factors before addition 
to develop the desired combined T/R effective aperture 
function.

VII. Sparse Array Design With Mixed Tapered 
Staircase Effective Aperture Function

In this case, the factor Pr(x) is of the form
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where

	 P x a xi i

i

m

3
1

1( ) = +
=
å ,	 (26)

whose coefficients ai are chosen properly to have a value of 
either 0 or 1 so that a staircase type aperture function can 
be guaranteed along with a reduction in array elements. 
Here m < k and n is the number of nonzero terms in P3(x). 
The number of elements in the combined T/R effective 
aperture function is then N = ℓk + m + s.

We illustrate the design of sparse arrays with mixed 
tapered staircase effective aperture function for equal kr 
values in the following example.
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Fig. 7. (a) Staircase array design for Example 5 without apodization 
showing transmit, receive, and combined T/R apertures. (b) Staircase 
array design for Example 5 showing full array versus designed array 
beamforming gains.



Example 6: Consider
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For example, these choices lead to transmit and receive 
sparse arrays as in [22]:
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Application of cosine apodization to the receive aper-
ture results in a smoother combined T/R effective aper-
ture function as shown in Fig. 9.

VIII. Sparse Array Design by Triangular 
Interpolation

Three different techniques can be used for such a de-
sign.

A. Design Method 1

Here we use the design method for linearly tapered ef-
fective aperture function with r = s, so that:

	 P x
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x
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.	 (27)

As in the case of a linearly tapered effective aperture func-
tion, r must be a non-prime number so that Ps(x) can be 
factorized. Fig. 10 shows an example of such a design with 
r = s = 18 and the following choices for transmit and re-
ceive polynomials.
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B. Design Method 2

In this case, two triangularly weighted arrays PT(x) and 
PR(x) can be chosen such that missing elements in PR(x) 
can be filled by those in PT(x) [4].

Let Pr(x) = x i
i
r
=
-å 0

1  with r being an odd integer. Let m 
= (r − 1)/2 and Ps(x) = x m i

i
s ( ) ,+
=
-å 1

0
1  where s is also an 

odd integer. Here, PT(x) is obtained by triangularly 
weighting Pr(x), and PR(x) is obtained similarly from 
Ps(x). A representative triangular weighting function for 
PT(x) is noted here:

1959mitra et al.: general polynomial factorization-based design of sparse periodic linear arrays

Fig. 8. Staircase array design for Example 5 with a cosine apodization 
applied to receive aperture.

Fig. 9. Transmit, receive, and combined T/R effective apertures for Ex-
ample 6 with an additional cosine apodization.
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Thus, PT(x) will have r consecutive elements (no missing 
elements) and PR(x) will have m missing elements between 
each pair of nonzero elements.

A scaling factor, 4/(r + 1)(NR + 1) can optionally be 
used with PR(x) to make sure that the maximum magni-
tude of the combined T/R effective aperture function is 
unity. Here NR represents the number of nonzero elements 
in the receive array.

Note that for a given choice of an odd integer r, there 
are multiple choices of the odd integer s as noted here:

	 ( ) , ( ) , ( ) ,r r r+ + + + + +1 1 2 1 1 3 1 1 	

Using proper choices of s and r, the polynomials Pr(x) and 
Ps(x) can be determined. These polynomials lead to PT(x) 
and PR(x) after applying proper weighting functions as 
described.

Example 7: Consider r = 7, s = 17. Thus,

	
P x x x x x x x

P x x x x x

r

s

( )

( )

= + + + + + +

= + + + +

1

1

2 3 4 5 6

4 8 12 16

,

.
	

The triangular transmit and receive arrays can be repre-
sented as
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Note that the total number of elements in the two arrays 
is 12. The SF achieved in this design is 23/12 = 1.91. The 
designed arrays are shown in Fig. 11.

The SR obtained from this design is included in  
Table I.

C. Design Method 3

In this case, a transmit array PT(x) can be formed by 
starting with a triangular weighted array Pr(x) with an 
odd number r of elements

	 P x w i xr
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å
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,	 (29)

where w(i) is as defined in (28).
The transmit array is obtained by replicating the Pr(x) 

array at intervals of
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The receive array PR(x) will have a triangular rise fol-
lowed by a flat region, followed by a triangular fall. Each 
pair of nonzero elements in PR(x) will be separated by m 
+ 1 zero elements.
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Fig. 10. Triangular array design for r = s = 18. Fig. 11. Transmit, receive, and combined T/R arrays for triangular effec-
tive aperture function of Example 7.



and a properly chosen scale factor normalizes the ampli-
tude of the combined T/R effective aperture function.

By design, the receive array will have element spacing 
of λ/2 and transmit array elements will not have fixed 
spacing. The following example clarifies the design.

Example 8: Let r = 7, m = (r − 1)/2 = 3 and t = 2. In 
this case, Pr(x) = 1 + 2x + 3x2 + 4x3 + 3x4 + 2x5 + x6 
and k = (3 + 2) × (3 + 1) = 20. From (31), the transmit 
array is given by

	 P x P x x xrT ) ( )( )( .= + +1 20 40 	

The receive array obtained from (32) is found to be
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The designed array patterns are plotted in Fig. 12. The 
total number of elements of the fully populated combined 
T/R effective aperture function is 119. However, the sum 
of nonzero elements in transmit and receive arrays is only 
21 + 19 = 40. Thus, this design is sparse with an SF of 
2.975.

It can be noted from all of the plots for triangular effective 
aperture function spectra that the MW becomes narrower as 
more nonzero elements are added to the function. However, 
the relative sidelobe rejection increases slightly by increasing 
the number of elements in the aperture function.

IX. Sparse Array Design by Vernier 
Interpolation

Vernier interpolation between receive and transmit 
sparse arrays leads to a combined T/R effective aperture 

function that has equal spacing, exhibits an irregular 
shape, and has a few elements missing at each end of 
the aperture. The irregularity in shape can be smoothed 
out by applying an apodization function such as cosine2. 
In the following, we describe the design method of such 
sparse arrays and illustrate with two examples.

In general, vernier interpolation involves choosing a 
polynomial PR(x) with elements separated by p − 1 zero 
elements and PT(x) with elements separated by p zero 
elements. Let

	 P x x p i
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r

R
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and
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å
0

1

,	 (34)

where p > 1 is an integer.
It should be noted that for p = 2, no elements will be 

missing from the combined T/R effective aperture func-
tion. In general, the number of missing elements from the 
combined T/R effective aperture function is given by (p 
− 1)(p − 2).

A. Case 1

In Case 1, the orders of the polynomials PR(x) and 
PT(x) are equal. In this case, r and s must satisfy

	 ( )( ) ( )r p s p k- - = - =1 1 1 .	 (35)

In order for the equality in (35) to hold, k must be divis-
ible both by p and p − 1. Therefore, k is of the form

	 k np p n= - = ¼( ), , , , .1 1 2 3 	 (36)

For example, if we choose p = 3, then k = 6, 12, 18, 24, …, 
etc.

Example 9: Let p = 3, and k = 42. This will result in a 
combined T/R effective aperture function with 83 nonzero 
elements. Here we choose PR(x) = x i

i
2

0
21
=å  and PT(x) = 

x i
i

3
0

14
=å . The combined T/R effective aperture function 

realized is shown in Fig. 13 and has 85 (= 2k + 1) ele-
ments. It is not smooth and exhibits ragged edges.

Application of cosine apodization smoothes out the 
combined T/R effective aperture function considerably, as 
shown in Fig. 14, and helps enhance the relative sidelobe 
rejection as shown in Table I.

B. Case 2

Case 2 places no restrictions on the order of the transmit 
and receive polynomials. In this case, the total number of 
elements in the designed array (including zero elements) 
will be given by p(s − 1) + (p − 1)(r − 1) + 1. The total 
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Fig. 12. Transmit, receive, and combined T/R arrays for triangular effec-
tive aperture function in Example 8.



number of nonzero elements of the designed transmit and 
receive arrays will be r + s. Multiple designs are possible, 
given the specification of the total number of nonzero ele-
ments of an array and the value of p.

Example 10: Let us consider the design example of a 
128-element full array from [4] with p = 4. Note that the 
choice of p = 4 results in 6 zero elements in the combined 
aperture. Here we need to solve 4(s − 1) + 3(r − 1) = 127. 
There are multiple solutions for the two unknowns that 
will result in different numbers of nonzero elements form-
ing the combined T/R effective aperture function.

For s = 23 and r = 14, the radiation pattern of the 
overall array exhibits an SR of −19.8  dB with a MW 
of 0.017578. On the other hand, for s = 17 and r = 22, 
the radiation pattern of the designed 39-element array is 
found to be −26.4 dB with the same MW as before. Fig. 
15 shows the designed arrays.

X. Comparison of Sparse Array Designs

In the following, we define various performance param-
eters used in this paper.

A. Sparsity Factor (SF)

SF is a measure of sparseness of the design and is de-
fined as the ratio Neff/(NT + NR), where Neff, NT, and 
NR are the numbers of nonzero elements in the combined 
aperture, transmit aperture, and receive aperture, respec-
tively. This ratio should preferably be larger than 1 for 
a sparse array design. This definition of sparsity factor 
assumes the same complexity of implementation of the 
transmit and receive arrays. In practice, the receive aper-
ture requires dynamic apodization and focusing capabili-

ties, whereas the transmit aperture requires high-power 
drive circuits.

B. Sidelobe Rejection (SR)

The SR measure is the difference in the gain level in 
decibels between the height of the mainlobe and that of the 
highest sidelobe peak of the combined T/R effective radia-
tion pattern. The larger the value of this parameter is, the 
better the selectivity of the antenna or transducer array 
will be. Note that SR is not very important in medical 
ultrasound imaging because the object being imaged is a 
continuous speckle source of varying amplitude. The leak-
age factor is more informative for medical ultrasound.

C. Mainlobe Width (MW)

The MW is measured as the difference in angular posi-
tion (in radians) between the 3-dB points of the main-
lobe of the combined T/R effective radiation pattern. A 
smaller value indicates smaller angular extent and better 
selectivity.

D. Leakage Factor (LF)

The LF is measured as a ratio of power in the sidelobes 
to the total window power.

E. Element Reduction Factor (ERF)

The ERF is a measure of the sparseness of the stair-
case-like combined T/R effective aperture function design, 
defined as the ratio (Nr + Ns)/(NT + NR), where Nr, Ns, 
NT, and NR denote the number of nonzero elements of 
polynomials Pr(x), Ps(x), PT(x), and PR(x), respectively. 
Normally, the SF will be greater than or equal to the 
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Fig. 13. Transmit, receive, and combined T/R effective aperture func-
tions for Example 9 (without apodization).

Fig. 14. Transmit, receive (with cosine apodization), and combined T/R 
effective aperture function in Example 9.



ERF. The ERF is an excellent measure often used in de-
signing ultrasound scanners [8].

F. SNR Loss

A measure of SNR difference between combined T/R 
effective aperture function and the corresponding uniform 
fully populated array measured as the difference in beam-
forming gain [23] in decibels. The beamforming gains for 
both the designed and fully populated arrays are deter-
mined at the peak of the mainlobe at 0 rad.

G. Composite SNR Loss

This performance parameter is especially important for 
high-sensitivity applications such as color flow imaging. It 
is computed by adding the SNR loss corresponding to each 
designed array (transmit and receive, respectively) with 
respect to their full-array counterparts. The composite 
SNR loss is obtained as 20 log10(NTF/NT) + 10 log10(NRF/
NR) in decibels, where NTF and NRF, respectively, repre-
sent the element counts of equivalent full transmit and re-
ceive arrays. In this definition, we assumed constant volt-
age drive on transmit and constant gain and noise factor 
on receive array.

Based upon these figures of merit, Table I summarizes 
the results from the design examples in this paper.

The design methods described in this paper are simple 
to implement and result in different performances of the 
combined T/R effective aperture functions. As seen from 
Table I, linearly tapered and mixed tapered staircase ef-
fective aperture functions exhibit very low leakage factors. 
MW is also quite low for mixed tapered staircase effective 
aperture function. On the other hand, vernier interpola-
tion leads to high sparsity and high ERF designs which 
are highly desirable when 1-D arrays are used to develop 

separable 2-D arrays. SNR loss is lowest for staircase ef-
fective aperture functions. However, SNR loss for linearly 
tapered, mixed tapered staircase, triangular, and vernier 
effective aperture functions are comparable if no apodiza-
tion is applied. Adding cosine apodization results in higher 
SNR loss in every case.

On the other hand, composite SNR loss factor shows a 
different set of behavior among various designs. Triangu-
lar and vernier effective aperture functions exhibit fairly 
high composite SNR losses when we assume constant volt-
age drive on transmit and constant gain and noise factor 
on receive array. Different variations of staircase effective 
aperture functions exhibit comparable composite SNR loss 
factors. The linearly tapered effective aperture function of 
Example 3 exhibits low composite SNR loss. Thus a high 
ERF may not always be desirable (as seen for the case 
of vernier interpolation), especially when low composite 
SNR loss is a major system requirement, as in color flow 
imaging.

In Table II we list results from linearly tapered, stair-
case, and mixed tapered staircase aperture functions, and 
vernier interpolation with a fixed number of elements. We 
hold Neff constant at 85 among the various designs shown 
in the table. The results in this table allow us to compare 
various design techniques for the same size of the com-
bined T/R aperture function.

Here are some notes on the results in Table II.

	 1) 	Linearly tapered effective aperture function SR in-
creases as r increases. Mixed tapered staircase aper-
ture functions also show similar behavior.

	 2) 	Linearly tapered effective aperture function MW de-
creases as r decreases.

	 3) 	Staircase effective aperture functions exhibit more 
complex dependence on the various parameters. 
However, SR seems to have a parabolic relationship 
with increasing r (and decreasing s) with optimum 
in the middle.

	 4) 	Mixed tapered staircase effective aperture functions 
exhibit properties similar to those noted in the pre-
vious point.

	 5) 	SNR losses continue to increase as the design pro-
gresses from linearly tapered through mixed tapered 
staircase effective aperture functions even for the 
same number of full array elements. Vernier inter-
polation results in SNR losses comparable to some 
mixed tapered staircase arrays.

	 6) 	Composite SNR loss does not seem to follow a set 
pattern of increase or decrease. In general, staircase 
and vernier effective aperture functions exhibit larg-
er composite SNR losses compared with the other 
types of effective aperture functions.

	 7) 	None of the designs included in the table need weight-
ing of transmit or receive arrays. In some cases, we 
have applied scale factors on receive arrays to make 
combined T/R array elements normalized to unity. 
Such scaling does not affect the performance mea-
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Fig. 15. Transmit, receive, and combined T/R effective aperture func-
tions for Example 10.



sures (namely LF, MW, SR, and SNR loss) of the 
designed arrays.

Progressively better SR result is obtained as we move 
from linearly tapered to staircase to mixed tapered stair-
case effective aperture functions.

Vernier interpolation shows excellent MW and good 
SR. However, the leakage factor is high, indicating that 
there is quite a bit of energy in the sidelobes. The com-
bined T/R effective aperture function has 6 zero elements. 
Still, the ERF of the design is quite high, indicating it to 
be quite sparse. In this comparison, we did not include tri-
angular interpolation for the following reason. Triangular 
interpolation leads to a triangular-shaped combined T/R 
effective aperture function which is not considered to be a 
very desirable function without apodization.

Note that none of the design techniques (including ver-
nier, which applies no apodization) described in this paper 
require any weighting of the transmit or receive aperture 
functions except to normalize the maximum weight fac-
tors for combined T/R aperture function to unity. When 
cosine apodization is applied, the receive array weight fac-
tors are no longer unity, resulting in additional hardware 
complexity.

In this paper, the model of the designed arrays assumes 
far-field operation of a continuous wave source. This is 
rarely the case for ultrasound imaging. Clinical systems 
operate in the near field at low f/numbers. Focusing of 
both transmit and receive apertures is required. The band-

width is typically 60 to 70% and often approaches 100%. 
Near-field operation can remove the simple Fourier trans-
form (FT) relation between the aperture function and the 
radiation pattern, or at least require a complex aperture 
function including the focusing term. Broadband opera-
tion diffuses sidelobes, minimizing interference effects far 
from the mainlobe. Many details in sidelobe structure are 
diffused with broadband operation; subtle differences be-
tween aperture functions often result in non-negligible dif-
ferences to broadband sidelobe patterns.

Because ultrasound imaging systems operate primarily 
in the aperture’s near field, focusing effects dominate the 
radiation patterns. In modern scanners, dynamic focusing 
and apodization is performed on receive so that the re-
ceive beam pattern can be reasonably modeled as the FT 
of the instantaneous aperture. This is not the case for the 
transmitter. The transmitter is focused to a fixed depth, 
which means most of the imaging volume is not at the 
focal plane of the transmitter. The asymmetry between 
transmit and receive functions in a real-time scanner is 
a major feature of ultrasound imaging that must be ad-
dressed in any practical design. Note that in this paper, 
we have applied apodization on the receive array only.

Harmonic imaging and other non-linear imaging meth-
ods are now the default conditions for many clinical ap-
plications. For example, in echocardiography nearly all 
clinical scans are performed using some form of harmonic 
imaging. Any practical sparse array design must be evalu-
ated for both fundamental mode and harmonic imaging; 
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TABLE II. Comparison of Sparse Array Designs With Fixed 85 Elements. 

Type r NT NR ERF

Leakage 
factor 
(%)

Sidelobe 
rejection 

(dB)

Mainlobe 
width 
(rad)

SNR 
loss 
(dB)

Composite 
SNR loss 

(dB)

Linearly tapered 2 12 14 3.308 8.82 −13.3 0.0195 0.0255 7.231
Linearly tapered 5 27 15 2.048 7.71 −13.4 0.0215 0.1227 5.9476
Linearly tapered 11 15 55 1.229 5.64 −13.9 0.0215 0.3277 1.109
Linearly tapered 22 32 44 1.132 2.22 −16.8 0.0254 0.705 0.8894
Staircase 21 25 13 1.842 2.09 −17.7 0.0254 0.5947 6.7139
Staircase 31 15 11 2.231 2.2 −21 0.0254 0.6848 14.0213
Staircase 31 35 11 1.348 0.51 −26.9 0.0273 0.879 6.6618
Staircase 31 30 11 1.488 0.59 −27.8 0.0273 0.8552 8.0007
Staircase 35 9 17 2.077 3.08 −20.8 0.0254 0.6924 16.8767
Staircase 41 9 25 1.471 1.48 −22.8 0.0254 0.8539 15.7236
Staircase 41 9 30 1.308 1.09 −24.8 0.0273 0.92 14.9317
Mixed tapered  
staircase (1 + x6)

31 20 22 1.5 0.62 −24.8 0.0273 0.9461 7.3619

Mixed tapered  
staircase (1 + x5+ x6)

31 15 44 1.136 0.55 −24.7 0.0273 0.9542 2.3161

Mixed tapered  
staircase (1 + x6)

35 15 19 1.794 0.44 −30.4 0.0273 1.0756 10.9215

Mixed tapered  
staircase (1 + x4)

35 18 34 1.211 0.26 −31.2 0.0273 1.0534 7.1928

Mixed tapered  
staircase (1 + x5)

36 30 20 1.24 0.33 −32.4 0.0273 1.1031 5.9895

Mixed tapered  
staircase (1 + x3 + x5)

36 20 30 1.36 0.19 −32 0.0273 1.1084 7.7505

Mixed tapered  
staircase (1 + x5)

41 18 30 1.1875 0.45 −27.2 0.0273 1.1397 9.0228

Vernier  
interpolation (p = 4)

49 10 17 3.1481 3.35 −28.9 0.0273 1.0601 15.9615



because transmit and receive arrays operate over different 
frequency ranges for non-linear imaging, a sparse array 
designed for fundamental imaging may not work well for 
nonlinear imaging. Further studies are needed to under-
stand the efficiency of the designed sparse arrays in non-
linear imaging.

XI. Conclusion

In this paper, we have presented several simple and el-
egant methods for the design of sparse arrays. The math-
ematical foundation of design of sparse arrays for uniform, 
linearly tapered, staircase, and mixed tapered staircase 
combined effective T/R aperture functions is based on a 
polynomial factorization theorem. This theorem is includ-
ed herein and its application in designs is illustrated using 
several examples. Additional heuristic design techniques 
based upon triangular and vernier interpolations are also 
explained using appropriate polynomial choices.
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