DWT Foveation-Based Multiresolution Compression Algorithm
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Abstract — Discrete Wavelet Transform (DWT) foveated compression can be used in real-time video processing frameworks
for reducing the communication overhead. Such algorithms lead into high rate compression results due to the fact that the
information loss is isolated outside a region of interest (ROI). The fovea compression can also be applied to other classic
transforms such as the commonly used discrete cosine transform (DCT). An analysis has then been performed showing different
error and compression rates for the DWT-based and the DCT-based foveated compression algorithms. Simulation results show
that with foveated compression high ratio of compression can be achieved while keeping high quality over the designed ROL.
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|. INTRODUCTION

Digital images and video are essentially multi- dimensional signals and are thus quite data intensive [1]. Video and image
compression can help in reducing the communication overhead between computing nodes and with wavelet compression,
high ratios of compression can be achieved [2]. However, such agorithms also cause loss of information on video frames. In
applications where a region of interest (ROI) can be isolated, foveation can be used in order to constraint the information
loss only on those areas outside of the ROI. With such model, several applications can classify an area as a ROl such as
medical video processing framework searching for melanomas, and perform a lossy compression over the video frames,
leaving the ROI intact for later processing. Previous worksin [2, 3, 4] show different foveation methods assessing the final
quality of the image against the original image using Human Vision System criteria. Foveation also guarantee certain quality
from the human system vision perspective granting the output results with enough quality for a user to inspect the ROI
without noticing the loss of quality unless a close inspection outside the ROI. In the work reported in this paper, an analysis
of DWT-based foveated compression algorithms is carried out. The remainder of this paper is organized as follows. In
Section |1 an overview of foveated compression is given. Section |11 describes the proposed approach. Section 1V presents
simulation results, and Section V reports conclusions and future work.

Il. FOVEATED COMPRESSION

Wavelet transforms involve representing a general function in terms of simple, fixed building blocks at different scales
and positions. These building blocks are generated from a single fixed function called mother wavelet by translation and
dilation operations. Thus, wavelet transforms are capable of “zooming-in" on short-lived high frequency phenomena, and
“zooming-out” on long-lived low frequency phenomena[5].

A. Wavel ets and the Discrete Wavelet Transform

The purpose of wavelet transforms is to represent a signal into the frequency-time domain. To perform this task two
functions are required, namely, a wavelet and a scaling function. If a set of mother wavelets and scaling functions is
orthonormal it is called an orthonormal bases and is defined as follows [6]
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In two dimensions three mother wavelets are used [6], ¥ Pimn and ¥ (x,y) defined as follows
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with the scaling function:
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where ¥ . (x,y) are the diagonal coefficients, ¥imn(xy) are the vertical coefficients and ¥, (x, y) are the horizontal

coefficients. With the wavelet base defined, the next step is using it to represent a signal. The sum over all time of the signal
multiplied by scaled, shifted versions of the mother wavelet ¥ is given by:
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where f is the signal to be represented. However, for compression this transform is not suitable because it expands the signal
into more coefficients than the samples of the signal itself. A better transform, suited for compression and many other
applications, is called the discrete wavelet transform (DWT). In [7], the DWT is calculated through a simple algorithm that
applies two filters, a low pass filter and a high pass filter. This algorithm is known as the fast wavelet transform [7]. In
wavelet analysis of a signal f, we often speak of approximations and details. The approximations are the low-frequency
components of the signal, see (9); whereas the details are the high-frequency components of the signal, see (10).
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B. Discrete Cosine Transform

The discrete cosine transform (DCT) expresses a signal in terms of cosine functions. Such transform is commonly used in
the JPEG compression algorithm, the MP3 audio format and the VP8 video format [8]. The discrete cosine transform for a
signal f(x) of length N is defined as follows [9]
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where a(u) is defined by:
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In particular, u(0) is known as the direct current coefficient (DC) and the remaining coefficients are called the alternating
current coefficients [10]. Most of the energy of the signal is packed in the DC coefficient.

C. Wavelet Compression

The objective of data compression is to represent a set of data with less information than the original. There are two types
of compression: lossy and lossless compression [10]. In lossy, some of the original data is discarded in order to achieve its
goal. When the data is reconstructed it will be slightly different from the original. Using lossy compression can help to
achieve a better compression ratio than lossless compression if the losses are acceptable over the result. This is a usual
practice on images, such as jpeg and jpeg2000 formats [7, 10], and video such as mpeg4 format. When a wavelet transform
is applied on an image, the resultant coefficients can then be compressed more easily because the information is statistically
concentrated in just a few coefficients. Wavelet compression can reach higher compression ratio than other transforms such
as the discrete cosine transform suggested for foveated compression in [3]. In Wavelet lossy compression, the coefficients
that contain the most amount of energy are preserved and the rest are discarded. Selecting such coefficients can be done
using the wavelet energy profile and choosing a cutoff frequency.

D. Foveation

Foveated images are images which have a non-uniform resolution [6]. Results reported in [11] have demonstrated that the
human eye experiments a form of aliasing from the fixation point to the edges of the image. Such aliasing increases in a
logarithmic rate on all directions. This can be seen as concentric cutoff frequencies from the fixation point. When it is used
in a wavelet, this can be expressed as a function [2]: :

Io(x) = [ I()C1(x)s (v%) dt (13)

where /(t) is a given image, I, (x) is the foveated image, w(x) is the weight function. The function s is called the weighted
translation of s by x. The function C is defined as:
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The results on a foveated image from [6] are shown in Figure 1. There are several weighted translation functions such as the
ones defined in [6]. In [3], the suggested weighted functions are the Hamming window (Figure 2a) and the triangular
window (Figure 2b). Such windows offer a smooth degradation from the fixation point. However, in order to preserve a ROI
intact, such windows are not useful. A ROI needs to be left with all its coefficients without cutoff. For well defined ROIs, it
is proposed to use a Tukey window (Figure 2¢) Such windows can be used to define a weighted function where the radio of a
fixation point is bigger than one, leaving the coefficients from the ROI untouched and right after the ROI ends the energy
begins to decay in a smooth ratio.

(a) Original gray level image (b) Foveation point at the right eye

Fig. 1. An image and its wavelet foveated compression
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(a) Hamming window (b) Triangular window
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(c) Tukey window

Fig. 2. Different foveating windows

[II. PROPOSED DWT-BASED FOVEATED ALGORITHM

An implementation of DWT foveated compression was made in order to compare the quality and compression rate of a
DWT-based foveated compression using a Tukey window over different wavelets. For compression quantization three
different schemes were used, namely, an energy frequency profile cutoff scheme, a Tukey window-based scaling and a JPEG
Type 1 quantization based on the Tukey window [8]. Figure 3 shows a foveated image with the different schemes with the
fovea point in the eye of the bird and a radius of 60 pixels and four levels of wavelet decomposition using a Daubechies 7
wavelet. Other wavelets may also be considered. For the energy frequency profile cutoff, the algorithm is defined as follows:
Given a fixation point, the ROI centroid, and a radius, the algorithm computes the foveated image I of dimension M x N with
J levels of decomposition showed in Algorithm 1. The two-dimensional Tukey window, T2D, is calculated through
interpolation of the one-dimensional Tukey window and the function x2 + y2. Note that the interpolation method used was
linear interpolation [13]. The set L is a decent ordered set of all the coefficients of the wavelet discrete transform. € is the total
energy of the coefficients. The set E is the wavelet energy profile. The set Cutoff is the fovea filter and contains all the
thresholds for each pixel of the image. Cutof fj is the fovea filter weighted for each level of decomposition. The filter is not
applied to the approximation DWT coefficients a;. This creates a coarser effect than in [3] or in [6]. However, with a well
defined ROI, this method leads into a better compression ratio with a slightly less quality outside the ROL. For the Tukey
window-based scaling, the cutoff is replaced for the next formula using a scaled T2D; window:

d'f[m,n] = df*[m,n] + T2D;[m,n] (15)

where @ € {h,v,d}, T2D; is the T2D window resized by j. In this scheme, the quantization is also applied to the
approximation coefficients a;.

a'g [m,n] = ay [m,n] * T2Dx[m,n] (16)



(a) Original gray level image (b) Energy Profile Quantization

(c) Tukey window scaling Quantization (d) JPEG Type 1Quantization

Fig. 3. A Wavelet-based foveated image with different quantizations.

ALGORITHM 1 PROPOSED DWT-BASED FOVEATED ALGORITHM
forall j €jdo
di[m,n] = {1,¥%)
df[mn] = (1,¥%)
df[m,n] = (1, ¥")
aj[n] = (I, #.n)
end for
T2D := Interpolate(Tukey,x*> + y?)
L={L,ed’vdtud?ualo<i<MxN,L,_, = Li}.

£i= ZWL%

Zi!'=1L2Z -
E ={ee; = = ,i=1..M XN}
forall x,ydo
1 4Fe.
Cutoff(x,y) = {0' o= 3

where e; = max ({eJ leg <T2D(x, y)])

end for
forall x,ydo
Cutof f; = resize(Cutof f, %, ?)
end for
end for
forall x,vdo
= _ dif[m,n] if dff[m,n] < Cutoff(m,n)
i {o if d*[m,n] > Cutoff(m,n)
where « € {h,v,d}
end for

Calculate inverse discrete wavelet transform with the new
coefficients d},df,d and the approximation
coefficients a;



where K = max(J). A gray scale image “lena” of dimensions 512x512 was used for assessing the performance of the
proposed algorithm. The original gray scale image is shown in Figure 3a.

IV. SIMULATION RESULTS

Comparisons were carried out with the wavelets Daubechies 7 (db7) and Daubechies 9 (db9) suggestecf by the JPEG2000
standard [12] with two arbitrary levels of decomposition, / = 2 and J = 4. To assess the performance of the wavelet-based
foveated algorithm the mean squared error (MSE) metric is used. Also, an arbitrary fovea radius used was of 60 pixels. The
results are shown in Table 1. The DCT-based foveated compression was also realized and it is shown in Table 1 as dct. The
compression was realized using the Type 3 JPEG variable quantization compression [8] and the Tukey window as the
quantization weight. Table 1 shows how many coefficients becomes zero after the quantification function is applied. Figure 4
shows the DCT-based foveated image and a wavelet-based foveated image using the Daubechies 9 wavelet with four levels
of decomposition with energy profile quantization, Tukey window-based scaling quantization and JPEG Type-1 quantization.
It should be noted in Table 1 that the amount of zeros in the coefficients after applying wavelet-based foveated algorithm
using energy profile and JPEG Type-1 quantizations schemes is lower than the DCT-based approach. Furthermore,
simulation results show that the DCT-based algorithm created artifacts that make the image fuzzier than the wavelet-based
algorithm. The performance of the algorithm depends on the quantization method used. Energy quantization gives a good
compression ratio at expenses of computational speed, it is expected a complexity of n’ because of the wavelet coefficient

sorting and the calculation of the cutoff window. Scaling quantization is faster with an expected complexity of n but has a
low compression ratio.

(a) DCT-based foveated omb"ression (b) Waelet—based foveated compression with
db9 and Energy profile quantizati

=

(c) Wavelet-based foveated compression with (d) Wavelet-based foveated compression with
db9 and Tukey window quantization db9 and JPEG Type 1 quantization

Fig. 4. Foveated image compression with different methods.



TABLE |
COMPARISONS OF DIFFERENT WAVELET-BASED FOVEATED
COMPRESSION AND DCT-BASED FOVEATED COMPRESSION.

Wavelet J  Zero Coef. MSE Quantization
Percentage

dct - 0.9383 2.2402 Type3

db7 2 0.3287 0.2534 Tukey Scaling

db7 4 0.3333 0.2503 Tukey Scaling

db9 2 03279 0.3279 Tukey Scaling

db9 4 0.3309 0.2428 Tukey Scaling

db7 2 0.8761 3.8959 JPEG Quantization
db7 4 0.9174 2.4795 JPEG Quantization
db9 2 0.875 3.8167 JPEG Quantization
db9 4 0.9161 2.3974 JPEG Quantization
db7 2 0.9163 2.4192 Energy Profile
db7 4 0.9644 6.0816 Energy Profile
db9 2 0.9153 2.3897 Energy Profile
db9 4  0.9624 6.0116 Energy Profile

V. CONCLUSION

Wavelet foveation compression offers a very good compression ratio at expenses of controlled losses. However, applying
foveation with wavelets yields into squared artifacts as mentioned in [3]. These artifacts increase as the decomposition
levels increases. However, the DCT also showed a similar behavior in the area outside the ROI as the compression rate
increases. With a good model for choosing a ROI, this kind of compression can help inreducing the transmission overhead
of video frames, increasing the ability of realizing real-time in video processing. It is intended for future work to compare
the wavelet-based foveated compression algorithm with other methods such as the JPEG2000 ROI compression called
maxshifts [12].
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