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Abstract

New applications based on wireless sensor networks (WSN), harvest a large

amount of data streams that are simultaneously generated by multiple distributed

sources. Specifically, in a WSN this paradigm of data generation/transmission is

known as event-streaming. In order to be useful, all the collected data must be

aligned so that it can be fused at a later phase. To perform such alignment,

the sensors need to agree on common temporal references. Unfortunately, this

agreement is difficult to achieve mainly due to the lack of perfectly-synchronized

physical clocks and the asynchronous nature of the execution. Some solutions

tackle the issue of the temporal alignment; however, they demand extra resources

to the network deployment since they try to impose global references by using

a centralized scheme. In this dissertation, we propose a distributed mechanism

that performs at runtime the stream data alignment without requiring the use of

synchronized clocks, additional signals or centralized schemes. This is achieved

by translating temporal dependencies based on a time-line to causal dependencies

among streams. In addition, we propose a spatio-temporal data association ap-

proach that extends the data alignment mechanism to include spatial information

to perform the data alignment by considering the “closeness ” among streams. To

achieve this, the approach makes use of a fuzzy-causal relation defined to relate

the space domain with the logical/temporal domain. For our case by establishing

a fuzzy-causal relation we determine “how long ago” an event happened before

another event.
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Resumen

Nuevas aplicaciones basadas en redes de sensores inalámbricos (Wireless Sensor

Networks (WSN)), cosechan una gran cantidad de flujos de datos, generados si-

multáneamente por múltiples fuentes distribuidas. Específicamente, en una WSN

éste paradigma de generación y transmisión de datos es conocido como event-

streaming. Con la finalidad de que sean útiles, todos los datos recolectados deben

ser alineados para que puedan ser fusionados en etapas posteriores. Para realizar

dicha alineación, los sensores necesitan acordar referencias temporales comunes.

Desafortunadamente, dicho acuerdo es difícil de lograr principalmente debido a la

falta de relojes físicos perfectamente sincronizados y a la naturaleza asíncrona de

la ejecución. Algunas soluciones han atacado el problema de la alineación tempo-

ral, sin embargo, demandan recursos extras en el despliegue de la red debido a que

tratan de imponer referencias globales usando esquemas centralizados. En esta

tesis se propone un mecanismo distribuido que realiza la alineación de los flujos de

datos en tiempo de ejecución, sin requerir del uso de relojes sincronizados, señales

adicionales o esquemas centralizados. Esto se logra traduciendo las dependencias

temporales, basadas en una línea de tiempo, a dependencias causales entre flujos.

Además, se propone un enfoque para la alineación y asociación espacio-temporal

de datos, que extiende el mecanismo de alineación, para incluir información es-

pacial para realizar la alineación de datos considerando la “cercanía” entre flujos.

Para logar ésto, el enfoque usa una relación causal-difusa definida para relacionar

el dominio del espacio con el dominio lógico/temporal. Para nuestro caso, estable-

ciendo una relación causal-difusa, se puede determinar “cuanto tiempo atrás” un

evento sucedió antes que otro evento.
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Notation

The notation used in this document is summarized in Table 1.

Table 1: General notation

Symbol Meaning

pc, pd, pi, pj, pk, px processes involved to the WSN

m, x, y messages exchanged by the processes

x1, ..., y1, ...., z1, .... messages of any stream

→ happened-before relation (HBR)

↓ immediate dependency relation (IDR)

← assignation operator

Si, Sj, Xc, Yd, Yk local-streams

X−
c , X

+
c , Y

−
d , Y +

d end points of local-streams

ESΘ, ESϑ, ESβ event-streamings

Θ, ϑ, β sets of processes identifiers

Continued on next page
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Table 1 – continued from previous page

Symbol Meaning

QRa
a , QRb

b , Q
Rq
q , QRa

a subsets of events originated by different processes

−Q
Rq
q ,+ Q

Rq
q endpoints of subset of events of an event-streaming

Ωi,Ωj ,Ωk,Λi,Λj,Λk Sets of events originated by the same process

x−, y−, x+, y+, e∗ endpoints of any stream

ω−, ω+, λ−, λ+ endpoints of sets of events originated by the same pro-

cess



Chapter 1

Introduction

1.1 Motivation

The advances in MEMS1 technologies as the progress in wireless communications,

have allowed the development of low-cost, low-power sensors that are small in size

and are able to communicate with other devices in short distances. The avail-

ability of this kind of hardware has motivated the development of wireless sensor

networks (WSN). A WSN consists of several spatially distributed autonomous

sensors deployed to extract information of the physical environment, such as tem-

perature, humidity, pressure, etc. and to cooperatively pass their data through

the network to a remote location [ASSC02].

Moreover, inexpensive emerging hardware such as CMOS2 cameras and mi-

crophones, that are able to capture multimedia content, have expanded the capa-

bilities of a WSN, enabling the collection of audio and video streams, besides still

images and scalar data [AMC07].

WSNs have drawn the attention of research and industrial communities since

they have allowed for the enhancement or for the visualization of new applications

such as eHealth services, multimedia surveillance systems, person locator services,

environmental/earth monitoring services, among others. These types of applica-

1Micro-Electro-Mechanical Systems
2Complementary Metal-Oxide Semiconductor
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tions ubiquitously3 harvest a large amount of data streams that contain numerous

audio, video and other time-based data elements that are generated from several

sensor nodes in a distributed way.

Specifically, the adopted paradigm to transmit data in a WSN is called event-

streaming, which represents the generation and the transmission of data as a

continuous stream of events reported by multiple sources [KS08, Ksh05, CK05,

Rei09].

In addition to the event-streaming paradigm, due to the power and transmis-

sion constraints of the sensors, most of the WSNs are deployed under a multi-hop

topology. Within a multi-hop topology, each node must not only capture and dis-

seminate its own data streams, but also must collaborate to propagate the data

in the network, by acting as a relay node.

For example, suppose that in a forest there is a WSN of different types of

sensors, which aim to monitor different activities (see Figure 1.1). Each sensor

communicates with a certain destination through two or more sensors. Individ-

ually, each relay sensor asynchronously generates a data stream in addition to

retransmitting data. Thereby, all the collected streams generated by the multiple

sensors will compose an event-streaming.

Figure 1.1: Scenario of a monitoring system in a forest.

3In this context, the term ubiquitous refers to the capacity to collect information from several
places at the same time.
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1.2 Problem description

By performing the data generation and transmission through the event-streaming

paradigm along with the multi-hop communication, a considerable amount of

meaningless data are exchanged through the nodes of a WSN. In order to make

sense of the collected data and produce useful information, all the streams must

be fusioned4 in later stages. One main task during the data fusion is the data

alignment, which consists in processing the collected data to attain a common

spatial and time frame [ESW+05]. To achieve this, the sensors in the network

may need to agree on some common temporal references of the whole system

[BPLOBdlC11, CK08]. However, achieve common references in a WSN is difficult

since they must be obtained from multiple asynchronous views.

Some approaches, to establish common temporal references, propose the use of

techniques based on the Allen’s Interval Algebra [All83] by detecting the temporal

dependencies among the exchanged streams [CK08, Ksh05, GYJO10]. In such

approaches, by using a common physical time axis, the temporal dependencies

are specified by determining the order in which the streams occur or when they

co-occur. Unfortunately, the characteristics of a WSN make difficult to establish

a single physical time axis, this is mainly due to the absence of shared memory

and the lack of perfectly synchronized physical clocks [CK05, KC13].

In order to avoid the use of a single physical time axis a clock-free align-

ment approach for data streams was proposed in [LS07]. This solution assumes

a communication scheme where some sensor nodes act as intermediate nodes to

aggregate or to collect the data streams which are later sent to another sensor or

sink. Assuming the previous communication scheme, the approach has shown that

4Data fusion refers to the alignment, association, correlation, filtration and aggregation of
the collected data [HM04, BGM08].
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aligning the data streams on the intermediate nodes without synchronizing the

clocks of all sensors, is sufficient. Nevertheless, this solution requires a synchro-

nization server that broadcasts synchronization signals to the sensors to establish

a global reference, and it also needs dedicated devices (data servers) to align the

streams according to the broadcasted signals. These two additional requirements

imply extra network resources.

1.3 Proposed solution

In this dissertation we propose as main contribution, a distributed data align-

ment and association mechanism for event-streaming in WSNs. Based on causal

dependencies, the mechanism is able to establish temporal references among the

exchanged data streams, without requiring the use of synchronized clocks or cen-

tralized schemes.

For our proposal, we define the event-streaming as an abstract data type

(ADT). Such ADT allows us to model the event-streaming as a sequential ar-

rangement of subsets of events generated by multiple sources.

Based on the event-streaming ADT, we propose a new model for data align-

ment that we have called Event-Streaming Logical Mapping (ES-LM). The ES-

LM performs the data alignment by translating the time-line based dependencies

among streams to causal dependencies. Such translation allows us to construct a

virtual time-line where each event is positioned into a specific time-slot. By using

the resulting virtual time-line we can avoid: 1) the use of synchronized clocks, 2)

the use of global references, 3) the use of centralized schemes, and 4) the use of

additional synchronization signals.
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In addition to the ES-LM, we propose a spatio-temporal data association ap-

proach. This approach extends the ES-LM to include spatial information to per-

form the data alignment by considering the “causal closeness” among streams. To

achieve this, the approach makes use of a fuzzy-causal relation defined to relate

the space domain with the logical/temporal domain. For our case by establish-

ing a fuzzy-causal relation we determine how “close” an event happened before

another event.

Taking advantage of the retransmissions of a multi-hop communication, the

proposed mechanism uses the intermediate nodes to implement the ES-LM and

the spatio-temporal data association approach. In this way, the data alignment

and association were performed while the multiple streams are propagated through

the network.

1.4 The objectives of the dissertation

1.4.1 The main objective

The main objective of our research work is:

To design and to develop a distributed mechanism for the event-streaming

data alignment and association that serves as support for the data fu-

sion process and satisfies the characteristics and restrictions of a WSN.

1.4.2 Specific objectives

1. Model the event-streaming as an abstract data type, in order to achieve a

way to handle this paradigm.

2. Establish causal order principles to handle event-streaming.
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3. Design algorithms, based on the causal order principles, to detect temporal

references from the event-streaming.

4. Establish fuzzy causal principles to handle event-streaming.

5. Design algorithms, based on the fuzzy causal principles, to detect spatio-

temporal references from the event-streaming.

1.5 Document organization

This document is organized as follows. In chapter 2 some works related to the

detection of temporal patterns from event streams are presented.

In chapter 3 the main concepts about distributed systems, causal ordering and

fuzzy sets are introduced.

In chapter 4, the event-streaming is defined as an abstract data type. Based

on such a definition, the problem of the data alignment for event-streaming is

formally stated.

In chapter 5, the event-streaming logical mapping (ES-LM) model is presented.

Firstly, it is explained how data alignment is performed by using the ES-LM.

Secondly, based on the ES-LM, the data alignment mechanism for event-streaming

in WSN is detailed. The effectiveness of the data alignment mechanism is verified

by a correctness proof. Complementarily, the viability of the mechanism is shown

through a simulation over a sensor network with multi-hop communication.

In chapter 6, the fuzzy-causal relation (FCR) is defined. Based on the FCR,

a spatio-temporal data association for event-streaming approach is presented. In

addition, a mechanism that implements the ES-LM along with the spatio-temporal

data association approach is detailed. In this chapter also it is explained how the
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establishment of a closeness degree among events, can be useful to refine the data

alignment. The effectiveness of the resulting mechanism is verified by simulations.

Finally, the conclusions and the future work of this research are summarized

in chapter 7.
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Chapter 2

Related work

Data alignment and association in WSN are related to the detection of a com-

mon time frame by processing several data streams generated and transmitted

by multiple distributed sources. Specifically, the adopted paradigm to exchange

data in a WSN is called event-streaming. The event-streaming paradigm has also

been employed in different distributed computing environments to detect global

predicates1 and monitor distributed events among multiple processes2.

In this chapter we present some of the proposed solutions related to the prob-

lem of attain common time references, by processing several streams exchanged

through the event-streaming. In a first part we briefly discussed some approaches

designed for the monitoring of predicates and distributed events in ubiquitous

environments. Then, in a second part we present a novel approach for the data

streams alignment for sensor networks.

2.1 Monitoring predicates and distributed events

Predicates defined on program variables, that are local to different processes, are

used for specifying conditions on the global system state. Predicates are useful for

1A predicate is a function on a set of terms or variables, so that by satisfying certain condi-
tions, returns a boolean value.

2In this sense a process is a program or instances of program
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applications such as debugging, environmental sensing, and in industrial process

control. An important paradigm for monitoring distributed events is that of event-

streaming, wherein streams of relevant events reported from different processes

are examined collectively to detect predicates. Typically, the specification of such

predicates uses physical or logical time relationships [KS08].

2.1.1 Predicate detection using physical time

Kshemkalyani has proposed algorithms to detect predicates from event streams

that are reported by the various components of an ubiquitous computing envi-

ronment [Ksh05, Ksh07]. These algorithms are based on a system model which

assumes a wireless multi-hop communication system, where each entity is able

to send its gathered data, eventually and asynchronously, in a FIFO stream to

a powerful data fusion server. By considering such a system model, all the de-

vices in the ubiquitous network must timestamp the transmitted streams by using

synchronized physical clocks based on a global time axis.

Based on the global time axis, the fusion server can detect a global predicate

from the event streams that occur at the same time instant at each process.

For this, the fusion server maintains many queues as processes are involved in the

system to store the transmitted streams and iteratively detect concurrent pairwise

interactions for each pair of processes. Thus, the concurrent pairwise interactions

are specified through the temporal relationships among streams, based on the

thirteen interval-interval relations proposed by Allen [All83].

A major shortcoming of such proposals is that in many ubiquitous systems,

instantaneous observation across various locations is not possible due to the lack of

perfectly synchronized clocks. This fact make it difficult to achieve a global time

axis. Furthermore, the asynchronous nature of several distributed systems, caused
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by unpredictable propagation delays and CPU loads, leads to many interleavings

of the events and different observations of their order [CK05, KC13].

2.1.2 Predicates and distributed events detection using log-

ical time

2.1.2.1 Centralized causality-based predicate detection

Based on the system model defined by Kshemkalyani in [Ksh05, Ksh07] (see pre-

vious section), Chandra and Kshemkalyani [CK05] propose the use of the happen

before relation [Lam78] to detect global predicates in ubiquitous computing envi-

ronments without using synchronized physical clocks.

To achieve this, they propose the use the well-known vector clock [Mat88,

Fid88] structure to provide logical time in the system. Thus, each process main-

tains a vector clock, of size n (where n is the number of processes in the whole

system), to manage the timestamps of each exchanged event. In addition, each

process maintains an interval clock, also of size n, to store and to manage the

timestamps for the endpoints of each transmitted event stream (interval).

Based on the logical time provided by the vector clocks, in a similar way that

the approach of Kshemkalyani [Ksh05, Ksh07], a fusion server can detect a pred-

icate by analyzing iteratively each pair of streams, stored in n queues. The con-

current pairwise interactions, necessary to detect a global predicate, are specified

by using the 29 interval-interval orthogonal relations proposed by Kshemkalyani

[Ksh96].

The main weakness of this approach is that it requires a central server. This im-

plies that a single entity needs to analyze, pair by pair, many streams as processes

are involved in the system. According to Chandra and Kshemkalyani [CK08], un-
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der such scheme, the workload and space complexity increase linearly with the

number of processes, besides that the network traffic creates a bottleneck at the

server’s links, restricting the system’s scalability.

2.1.2.2 Centralized detection of distributed events

Gao et al. in [GYJO10] propose an approach to detect real life events from several

event streams reported by the different sensors of a multimedia communication

system.

This approach defines a system model based on a concept of atomic event,

which is an abstraction to represent actions that occur at certain point of a 2D

plane and have a duration. In such a system model, each event is stamped with

two time points: a start time and an end time, where each time point is defined as

an integer in N. In addition, each atomic event is distinguished from another by its

event type. The event type is a descriptor of an interaction such as: “went from”,

“walking to”, “catching an”, etc. Thereby, by specifying temporal relationships

among atomic events, more meaningful events, called composite events, can be

produced. These composite events are used to describe and recognize complex

events such as happenings that involves several people and objects.

To detect the temporal relationships among the atomic events, that originate

a composite event, this approach proposes the use of an event processor. Such an

event processor is a computational entity where all the collected composite events

are pre-registered as queries. Assuming that the events arrive in order of end time,

the event processor orders the collected streams according to their sequential and

concurrent relationships, which are specified using five basic temporal patterns

based on the interval algebra defined by Allen [All83].
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Besides the typical problems related to the centralized schemes, this approach

does not consider the case when the events arrive, at the event processor, disor-

dered with respect to the end time. Due to the asynchronous nature of most of

the distributed systems, an ordered arrival of events is not always possible.

2.1.2.3 Distributed causality-based predicate detection

Chandra and Kshemkalyani in [CK08], proposed a distributed extension of the

causality-based predicate detection approach proposed in [CK05]. In such an

extension, the predicate detection algorithms are executed by the n processes of

the system. Thus, the space complexity and the time complexity get distributed

linearly with n, besides that the formation of bottlenecks is avoided.

This approach is based on two token-based algorithms, where the processes

involved in the system use a token to appoint the entity who is enabled to execute

the predicate detection at certain time. The token is formed by two vectors: a

vector to store and to manage the timestamps for the endpoints of the event stream

transmitted by the n processes, and a boolean vector to indicate the processes,

who generated the event streams, have been detected as a part of the current

predicate. Thus, individually each process analyzes the temporal relationships

between its own generated stream and the streams described by the vectors of the

token. In this way, each process only needs to store one single queue to store its

own stream, unlike the centralized scheme, where the fusion sever needs to store

n queues.

The main problem of the token-based algorithms is that to determine tem-

poral references, common to the whole system, it is necessary that the token

pass through all the n processes. Thus, a process i (i < n), after detecting the

temporal relationships between its own stream and the streams described in the
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token, needs to wait n − 1 additional turns to achieve the global system view.

Furthermore, the communication overhead for the control information exchange,

is duplicated with respect to the centralized scheme.

2.2 Temporal data alignment for sensor networks

Lee and Shih proposed a clock free streams alignment mechanism for sensor net-

works [LS07]. Such a mechanism allows to align the sensor data streams without

using synchronized physical clocks.

This solution proposes a system model where a sensor network is formed by

several sensor groups. A sensor group consists of at most n sensors and a collecting

device called data server. The data servers act as intermediate nodes to aggregate

or to collect the data streams which are later sent to another node or to a sink.

Furthermore, they propose the use of a synchronization server that broadcasts

synchronization signals to the whole network to establish a global reference. Thus,

a data server aligns the data streams, received from a sensor group, according to

the broadcasted synchronization signals.

Although the use of the data servers increases the scalability of the system,

with respect to the number of associated nodes in the network, demands extra

network requirements. Furthermore, since all the data servers use the synchro-

nization signals broadcasted by a single synchronization server, if such a server

fails, the synchrony of the whole system can be affected.
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Background and definitions

3.1 Distributed systems and the causal ordering

Time is an important theoretical construction to understand how the transactions

are executed in certain systems. A practical way to achieve such a construction, is

by recording the time when certain events happen to create a temporal ordering of

events. Unfortunately, there are some environments where the lack of global ref-

erences, such as physical clocks perfectly synchronized, make difficult to establish

a temporal ordering. An example of such kind of environments is a distributed

system.

A distributed system is composed by different entities spatially separated, that

communicate with each other by exchanging messages. In a distributed system

each entity has its own physical clock that has a certain gap with the others.

In the absence of a global physical time, in a distributed system many times is

impossible to determine if an event has happened before other, in other words, is

impossible to determine the system’s causal order.

A causal order establishes a precedence relation between two events in the

following way: let e1 and e2 be two events causally related, it is said that e1
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happened before e2 if there is an information flow1 from e1 to e2, and given such

a relation, e1 must be processed before e2.

A typical distributed system is described by a system model composed by the

following elements:

• Processes. Programs or instances of programs running simultaneously with

other programs. Each process belongs to the set P = {pi, pj , ...}.

• Messages. Abstractions to represent frames or packets in a computer net-

work, which can contain arbitrarily complex data structures. In a typical

distributed system a process can only communicate with other processes by

message passing over a communication network. Each exchanged message

in the system belongs to the set M .

• Events. An event represents an instant execution performed by a process.

In a distributed system, a process can only execute two kind of events:

internal events and external events. An internal event is an action in a

process that affects only the process at which it occurs. An external event is

also an action in a process, but unlike an internal event, this action is seen

by other processes affecting the global system state. For communication

interactions there are three types of external process: send, receive and

delivery.

1. The send event refers to the emission of a message, executed by a

process.

2. The receive event refers to the notification on the arrival of a message

in a process.

1Information flow in an information theoretical context is the transfer of information from
an entity x to an entity y.
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3. The delivery event refers to the execution performed by a process to

present the received information to an aplication or other process.

Definition 1. – The happened-before relation (HBR). The HBR [Lam78],

“→”, is the smallest relation on a set of events E satisfying the following condi-

tions:

1. If a and b are events belonging to the same process, and a was originated

before b, then a→ b.

2. If a is the sending of a message by one process and b is the receipt of the

same message by another process, then a→ b.

3. If a→ b and b→ c, then a→ c.

Based on Definition 1, Lamport defines that a pair of events is concurrently

related “a ‖ b” as follows:

Definition 2. Two events, a and b, are said to be concurrent if a 9 b and b 9 a,

which is denoted by a ‖ b [Lam78].

Definition 3. – Immediate dependency relation (IDR). The IDR [PFD04]

is the transitive reduction of the HBR and is defined as follows:

Two events a, b ∈ E have an immediate dependency relation (denoted by “↓”)

if:

a ↓ b if a→ b ∧ ∀c ∈ E,¬(a→ c→ b)

Definition 4. – Precedence relation of messages. Let two messages m,m′ ∈

M , the precedence relation of messages denoted by m → m′ is induced by the

precedence relation of events, and it is defined by:
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m→ m′ iff send(m)→ send(m′)

Definition 5. – Intervals. An interval is a set of messages sent by a process pi

during a period of time. If the messages that compose an interval satisfy a certain

order, then such interval is called ordered interval.

The works of Shimamura et al. [STT01] and Pomares et al. [PEMR08] define

the following ordered interval composition.

Definition 6. Let X be an interval of sequentially-ordered messages at a process

pi; X ⊂ E, and x−, e, x+ ∈ X; where x− is the left endpoint and x+ is the right

endpoint of interval X, such that ∀e ∈ X, x− →i e→i x
+ and x− 6= e, x+ 6= e.

When |X| = 1, this implies that x− = x+; in this case, x− and x+ are denoted

indistinctly by x.

Definition 7. – Happened-before relation for intervals. Lamport establishes

in [Lam86] that an interval A happens before another interval B if all the elements

that compose an interval A causally precede all the elements of interval B.

The causal relation “→” is established at a set level by satisfying the following

conditions:

1. A→ B if a→ b, ∀(a, b) ∈ A×B,

2. A→ B if ∃ C | (A→ C ∧ C → B).

According to Definition 6 and Pomares et al. [PEMR08], the happened-before

relation in regard to ordered intervals can be expressed only in terms of the end-

points as follows:

Property 1. Let A, B and C be ordered intervals. A occurs before B if any of

the following conditions are satisfied:
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1. A→ B if a+ → b−

2. A→ B if ∃C, such that a+ → c− ∧ c+ → b−

Definition 8. Let A and B be two ordered intervals. A and B are said to be

simultaneous (denoted by A|||B) if the following condition is satisfied [PEMR08]:

A|||B if a− ‖ b− ∧ a+ ‖ b+

The definition above means that one interval A can take place at the “same

time” as another interval B.

3.1.1 The logical mapping model

The logical mapping model introduced in [PEMR08] is useful to represent pair-

wise interactions between processes. Such a model expresses temporal relations

between sets of events in terms of the happened before relation for intervals.

The logical mapping model is intended to be the support in the generation

of synchronization specifications for a temporal scenario. Thus, with the logical

mapping translation, once a pair of intervals X and Y are identified, they are

segmented into four subintervals: A(X, Y ), C(X, Y ), D(X, Y ) and B(X, Y ), to

construct the general causal structure: S(X, Y ) = A(X, Y ) →I W (X, Y ) →I

B(X, Y ), where W (X, Y ) determines if overlaps exist between the pair of intervals

(see Table 2).

Based on the intervals’ segmentation, the logical mapping model identifies five

logical mappings which are: precedes, simultaneous, ends, starts and overlaps.

These five logical mappings are sufficient to represent all possible temporal rela-

tions between continuous media (interval-interval relations [All83]), discrete media

(point-to-point relations), and discrete-continuous media relations [Mar82].
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Table 2: Logical mapping

∀(X, Y ) ∈ I × I

A(X, Y ) ← • if x− → y−, {x ∈ X : delivery(Part(Y ), x)→ send(y−)}
• otherwise, ∅

C(X, Y ) ← • if y+ → x+, {x ∈ X : send(x) → delivery(Part(X), y+)} −
A(X, Y )

• otherwise, X − A(X, Y )

D(X, Y ) ← • if x+ → y+, Y − {y ∈ Y : delivery(Part(Y ), x+)→ send(y)}
• otherwise, Y

B(X, Y ) ← • if y+ → x+, X − {A(X, Y ) ∪ C(X, Y )}
• otherwise, Y −D(X, Y )

W (X, Y ) ≡ C(X, Y )|||D(X, Y )

S(X, Y ) ≡ A(X, Y )→I W (X, Y )→I B(X, Y )

Using the the intervals’ segmentation and the identification of the five logical

mappings, some synchronization points are detected. With such synchronization

points can be determined which parts of the intervals are simultaneous and can

be presented in any order, one respect to each other, and determine which parts

need to be presented in a causal order.

3.2 Fuzzy sets

Definition 9. Fuzzy sets. Zadeh establishes in [Zad65] that a fuzzy set A is

defined as a membership function fA(x) that maps the elements of a domain or

universe X with the elements of the interval [0, 1]: fA : X → [0, 1], representing

the degree of membership of x in A. The closer the value of fA(x) to 1, the higher

the degree of membership of x in A.
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Table 3: Interval-interval relations and their logical mappings

Logical mapping

Interval-interval Logical mapping expressed by Scenario example

relation endpoints

X

Y

A

B

t

X precedes Y precedes : A→I B a+ → b−

X

Y

A

B

t

C

DX meets Y a+ → c−, a+ → d−

X

Y

A

B

t

C

DX overlaps Y A→I (C|||D)→I B c− ‖ d−, c+ ‖ d+

Y

X
A B

t

C

D

X contains Y c+ → b−, d+ → b−

c− ‖ d−, c+ ‖ d+,
c+ → b−, d+ → b−

X

Y
B

t

C

DX starts Y starts : (C|||D)→I B

a+ → c−, a+ → d−,

c− ‖ d−, c+ ‖ d+
Y

X

t

A

D

CX finishes Y ends : A→I (C|||D)

X

Y

C

D

t

X equals Y simultaneous : C|||D c− ‖ d−, c+ ‖ d+

A fuzzy set A can be represented as a set of pairs of values: each element

x ∈ X with its degree of membership in A.

A = {(x, fA(x))|x ∈ X}
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Definition 10. Fuzzification is the conversion of a precise quantity to a fuzzy

quantity.

Generally, the fuzzification of a real value is performed using intuition, expe-

rience and an analysis of the set of conditions associated to the input variables.

The most used fuzzifiers, are the based on triangular and trapezoidal functions:

• Triangular function: fA(x) = max[min( x−L
C−L

, R−x
R−C

), 0], (see Figure 3.1)

C RL
0

1

Figure 3.1: Triangular function

where L, C and R are the real scalar values that delimit a fuzzy set A, being

C the input value that has the largest membership to A.

• Trapezoidal function: fA(x) = max[min(x−L
b−L

, 1, U−x
U−c

), 0], (see Figure 3.2)

0

1

L Ub c

Figure 3.2: Trapezoidal function

where L, U , b and c are the real scalar values that delimit a fuzzy set A,

being b and c the boundaries of the range where the inputs have the largest

membership to A.

Definition 11. Defuzzification is the conversion of a fuzzy quantity to a precise

quantity.
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Defuzzification can be performed in several ways; however, the most used

defuzzification methods are the based on the called center of area or center of

gravity.

Centroid of Area (COA) method. This procedure is the most prevalent and

physically appealing of all the defuzzification methods [Sug85, Lee90]; it is given

by the algebraic expression

COA =

∫
fA(ac)· acdac∫
fA(ac)dac

,

where
∫

denotes an algebraic integration.

Weighted average (WA) method. The weighted average method is the most

frequently used in fuzzy applications since it is one of the more computationally

efficient methods [Ros95]. The only restriction is that the output membership

functions must be symmetrical. It is given by the algebraic expression

WA =

∑
fA(āc)· āc∑
fA(āc)

,

where
∑

denotes the algebraic sum and where āc is the centroid of each symmetric

membership function, for example C (see Figure 3.1). The weighted average

method is formed by weighting each membership function in the output by its

respective maximum membership value.

Definition 12. Linguistic variables. The linguistic variables are variables whose

values are represented using linguistic terms ( low, medium, high, very high,

etc.). The meaning of these terms is determined through fuzzy sets. A linguistic

variable is characterized by (v, T,X, g,m), where:

• v is the name of the variable
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• T is the set of linguistic terms of v

• X is the universe of discourse of the variable v

• g is a syntactic rule to generate linguistic terms

• m is a syntactic rule that assigns to each linguistic term t its own meaning

m(t), which is a fuzzy set in X

3.2.1 Fuzzy inference system

A fuzzy inference system (FIS) is a way to transform an input space in an output

space, using fuzzy logic. The FIS attempts to formalize, using the fuzzy logic,

reasoning of human language.

Generally, a FIS has four modules as depicted in Figure 3.3:

• Fuzzification module: transforms the system inputs, which are crisp num-

bers, into memberships to fuzzy sets. This is done by applying a fuzzification

function.

• Knowledge base: stores if-then rules provided by experts.

• Inference engine: simulates the human reasoning process by making fuzzy

inference on the inputs and if-then rules.

• Defuzzification module: transforms the memberships to fuzzy sets, obtained

by the inference engine, into a crisp value.

The most used FIS are the Mamdani type [MA75] and the Sugeno type [TS85].

• In the Mamdani systems the inputs and the outputs of the inference engine

are fuzzy

If x is A and y is B then z is V
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Crisp value

Crisp value

Fuzzification

Defuzzification

Inference

engine
Knowledge 

base

Figure 3.3: Typical FIS modules.

• In the Sugeno systems, the inputs of the inference engine are fuzzy and the

output is “crisp”

If x is A and y is B then z = f(x, y)
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Chapter 4

The problem of the data alignment

for event-streaming

Before formally defining the problem of the data alignment for event-streaming, we

introduce our system model. Then, we define the event-streaming as an abstract

data type based on which we formulate the problem of the data alignment for

event-streaming.

4.1 The system model

We specify a WSN as a distributed system, consisting of three main components:

• Processes. Each entity associated to the WSN (sensors or sink) is rep-

resented as an individual process. Each process belongs to the set P =

{pi, pj, ...} and communicates with other processes by message passing over

a multi-hop communication, sending only one message at a time.

• Messages. The messages sent by the processes in the WSN belong to the set

M . Each message contains a sample of audio, video or many other physical

signals that each device collects. Henceforth, we will refer to a sample as

a message. For our approach, each message m ∈ M is a tuple (sts, tsts),

where:



28 The problem of the data alignment for event-streaming

– sts is the identifier of the process that originally generated the message.

– tsts is the logical sample time, at which a process psts conducts such a

sample data.

• Events. We consider three kinds of events:

1. send refers to the emission of a message executed by a process.

2. receive refers to the notification upon the arrival of a message in a

process.

3. delivery refers to the execution performed by a process to present the

received information to an application or another process.

Let m be a message. We denote by send(m) the emission event, by receive(m)

the reception, and by delivery(p,m) the delivery of m to process p.

Furthermore, we consider two main characteristics for the transmissions in a WSN:

• Transmission delay. For a message m ∈ M there is a time period for the

medium accessing and the network propagation.

• Synchronization error of two samples. This refers to the difference

between the local time reference assigned at the reception, which can be

used to estimate the sample time, and the sample time of the source.

4.2 Event-streaming abstract data type

We propose a definition of the event-streaming oriented to the data alignment

problem. Assuming that an event-streaming is composed of several events, we

begin by defining the concept of an atomic event.
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4.2.1 Atomic event.

An atomic event indicates that an entity has sent or delivered a message containing

a sample. In other words, an atomic event indicates that some data has been

collected from the environment.

Definition 13. An atomic event is a tuple e(pj, m(pi, x)), where pj refers to the

process where the event is executed and m(pi, x) is a message (m ∈ M) that has

the process pi as origin.

As we stated above, we consider three types of events: send, receive and

delivery. We denote the atomic delivery event by delivery(pj, m(pi, x)), the atomic

recieve event by receive(pj, m(pi, x)), and we denote the atomic send event only

by send(m(pi, x)) since pi = pj .

Based on the concept of atomic event, for our solution we distinguish two

kinds of data streams generated by the nodes in a WSN: the local-streams and

the event-streamings.

4.2.2 Local-streams.

In a WSN, each process generates a certain number of atomic events throughout

the communication process. When some of these events are generated sequentially

by a process pi during a period of time, we say that the process pi ∈ P has

generated a local-stream. We formally define a local-stream as follows:

Definition 14. A local-stream is a poset (Si,→i) where Si is a finite set of atomic

events Si = {e1, e2, ...en} generated by the process pi ∈ P and arranged according

to the local causal relation →i.

A local-stream can be expressed by its endpoints, similarly to the intervals (see

Definition 4). For a local-stream Si = {e1, e2, ...en}, the endpoints are S−
i = e1
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and S+
i = en. The endpoint S−

i refers to the beginning of the local-stream, while

S+
i refers to its end.

For example, suppose that a process pk sequentially generates 13 events as

depicted in Figure 4.1.

p
k

time

e1 e2 e3 e4 e5 e6 e7 e8 e10 e11 e12 e13e9

Figure 4.1: Representation of a local-stream generated by a process pk.

Since all these events were generated one after another by pk during a period

of time, such events are related acccording to the local happpened-before realtion

→k forming the causal structure:

Sk = e1 →k e2 →k · · · →k e12 →k e13.

In this way, we say that Sk is a local-stream that can be expressed with the

endpoints S−
k = e1 and S+

k = e13.

4.2.3 Event-streamings.

An event-streaming can be viewed as a collection of local-streams gathered by a

process pj . Any process pj gathers several local-streams when it relays streams

generated by other processes in order to help the data reach its final destination.

Since all the local-streams exchanged within a WSN are asynchronously gen-

erated by multiple sources, according to the local view of a process pj, some

segments (subsets) of the gathered local-streams will be simultaneous (generated

in the same time slot) while other segments will not. To distinguish the simultane-

ous segments from the non simultaneous segments, they are grouped into different

sets of events.
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For example, suppose that two processes pi and pk generate two local-streams

Si and Sk, respectively, and that a process pj is a relay node that helps pi and pk

propagate their streams along the network. Also suppose that pj generates the

local-stream Sj while relays Si and Sk. According to the local view of the system’s

execution at pj , segments of Si, Sk and Sj can be simultaneous at different instants,

as depicted in Figure 4.2.

pk

time

pi

pj

Figure 4.2: Representation of the subsets of an event-streaming.

In this example we can distinguish five different sets (from left to right): a first

set containing events exclusively generated by pi, a second set containing events

generated by pi and pj , a third set containing events generated by pi, pj and pk,

a fourth set containing events generated by pj and pk, and a fifth set containing

events exclusively generated by pj .

Formally, let Rq be a set of processes’ identifiers. We denote by Q
Rq
q the set of

events generated by the processes whose identifiers are in Rq. Thus, each set Q
Rq
q

is a collection of subsets of local-streams Ωi,Ωj, ...,Ωk, where Ωi ⊆ Si, Ωj ⊆ Sj and

Ωk ⊆ Sk such that Ωi|||Ωj||| · · · |||Ωk, (i, j, ..., k ∈ Rq). Furthermore, the events in

any set Ως are arranged according to the local causal relation→ς , which form the

poset (Ως ,→ς).

According to the local view of a process pj, all the sets Q
Rq
q are formed one

after another according to the system’s execution. Therefore, when a process pj
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causally arranges different sets Q
Rq
q , one after another, we say that pj generates

an event-streaming.

Let Θ be a set of the processes’ identifiers that generates all the local-streams

gathered by a process pj . We denote by ESΘ the event-streaming formed by the

general causal structure:

ESΘ = QR1

1 → QR2

2 → · · · → Q
Rm−1

m−1 → QRm

m

We formally define an event-streaming as follows:

Definition 15. An event-streaming is a poset (ESΘ,→) where ESΘ is a finite

set of subsets of events ESΘ = {QR1

1 , QR2

2 , ..., QRm
m } arranged according to the

causal relation →; Θ is the set of the identifiers of the processes that generated

the events; and each Q
Rq
q ∈ ESΘ is a subset of events generated by the processes

whose identifiers form the set Rq.

We note that in a similar way to the local-streams and the intervals, each

subset Q
Rq
q ∈ ESΘ can be expressed by its endpoints. However, unlike local-

streams and intervals, the endpoints of a subset Q
Rq
q are sets of events formed by

the endpoints of each set Ως ∈ Q
Rq
q , respectively. Thus, when Q

Rq
q contains events

generated by the processes pi, pj and pk, we denote the left set endpoint as −Q
Rq
q

which is composed as follows: −Q
Rq
q = {ω−

i , ω
−
j , ω

−
k }, where ω−

i ∈ Ωi, ω
−
j ∈ Ωj and

ω−
k ∈ Ωk. Likewise, we denote the right set endpoint as +Q

Rq
q which is composed

as follows: +Q
Rq
q = {ω+

i , ω
+
j , ω

+

k }, where ω+
i ∈ Ωi, ω

+
j ∈ Ωj and ω+

k ∈ Ωk.
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4.3 Problem formulation

Based on the definition of the data stream alignment problem given in [LS07], we

define the problem of the data alignment for event-streaming as follows.

Definition 16. Data alignment problem for event-streaming: Given a set

of local-streams: {S1, S2, S3, ...}, and considering a certain maximum transmission

delay, the problem is to assign a temporal reference that can be used as an estimated

sample time for each interested message, such that for every two messages m(pi, x)

and m(pj, y), their synchronization error is bounded.

For our solution, the messages of interest are the causal messages sent within

an event-streaming. Explicitly, they are the endpoints of the subsets Q
Rq
q . In

this sense, the synchronization error establishes the temporal distance between

the execution of a pair of messages of interest. Therefore, according to the stated

problem, it is necessary to detect some patterns among local-streams that can be

used as temporal references to certain messages.

As shown in the works of Chandra and Kshemkalyani [CK02, CK08, Ksh05]

a practical way to detect patterns among local-streams is by assuming a global

time axis and by using interval-interval relations as defined by Allen [All83]. Un-

fortunately, establishing a global time axis in a WSN is difficult due to the lack of

perfectly-synchronized clocks [CK05]. However, as shown by Pomares et al. with

their logical mapping model [PEMR08], the interval-interval relations can be ex-

pressed in terms of the happened-before relation, allowing the system to prescind

from physical clocks.

For our problem of data alignment, we are specifically interested in detecting

when an event eµ of a local-stream Si precedes another event eν of some local-

stream Sj, and when the events of two or more local-streams are concurrent,



34 The problem of the data alignment for event-streaming

since these two facts help us identify the unique time slots during a time-line

which can be used as temporal references to situate a message. Furthermore,

the concurrences among sets of events identify data that can be fused in further

stages.

In this sense, the logical mapping model is focused on detecting temporal de-

pendencies between a pair of intervals. However, for our problem this means only

the base case, which is the detection of temporal dependencies between local-

streams. The logical mapping does not support the detection of temporal de-

pendencies among event-streamings. To achieve this, we propose an extension

to the native logical mapping model [PCPHM12]. We call this extended model

event-streaming logical mapping model (ES-LM) [PCPH14a].



Chapter 5

Temporal data alignment for

event-streaming

5.1 The event-streaming logical mapping model

(ES-LM)

The native logical mapping identifies five logical mappings: precedes, simultane-

ous, ends, starts and overlaps to determine how two intervals (local-streams) are

related.

Analogously, the ES-LM [PCPH14a] is designed to identify how an event-

streaming ESΘ is related to a local-stream Yk in order to determine the events

that have causal dependencies and the subsets of events that concur. To achieve

this, it is necessary to determine how each subset Q
Rq
q ∈ ESΘ is related to a local-

stream Yk. We note that any subset Q
Rq
q is considered as a sub-event-streaming.

In our ES-LM model, without loss of generality, it is assumed that −Q
Rq
q → Y −

k

or −Q
Rq
q || Y −

k . Therefore, when a subset Q
Rq
q is aligned to a local-stream Yk,

a new sub-event-streaming is generated according to the left column of Table 4.

The resultant sub-event-streaming has the following general causal structure:

QRa

a → QRb

b → QRw

w
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From this causal structure, five new logical mappings are identified. These

logical mappings represent all the ways that an event-streaming can be related

to a local-stream. These new logical mappings are: s-precedes, s-simultaneous,

s-ends, s-overlaps and s-starts (see right column of Table 4).

Table 4: Event-streaming logical mapping

Data alignment for event-streaming ES logical mappings

QRa
a ←

• if ∀x− ∈ −Q
Rq
q , ∃y− ∈ Yk : x

− → y−, s-precedes:
QRa

a → QRw
w{x ∈ Q

Rq
q : delivery(pk, x)→ send(y−)}

• otherwise, ∅
s-simultaneous:
∅ → QRb

b

QRb

b
←

• if y+ ∈ Yk :
+Q

Rq
q → y+,

(Q
Rq
q −QRa

a )∪(Yk−{y ∈ Yk : delivery(pk, x
+)→ send(y)})

• if ∀x+ ∈ +Q
Rq
q , ∃y+ ∈ Yk : y

+ → x+,
s-ends: QRa

a → QRb

b
({x ∈ Q

Rq
q : delivery(pk, x)→ send(y+)} −QRa

a ) ∪ Yk

• otherwise, (Q
Rq
q −QRa

a ) ∪ Yk

s-overlaps:
QRa

a → QRb

b → QRw
w

QRw
w ←

• if ∀x+ ∈ +Q
Rq
q , ∃y+ ∈ Yk : y

+ → x+,

Q
Rq
q − {x ∈ Q

Rq
q : delivery(pk, x)→ send(y+)}

• otherwise,
s-starts : QRb

b → QRw
w{y ∈ Yk : delivery(pk, x)→ send(y+)}

The ES-LM is the core of the data alignment scheme that we propose, which

is presented in the following section.

5.1.1 Data alignment description

The data alignment process is described through four stages as follows.

A.1 Initial stage: alignment of two local-streams Initially, we have two

local-streams Xc and Yd (X−
c → Y −

d or X−
c || Y −

d ). Applying the native logical

mapping, we generate the first event-streaming ESΘ as follows.
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We construct a first subset Q
{c}
1 with the first non-concurrent events in Xc (see

Table 5). To determine those non-concurrent events, we need to identify all the

events x ∈ Xc that precede the beginning of Yd (see Figure 5.1).

Then, according to Table 5, we proceed to construct a second subset Q
{c,d}
2

with the concurrent events between Xc and Yd. The concurrent segments of both

local-streams will be bound by the beginning of Yd and the end of any of the two

local-streams (see Figure 5.2).

t

ESΘ

Yd 

X c 

Q 
1

{c}

Figure 5.1: Aligning the first subset of the first event-streaming.

t

ESΘ

Yd 

X c 

Q 
2

{c,d}

Figure 5.2: Aligning the second subset of the first event-streaming.

The last subset Q
{w}
3 is constructed depending on which local-stream finishes

first. If Xc finishes first, the last subset will contain the remaining events of Yd

(see Table 5). Otherwise, the last subset will contain the remaining events of Xd

(see Table 5). These two cases are illustrated in Figure 5.3.

Therefore, the first event-streaming has the general causal structure ESΘ =

Q
{c}
1 → Q

{c,d}
2 → Q

{w}
3 , where w may be c or d.

Once the first stage has finished, we proceed to align two streams: an event-

streaming and a local-stream. The event-streaming is labeled as the set Xβ, where
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Figure 5.3: Aligning the last subset of the first event-streaming. (a) Xc finishes
first (b) Yd finishes first.

β is the set of identifiers of the processes that generated the events, while the local-

stream is labeled as Yk, where k is the identifier of the local process. Each resultant

event-streaming is merged with the next most-left local stream Yk according to

the causal dependencies among the events of Yk and the event-streaming Xβ.

Using Xβ and Yk, we construct a new event-streaming forming the subsets

Q
Tq
q of the general causal structure ESΘ = QT1

1 → QT2

2 → · · · → Q
Tn−1

n−1 → QTn
n by

detecting the concurrences between Xβ and Yk.

Table 5: A.1 Alignment of two local-streams

Q
{c}
1

←
• if x− ∈ Xc, y

− ∈ Yd : x− → y−,

{x ∈ Xc : delivery(pd, x)→ send(y−)}
• otherwise, ∅

Q
{c,d}
2

←

• if x+ ∈ Xc, y
+ ∈ Yd : x+ → y+,

(Xc−Q
{c}
1 )∪ (Yd−{y ∈ Yd : delivery(pd, x

+)→ send(y)})
• if x+ ∈ Xc, y

+ ∈ Yd : y+ → x+,

({x ∈ Xc : send(x)→ delivery(pc, y
+)} −Q

{c}
1 ) ∪ Yd

• otherwise, (Xc −Q
{c}
1 ) ∪ Yd

Q
{w}
3

←

• if x+ ∈ Xc, y
+ ∈ Yd : y+ → x+,

Xc − ({x ∈ Xc : send(x)→ delivery(pc, y
+)} −Q

{c}
1 )

• otherwise,

{y ∈ Yd : delivery(pd, x
+)→ send(y)})
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Assuming that the initial stage was accomplished, the logical mapping proceeds

according to the three stages that are detailed below.

B.1 Aligning the first subsets of events without concurrences between

an event-streaming and a local-stream In the first step, we determine if

there are some subsets QRa
a ∈ Xβ that precede the local-stream Yk to form the

first subsets of the new event-streaming (see stage B.1 of Table 6). These subsets

have events that are not concurrent with the events of Yk and are integrated

directly to the new event-streaming to form the first subsets QTa
a ∈ ESΘ (see

Figure 5.4).

t

ESΘ

Yk 

X β 

Q 
3

T 3 Q 
4

T 4Q 
2

T 2Q 
1

T 1

Q 
3

R3Q 
2

R2Q 
1

R1

Figure 5.4: Aligning the first subsets of events of an event-streaming

If a subset QRa
a ∈ Xβ has events that are concurrent with a part of the local-

stream Yk, this subset is segmented to form two new subsets for the new event-

streaming ESΘ. The new subset QTa
a , the first of the two new subsets, will contain

the part of QRa
a whose events have no concurrence. To determine the events with-

out concurrences, it is necessary to identify the event x ∈ QRa
a that immediately

precedes the beginning of the local-stream Yk, (see line 1.2 of Table 6). For the

example depicted in Figure 5.4, the new subset QTa
a corresponds to the subset

QT3

3 . The remaining events of QRa
a are aligned as stated in the following stage.
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Table 6: Alignment process between an event-streaming and a local-stream

B.1

If ∀x− ∈ X−
β , ∃y− ∈ Yk : x

− → y− a new set QTa
a is created as follows:

QTa
a ←

• for each QRa
a ∈ Xβ : ¬(∃x ∈ QRa

a : delivery(pk, x) ↓ send(y−)) 1.1

• if ∃x ∈ QRa
a : delivery(pk, x) ↓ send(y−),

1.2
Q′ = {x ∈ QRa

a : delivery(pk, x)→ send(y−)}

B.2

Case A. If QRa
a −Q′ 6= ∅, a new set QTc

c is created by:

QTc
c ← (QRa

a −Q′) ∪ (Yk − {y ∈ Yk : delivery(pk,
+ QRa

a )→ send(y)}) 2.1

Case B. If ∀x+ ∈ X+

β , ∃y+ ∈ Yk : x
+ → y+ a new set QTc

c as follows:

QTc
c ← • for each QRb

b ∈ Xβ − (QR1

1 ∪ . . . ∪QRa
a ),

2.2
QRb

b ∪{(Yk−{y ∈ Yk : y ∈ QT1

1 ∪. . .∪QTc−1

c−1 })−{y ∈ Yk : delivery(pk,
+ QRb

b )→ send(y)}}
Case C. If ∀x+ ∈ X+

β , ∃y+ ∈ Yk : y
+ → x+ a new set QTc

c is created for each QRb

b ∈ Xβ − (QR1

1 ∪ . . . ∪QRa
a ),

such that ∀x ∈ QRb

b : delivery(pk, x)→ send(y+), as follows:

QTc
c ←

• for each QRb

b ∈ Xβ : ¬(∃x ∈ QRb

b : delivery(pk, x) ↓ send(y+)),
2.3

QRb

b ∪{(Yk−{y ∈ Yk : y ∈ QT1

1 ∪. . .∪QTc−1

c−1 })−{y ∈ Yk : delivery(pk,
+ QRb

b )→ send(y)}}
• if ∃x ∈ QRb

b : delivery(pk, x) ↓ send(y+),
2.4

Q′′ = {x ∈ QRb

b : delivery(pk, x)→ send(y+)} ∪ (Yk − {y ∈ Yk : y ∈ QT1

1 ∪ . . . ∪QTa
a })

B.3

Case A. If ∀x+ ∈ X+

β , ∃y+ ∈ Yk : y
+ → x+ a new set QTd

d as follows:

QTd

d
← • if QRb

b −Q′′ 6= ∅, QRb

b −Q′′ 3.1

• otherwise, for each QRc
c ∈ {Xβ −QT1

1 ∪ . . . ∪QTn
n } 3.2

Case B. If ∀x+ ∈ X+

β , ∃y+ ∈ Yk : x
+ → y+ a new set QTd

d is created by:

QTd

d ← Yk − {y ∈ Yk : y ∈ QT1

1 ∪ . . . ∪QTn
n } 3.3

B.2 Aligning the subsets of events with concurrences between an event-

streaming and a local-stream If during stage B.1 a subset QRa
a was detected

containing events concurrent with a portion of the local-stream Yk, such a portion

of Yk is attached to the part of QRa
a with concurrent events to form a new subset

QTc
c (see line 2.1 of Table 6).

Once the beginning of the concurrent parts of both streams are detected,

according to stage B.2 of Table 6 (lines 2.2 and 2.3), all the subsequent subsets

QRb

b ∈ Xβ are attached with the corresponding concurrent events of Yk, until one

of the two streams finishes. This means that for each subset QRb

b in the concurrent

part of Xβ, a new subset QTc
c will be constructed for the new event-streaming ESΘ

(see Figure 5.5).
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Figure 5.5: Aligning the subsets of events with concurrences.

The final subsets of the resulting event-streaming will be constructed depend-

ing upon which stream finishes first.

If the local-stream Yk finishes first (y+ → X+

β ), the last concurrent subset

QRb

b ∈ Xβ can contain some events that are concurrent with Yk and other events

that have no concurrence (see Figure 5.6). If this is the case, QRb

b needs to be

segmented to construct two new subsets for the new event-streaming ESΘ. The

new subset QTc
c , the first of the two new subsets, will contain the concurrent part

of QRb

b and the concurrent events of Yk. To determine such concurrent events, it

is necessary to identify the event x ∈ QRb

b that immediately precedes the end of

the local-stream Yk and the concurrent part of the local-stream (see line 2.4 in

Table 6). For the example depicted in Figure 5.6, the new subset QTc
c corresponds

to subset QT7

7 . The remaining events of QRb

b are aligned as stated in the following

stage.

B.3 Aligning the last subsets of events without concurrences This stage

is explained through two cases.

Case A. Yk finishes before Xβ. If at the end of stage B.2, the last subset

QRb

b was segmented, the second created subset, denoted as QTd

d , will contain the
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remaining non-concurrent events of QRb

b (see line 3.1 of Table 6). In the example

of Figure 5.6, such subset QTd

d corresponds to the subset QT8

8 .

The fact that the local-stream Yk finishes first (y+ → X+

β ) implies that the

concurrent parts of both streams finish along with Yk. Therefore, according to

line 3.2 of Table 6, the remaining subsets QRc
c ∈ Xβ will become the last subsets

QTd

d ∈ ESΘ. In the example of Figure 5.6, the last subsets QTd

d are the subsets

QT9

9 , QT10

10 and QT11

11 .

t
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Figure 5.6: Aligning the last subsets of events without concurrences when y+ →
X+

β .

Case B. Xβ finishes before Yk. The fact that the event-streaming Xβ

finishes first (X+

β → y+, y+ ∈ Yk) means that the concurrent parts of both streams

finish along with the event-streaming Xβ. After the last subset QTc
c ∈ ESΘ was

constructed with the concurrent events of Xβ and Yk, only one more subset QTd

d

is constructed according to line 3.3 of Table 6. Such subset QTd

d will contain the

remaining events of the local-stream Yk. In the example of Figure 5.7, the last

subset QTd

d corresponds to the subset QT8

8 .

The event-streaming logical mapping will continue until there are no more

concurrent local-streams to be merged.

In terms of data alignment, we note that by the way in which the subsets of

events are constructed and causally ordered, each resultant event-streaming ESΘ
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Figure 5.7: Aligning the last subsets of events without concurrences when X+

β →
y+.

is a finite collection of disjoint subsets Q
Tq
q arranged one after another without

interruption. This arrangement of subsets Q
Tq
q in an ESΘ allows us to establish

a virtual time-line where each subset Q
Tq
q represents a unique time-slot. The fact

that the subsets Q
Tq
q are disjoint implies that each event in an event-streaming

belongs to a unique subset Q
Tq
q , and therefore it is located at a specific time-slot.

5.1.2 Formal proof of the ES-LM model

In this section we prove that by following the ES-LM data alignment model,

the sequential arrangement of subsets of events that compose an event-streaming

establishes a virtual time-line, where each subset represents a unique time-slot

and each event is aligned with respect to only one of them.

Theorem 1. The arrangement of subsets Q
Rq
q in an event-streaming establishes

a virtual time-line, where each subset Q
Rq
q represents a unique time-slot and each

event belongs to a unique time-slot.

Proof. We divide this proof into two parts. In the first part we prove that

an event-streaming is a causal arrangement of subsets of events that establishes a
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time-line. In the second part we prove that each subset Q
Rq
q in an event-streaming

represents a unique time-slot.

Part I. To demonstrate that an event-streaming is a causal arrangement of

subsets of events that establishes a time-line, we formulate and prove the following

Lemma:

Lemma 1. An event-streaming is a causal arrangement of subsets of events that

establishes a time-line.

Before proving Lemma 1, we need to consider the following. Definition 14,

states that a local-stream is a poset (Si,→), where Si is a set of atomic events

generated by the same process. Thus, (Si,→) is a sequence Si = {eα → eα+1 →

· · · → en−1 → en}. The fact that the events of Si are arranged by → implies that

each event happens before another at different time instant, which determines a

chronologically order. Therefore, a local-stream Si represents a time-line for a

process i.

Proof of Lemma 1. We demonstrate Lemma 1 by a direct proof. According to the

ES-LM (Tables 4, 5 and 6) during the data alignment, the subsets of events that

compose a new event-streaming ESβ, are formed by segmenting two streams (a

local-stream and an event-streaming or two local-streams). From Tables 5 and 6

(specifically, stage B.1; cases B and C of stage B.2; and stage B.3) we have that

a segmentation is triggered by the identification of an endpoint which determines

the beginning or the ending of an overlap between a pair of streams. Whichever

the case, each segmentation establishes the creation of two new subsets QRu−1
u−1

and QRu
u . Let Yc be a local-stream and let X denote a local-stream or an event-

streaming such that ∀x− ∈ X, ∃y− ∈ Yc : x− → y−. Assuming that e∗ (e∗ ∈ Yc
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or e∗ ∈ X) is the endpoint (e∗ = y− ∨ e∗ = y+ ∨ e∗ = x+), whose identification

triggered the segmentation, ∀x+ ∈ X, QRu−1
u−1 and QRu

u are constructed according

to one of the three following cases:

a) if e∗ ∈ Yc, e
∗ = y−, and x− → y− then QRu−1

u−1 = {x ∈ X : delivery(pc, x) →

send(e∗)} and QRu
u = {e∗} ∪ {x ∈ X : send(e∗) → delivery(pc, x)} ∪ {y ∈ Yc :

send(y)→ delivery(pc, x
+)};

b) if e∗ ∈ X, e∗ = x+, and x+ → y+ then QRu−1
u−1 = {e∗}∪{x ∈ X : delivery(pc, x)→

delivery(pc, e
∗)} ∪ {y ∈ Yc : send(y) → delivery(pc, e

∗)} and QRu
u = {y ∈ Yc :

delivery(pc, e
∗)→ send(y)};

c) if e∗ ∈ Yc, e
∗ = y+, and y+ → x+ then QRu−1

u−1 = {e∗}∪{x ∈ X : delivery(pc, x)→

send(e∗)} ∪ {y ∈ Yc : send(y) → send(e∗)} and QRu
u = {x ∈ X : send(e∗) →

delivery(pc, x)}.

On each of these three cases, happened-before relationships are established

among the left endpoints of QRu−1
u−1 and the right endpoints of QRu

u . This means

that for a pair of subsets QRu−1
u−1 and QRu

u (QRu−1
u−1 , QRu

u ∈ ESβ) we have that

∀(ω+
i , ω

−
k ) ∈ +Q

Ru−1

u−1 × −QRu
u : ω+

i → ω−
k (i, k ∈ β). Furthermore, all the events

that compose QRu−1
u−1 and QRu

u are extracted from local-streams by preserving their

causal order. Thus, let ωi and ω+
i be two events such that ωi, ω

+
i ∈ Ωi, Ωi ∈ QRu−1

u−1

and Ωi ⊆ Si (for any local-stream Si) if ωi 6= ω+
i then ωi → ω+

i . By the transitive

property of the HBR we have that ωi → ω−
k , ∀ω−

k ∈ QRu
u . Moreover, for any

event ωk ∈ QRu
u , ωk 6= ω−

k , ω−
k → ωk; thereby, transitively ωi → ωk. Therefore,

by Definition 7 we have Q
Ru−1

u−1 → QRu
u . Thus the subsets of an event-streaming

are chronologically ordered representing a time-line, where each subset Q
Rq
q is a

time-slot.

Corollary 1. Each subset Q
Rq
q ∈ ESΘ represents a time-slot.
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Part II. To demonstrate that each subset Q
Rq
q in an event-streaming represents

a unique time-slot, we formulate and prove the following Lemma:

Lemma 2. Each subset Q
Rq
q represents a unique time-slot, therefore, any pair of

subsets QRu
u and QRv

v , that compose an event-streaming ESΘ, is disjoint.

∀ QRu

u , QRv

v ∈ ESΘ, u 6= v : QRu

u ∩QRv

v = ∅

Proof of Lemma 2. We prove Lemma 2 by contradiction. Therefore, we suppose

that ∀ QRu
u , QRv

v ∈ ESΘ, u 6= v : QRu
u ∩QRv

v 6= ∅, i.e., ∃xµ : xµ ∈ QRu
u ∧ xµ ∈ QRv

v .

According to the ES-LM model, the subsets Q
Rq
q of an event-streaming are

created by aligning two local streams or aligning a local stream with an event-

streaming. Whichever way an event-streaming is generated, a subset QRu
u must

be related to another QRv
v (u 6= v) according to one of the five logical mappings

described in Table 2. This means that for any eµ ∈ QRu
u and any cµ ∈ QRv

v ,

eµ → cµ or cµ → eµ. Thus, if there is xµ such that xµ ∈ QRu
u ∧ xµ ∈ QRv

v ,

implies that xµ → xµ is a contradiction, according to the assumptions by which

the happened-before relation are defined (systems in which an event can happen

before itself do not seem to be physically meaningful).

5.2 Temporal data alignment mechanism for event-

streaming

The proposed data alignment mechanism fulfills at runtime three main tasks: first,

it detects the temporal dependencies based on a time-line and translates them to

causal dependencies among streams; second, it performs the construction of dis-

joint causally-ordered subsets of events to arrange the events that are concurrently
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generated; and finally, it performs the arrangement of such subsets of events in

a virtual time-line. The proposed mechanism is designed to perform the data

alignment in a cooperative way by the different nodes involved in a WSN.

5.2.1 Mechanism specification

The data alignment mechanism is specified by three distributed algorithms for the

data exchange and two algorithms for managing the control information. The data

exchange algorithms use three different causal messages: begin, end and discrete,

and a type of FIFO messages: fifo_p. A brief description of the main components

of the algorithms is provided below.

Messages. A message m in the data exchange algorithms is a tuple m =

(k, sts, tsts, TP,Hm, data), where:

• k is the local process identifier.

• sts is the identifier of the process that originally generated the messages of

an event-streaming (original source1).

• tsts is the value of the local clock, in the original source.

• TP is the message type (begin, end, discrete and fifo_p).

• Hm, the immediate history of m, contains the identifiers of the messages

(k, sts, tsts) that immediately precede m. For fifo_p the set Hm is always

the empty set.

• data is the structure that carries the media data.

1When k = sts, the stream is a local-stream, otherwise is an event-streaming
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Data structures. The status of a process k and the streams that it is aligning

are defined by four structures and one variable.

• V Tp[] is the vector clock established by Mattern and Fidge [Mat88, Fid88].

The size of V Tp[] is equal to the number of nodes that are associated with

a node which performs the data alignment.

• P_involvedp is a set with the identifiers of the processes that originated the

messages that compose an event-streaming.

• Causal_mp is a set with the identifiers of the processes that generated the

last aligned subset Q
Rq
q .

• ES_CIp is a set composed by entries (k, sts, tsts) used to store the imme-

diate history that will be piggybacked in certain messages.

• ES_Act is a state variable that indicates when a process is aligning an

event-streaming.

As we previously mentioned, the data alignment mechanism is specified by five

algorithms: two algorithms for managing the control information (Algorithms 1

and 2) and three algorithms for the data exchange (Algorithms 3, 4 and 5).

Algorithm 1 performs the initialization of the data structures, used for man-

aging the control information.

Algorithm 1: Initialization

1: procedure Initialize()

2: V Tp[k]← 0, ∀k : 1...n

3: P_involvedp ← ∅
4: Causal_mp ← ∅
5: ES_CIp ← ∅
6: ES_Act← 0

7: end procedure
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Algorithm 2 performs the operations required to construct the immediate his-

tory sets, that are piggybacked in certain messages in order to establish a segmen-

tation of a local-stream or an event-streaming.

Algorithm 2: Construction of the immediate history sets

8: procedure Segmenting_es(TP = {begin|end|discrete})
9: if Causal_mp 6= ∅ then

10: ES_CIp ← ∅
11: for all x ∈ P_involvedp do

12: ES_CIp ← ES_CIp ∪ {(i, x, V Tp[x])}
13: end for

14: end if

15: end procedure

Algorithm 3 performs the operations required to send two types of causal

messages, begin and end, and the FIFO type message fifo_p.

Algorithm 3: Sending of messages, performed by a process i

16: procedure SendContinuous(TP = {begin|end|fifo_p})
17: V Tp[i]← V Tp[i] + 1

18: if TP = begin then

19: if ES_Act 6= 0 then /* if process i is generating a local-stream */

20: Segmenting_es(TP ) /* or is aligning an event-streaming, */

21: else /* it performs a segmentation */

22: ES_Act← 1

23: end if

24: Causal_mp ← P_involvedp

25: P_involvedp ← P_involvedp ∪ {i}
26: Sending(i, i, V Tp[i], TP,ES_CIp, data)

27: else if TP = end then

28: Hm ← ES_CIp

29: if ES_Act 6= 0 then

30: Segmenting_es(TP )

31: end if

32: P_involvedp ← P_involvedp − {i}
33: Causal_mp ← P_involvedp

34: if P_involvedp = ∅ then

Continued on next page
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Algorithm 3 – continued from previous page

35: ES_Act← 0

36: end if

37: Sending(i, i, V Tp[i], TP,Hm, data)

38: else

39: if i ∈ Causal_mp then

40: Causal_mp ← Causal_mp − {i} /* the first messages after a */

41: Sending(i, i, V Tp[i], begin,ES_CIp, data) /* segmentation are sent */

42: if Causal_mp = ∅ then /* as begin */

43: ES_CIp ← ∅
44: end if

45: else

46: Sending(i, i, V Tp[i], TP, ∅, data)
47: end if

48: end if

49: end procedure

Algorithm 4 performs the operations required to send the special type of causal

message discrete. In Section 5.2.2, we explain the utility of the discrete messages

and when such type of messages are used.

Algorithm 4: Sending of discrete messages, performed by a process i

50: procedure SendDiscrete(TP = {discrete})
51: V Tp[i]← V Tp[i] + 1

52: if ES_Act 6= 0 then

53: Segmenting_es(TP )

54: Causal_mp ← P_involvedp

55: Hm ← ES_CIp

56: ES_CIp ← {(i, i, V Tp[i])}
57: else

58: Hm ← ∅
59: ES_CIp ← {(i, i, V Tp[i])}
60: end if

61: Sending(i, i, V Tp[i], TP,Hm, data)

62: end procedure
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Algorithm 5 performs the operations required to retransmit or deliver the

received packets.

Algorithm 5: Reception of messages, performed by a process j

63: procedure Receive(m = (i, sts, tsts, TP,Hm, data))

64: if tsts = V Tp[sts] + 1 then /* FIFO delivery condition */

65: if TP 6= fifo_p then

66: if t′ ≤ V Tp[l] ∀(u, l, t′) ∈ Hm then /* causal delivery condition */

67: V Tp[sts]← V Tp[sts] + 1

68: if TP = begin then

69: if sts /∈ Causal_mp then

70: if ES_Act 6= 0 then

71: Segmenting_es(begin)

72: Causal_mp ← P_involvedp

73: else

74: ES_Act← 1

75: end if

76: P_involvedp ← P_involvedp ∪ {sts}
77: else

78: Causal_mp ← Causal_mp − {sts}
79: end if

80: Delivery(j, sts, tsts, TP,ES_CIp, data) /* if it is required by j */

81: Sending(j, sts, tsts, TP,ES_CIp, data) /* if j is the sink, Sending */

82: else if TP = end then /* is not executed */

83: Hm ← ES_CIp

84: if |P_involvedp| > 1 then

85: Segmenting_es(TP )

86: else

87: ES_CIp ← ∅
88: ES_Act← 0

89: end if

90: Delivery(j, sts, tsts, TP,Hm, data) /* if it is required by j */

91: Sending(j, sts, tsts, TP,Hm, data) /* if j is the sink, Sending */

92: P_involvedp ← P_involvedp − {sts} /* is not executed */

93: if Causal_mp = ∅ then

94: Causal_mp ← P_involvedp

95: else

96: Causal_mp ← Causal_mp − {sts}
Continued on next page
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Algorithm 5 – continued from previous page

97: end if

98: else if TP = discrete then

99: if ES_Act 6= 0 then

100: Segmenting_es(TP )

101: Causal_mp ← P_involvedp

102: Hm ← ES_CIp

103: ES_CIp ← {(j, sts, tsts)}
104: else

105: Hm ← ∅
106: end if

107: Delivery(j, sts, tsts, TP,Hm, data) /* if it is required by j */

108: Sending(j, sts, tsts, TP,Hm, data) /* if j is the sink, Sending */

109: end if /* is not executed */

110: else

111: Wait()

112: end if

113: else if (sts ∈ P_involvedp) then

114: V Tp[sts]← V Tp[sts] + 1

115: if sts ∈ Causal_mp then

116: Delivery(j, sts, tsts, begin,ES_CIp, data)

117: Sending(j, sts, tsts, begin,ES_CIp, data)

118: Causal_mp ← Causal_mp − {sts}
119: if Causal_mp = ∅ then

120: ES_CIp ← ∅
121: end if

122: else

123: Delivery(j, sts, tsts, TP,Hm, data) /* if it is required by j */

124: Sending(j, sts, tsts, TP,Hm, data) /* if j is the sink, Sending */

125: end if /* is not executed */

126: end if

127: else

128: Wait_FIFO()

129: end if

130: end procedure
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5.2.2 Functional description of the data alignment mecha-

nism

Generation of local-streams. In the proposed data alignment mechanism, the

two endpoints λ−
i and λ+

i that delimit a local-stream Si (see Definition 14), are

determined by the emission or the reception of two causal messages: begin for

λ−
i and end for λ+

i . Therefore, a local-stream is generated by sending a begin

message followed by certain number of fifo_p messages (see lines 18-26 and 46 of

Algorithm 3). To notify another process that the generation of a local-stream has

finished, the source process sends an end message (see lines 27-37 of Algorithm

3).

Alignment of two local-streams. In order to explain how the mechanism

performs the alignment of two local-streams, we take the scenario depicted in

Figure 5.8 as an example.

A process c generates the local-stream Xc by sending the messages x1 . . . x6

(see Figure 5.8).

X c

ES

Q
1

{c} Q{c,d} Q{d}

x1 x2 x3 x4 x5 x6

x1 x2 x3
x4 x5 x6

Yd
y1 y2 y3 y4 y5 y6 y7 y8 y9

y7 y8 y9

y1 y2 y3 y4 y5 y6

+

+

+

+

begin

fifo_p

end+

Figure 5.8: Data alignment of two local-streams, performed collaboratively by two
different processes.
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Once process d receives the messages of Xc, it simply forwards these mes-

sages until it starts to generate its own local-stream (see lines 67-81 and 113-123

of Algorithm 5). Any process can receive the messages of a local-stream from

another process, before or during the generation of its own local-stream. What-

ever the case, as soon as an overlap between the local-streams is detected, an

event-streaming is generated by performing the necessary segmentations.

When process d starts to generate the local-stream Yd, a segmentation is per-

formed to determine Q
{c}
1 and Q

{c,d}
2 . To do this, the first message of the sequence

y1 . . . y9 and the next forwarded message x4 are sent as a begin message (lines 41

and 116). The begin messages contain, as immediate history Hm, the identifiers

of each of the latest messages sent by the processes whose events compose the

event-streaming. In this example, y1 and x4 contain Hm = {x3}. In this way,

Q
{c}
1 ∈ ESβ is determined by {x1, x2, x3}, where x1 and x3 are the endpoints. The

next subset Q
{c,d}
2 ∈ ESβ is determined by y1 and x4 along with the following

fifo_p messages generated by processes c and d.

Process c sends x6 as an end message to indicate that Xc has finished. By

finishing Xc, the part with concurrences between Xc and Yd also finishes. For

this, at the arrival of x6, process d performs a segmentation by sending the next

message y7 as begin, with Hm = {x6, y6} (see lines 83-96 and 116 of Algorithm 5).

Thereby, −Q
{c,d}
2 = {x4, y1} and +Q

{c,d}
2 = {x6, y6}. Finally, process d sends y9 as

an end message, finishing the generation of the event-streaming. Thus Q
{d}
3 ∈ ESβ

is determined by {y7, y8, y9} with y7 and y9 as the endpoints.

Alignment of an event-streaming with a local-stream. We take the scenario

example of Figure 5.9 to explain how the mechanism performs the stages B.1, B.2

and B.3 of the ES-LM.
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Figure 5.9: Data alignment of three local-streams, performed collaboratively by
three different processes.

In this example, process f receives the messages of the event-streaming ESβ

during the generation of the local-stream Zf . Once the process f receives x1, a

segmentation is performed to determine Q
{f}
1 and Q

{c,f}
2 by forwarding x1, and

sending z3 as begin messages, both with Hm = {z2} (see lines 67-81 of Algorithm

5 and lines 39-41 of Algorithm 3). Thus, z1 and z2 determine Q
{f}
1 , while Q

{c,f}
2 is

determined by x1 and z3 along with the next fifo_p messages generated by c and

f , prior to the reception of y1.

At the reception of y1, process f performs a segmentation by sending y1, x4

and z6 as begin messages with Hm = {x3, z5}. In this way, the construction Q
{c,d,f}
3

is started. When process f receives the end message x6, it performs one more

segmentation by sending z7 and y7 as begin messages with Hm = {x6, y6, z7}. In

this way, Q
{c,d,f}
3 is determined by the messages y1 to y6, x4 to x6, z6 and z7.

When the reception of y9 indicates the end of ESβ, process f performs the last

segmentation by sending z10 as begin with Hm = {y9, z9} and Q
{d,f}
4 is determined

by y7, y8, y9, z8 and z9.
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Finally, when process f finishes generating the local-stream Zf , and thereby

the construction of ESΘ, it sends x11 as an end message. Thus, the last subset

Q
{f}
5 is determined by z10 and z11.

Therefore, the event-streaming ESΘ, formed by the messages sent by processes

c, d and f , is determined as the causal structure Q
{c}
1 → Q

{c,d}
2 → Q

{c,d,f}
3 →

Q
{d,f}
4 → Q

{f}
5 .

Aligning discrete messages. According to Definition 6, when a local-stream

Wd contains only one message (|Wd| = 1), such a single message represents both

endpoints λ−
d = λ+

d , λ−
i , λ

+
i ∈ Wd. In the data alignment mechanism, when a local-

stream is composed by only one message, it is considered as a discrete message. In

this case, since λ−
d = λ+

d , when a discrete message is aligned with a local-stream

or an event-streaming, it determines a subset Q
Rq
q for itself.

In the scenario of the Figure 5.10, when process d receives a local-stream Xc

and generates a discrete message (see lines 50-53 of Algorithm 4), a segmentation

is performed. In this way, the discrete message w1 is sent with Hm = {x2}. The

next forwarded message x3 of the local-stream Xc is sent as begin message with

Hm = {w1}. Thereby, Q
{c}
1 is determined by x1 and x2, Q

{d}
2 is determined by w1,

while Q
{c}
3 is determined by the remaining messages of Xc.

ES β

Q
1

{c} Q
2

{d} Q
3

{c}

Wd
w1

x1 x2 x3 x4 x5 x6
+

w1

begin

fifo_p

end+

X c
x1 x2 x3 x4 x5 x6

+

Figure 5.10: Data alignment of a discrete message with a local-stream.
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When a discrete message is aligned with an event-streaming, such a discrete

message also determines a subset Q
Rq
q . Taking the scenario of Figure 5.11, when

process f receives w1, it performs a segmentation (see lines 98-108 of Algorithm

5) by forwarding w1 with Hm = {x2, z5}, and sending the messages x3 and z6

as begin with Hm = {w1}. Thereby, the event-streaming ESΘ is composed by

the subsets Q
{f}
1 = {z1, z2, z3, z4}, Q

{c,f}
2 = {x1, x2, z5}, Q

{d}
3 = {w1}, Q

{c,f}
4 =

{x3, x4, x5, x6, z6, z7, z8, z9} and Q
{f}
5 = {z10, z11}.

discre�e
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begin fifo_p end+
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+
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+
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Figure 5.11: Data alignment of a discrete message with an event-streaming.
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5.2.3 Correctness proof

In this section we prove the correctness of the temporal data alignment mechanism

for event streaming. For this, we demonstrate that an event-streaming, generated

by using the proposed mechanism, satisfies the conditions stated by Theorem 1.

This proof is divided into two parts. In the first part we prove that an event-

streaming generated by the proposed mechanism establishes a time-line, satisfying

Lemma 1. In the second part we prove that each subset Q
Rq
q of an event-streaming

represents a unique time-slot, satisfying Lemma 2.

Proposition 1. An event-streaming generated by the data alignment mechanism

satisfies Lemma 1.

Proof. In the proposed mechanism, a local-stream Sj is generated by sequentially

sending the following messages: a begin message followed by a certain number

of fifo_p messages, followed by an end message. This means that Sj = {λ−
j ↓

· · · ↓ mj ↓ · · · ↓ λ+
j }, where mj is any fifo_p message. Each of these messages

is time-stamped with a local logical clock tsts and the identifier of its source sts.

According to Algorithm 3, tsts is determined by the current value of the V Tp[sts]

structure at the moment in which such message is generated (see lines 26, 37, 64

and 66). For the delivery, each message must satisfy the FIFO and the Causal

conditions(see lines 66 and 68 of Algorithm 5). Since V Tp[] has a monotonical

increasing behavior and each message satisfies the respective delivery conditions,

we can ensure that the messages of a local-stream are chronologically-ordered

according to its causal dependencies. Thus, a local-stream can be seen as a local

time-line for a process.

During the generation of an event-streaming, the subsets Q
Rq
q are formed by

performing some segmentations (see Section 5.1.1). A segmentation establishes
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the end of a subset Q
Ru−1

u−1 and the initiation of a subset QRu
u . This is achieved by

registering all the latest messages received from the processes involved with the

event-streaming in the field Hm of each subsequent begin message. This implies

that for a pair of subsets Q
Ru−1

u−1 and QRu
u , happened-before relations (HBRs) among

the left endpoints of Q
Ru−1

u−1 and the right endpoints of QRu
u are established, such

that, ∀(λ+
i , λ

−
k ) ∈ +Q

Ru−1

u−1 × −QRu
u : λ+

i → λ−
k (i, k ∈ P_involvedp). Since any

message mi ∈ Q
Ru−1

u−1 is extracted from a local-stream (λ+
i , mi ∈ Λi, Λi ⊆ Si),

if mi 6= λ+
i then mi → λ+

i . By the transitive property of the HBR we have

mi → λ−
k , ∀λ−

k ∈ QRu
u . Moreover, for any message mk ∈ QRu

u , mk 6= λ−
k , λ−

k →

mk; thereby, transitively mi → mk , ∀(mi, mk) ∈ Q
Ru−1

u−1 × QRu
u . Therefore, by

Definition 7 and Property 1, we have Q
Ru−1

u−1 → QRu
u . Thus, the subsets of an

event-streaming are chronologically ordered representing a time-line, where each

subset Q
Rq
q is a time-slot.

Proposition 2. Any two subsets QRu
u and QRv

v , generated by the data alignment

mechanism, are disjoint, satisfying Lemma 2.

Proof. We prove this fact by contradiction. Therefore, we suppose that ∀QRu
u , QRv

v ∈

ESΘ, u 6= v : QRu
u ∩QRv

v 6= ∅, i.e., ∃xµ : xµ ∈ QRu
u ∧ xµ ∈ QRv

v .

According to the proposed mechanism, the subsets Q
Rq
q of an event-streaming

are created by aligning two local-streams or aligning an event-streaming with a

local-stream. Thus, let QRu
u and QRv

v subsets of an event-streaming ESΘ; and

two events cµ ∈ QRu
u and eµ ∈ QRv

v , we have two cases: QRu
u → QRv

v that implies

cµ → eµ; or QRv
v → QRu

u that implies eµ → cµ. Whichever case, for any xµ such

that xµ ∈ QRu
u ∧xµ ∈ QRv

v implies that xµ → xµ, which is a contradiction according

to the assumptions of the happened-before relation definition (systems in which an

event can happen before itself do not seem to be physically meaningful). On the

other hand, if we assume two messages, mc and me represent the same event, such
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messages are mainly identified as: mc = (k′, sts′, t′sts), me = (k′′, sts′′, t′′sts), where

k′ = k′′, sts′ = sts′′ and t′sts = t′′sts. Furthermore, if we assume that mc ∈ QRu
u

and me ∈ QRv
v , by the monotonical increasing behavior of V Tp[] and the delivery

conditions, QRu
u → QRv

v implies t′sts < t′′sts and QRv
v → QRu

u implies t′sts > t′′sts,

which contradicts the assumption: t′sts = t′′sts.

5.2.4 Simulation results

We have simulated the temporal data alignment mechanism for event-streaming

using the Castalia simulator [Bou13]. We configured an arrangement of 50 nodes,

separated by distances between 10 and 15 meters in a field of 200 x 200 meters,

with a multi-hop communication, as shown in the network graph of Figure 5.12.

With this configuration, the depth of the network graph is established by the

number of hops, thus, for our network scenario, the graph depth is up to 9. In

addition to the network deployment, we adopted a special interference model,

which allows to fix the delivery retries executed by a node, to ensure the reception

of a packet by another node within a determined operational area. In this way,

we obtained an average transmission delay of 0.30442 seconds between a pair of

nodes.

The simulation was configured with the TMAC protocol for the MAC sublayer

and the CC2420 radio protocol for wireless transmissions. The data payload for

the Application layer packets was fixed to 2000 bytes.

In the simulation scenario, each node generated a random number of local-

streams throughout the simulation (in an hour of simulation, each node generated

around 90 and 130 local-streams). Each generated local-stream was composed of

a random number of messages between 9 and 100, which were generated using
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Sink

Sensor

Hop

Figure 5.12: Sensor network deployment.

a fixed sampling rate. The simulation scenario was proved with sampling rates

between 25 and 1000 ms.

In order to measure and to show that the synchronization error is bounded, we

took the simulation time as a global clock. We note that the simulation time was

not used in the mechanism. The mechanism used only the causal dependencies

between the event-streamings to perform the data alignment and did not use any

kind of physical time. For this, at each hop we took the begin and end causal

messages exchanged during the transmissions of the local-streams to determine

the synchronization error between a pair of streams.

Let e∗α denote the send event executed by process pi to transmit the causal

message m(pi, α) (begin or end), and let e∗ρ be the send event executed by process

pj to transmit m(pj , ρ), which is the latest aligned message before the reception

of m(pi, α); when pj receives m(pi, α), the synchronization error of a pair of local-

streams is determined by the difference between the sampling time of m(pi, α)

and m(pj , ρ).
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For example, in the scenario depicted in Figure 5.13, process pi sends the

message m(pi, α) to pj , which indicates the beginning of the local-stream Si. As-

suming that pj generates the local-stream Sj , the synchronization error between

Si and Sj is determined by the difference between the sampling time of m(pi, α)

and the sampling time of m(pj , ρ).
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Figure 5.13: Example of the alignment of causal messages.

Thus, by considering the simulation time as a global clock, the synchronization

error is estimated by using the following formula:

εj(e
∗
α, e

∗
ρ) = TSj(e

∗
ρ)− TSi(e

∗
α) : e

∗
α ∈ Si, e

∗
ρ ∈ Sj , e

∗
α ↓ e∗ρ (5.1)

where εj is the synchronization error measured at process pj , and TSx is a sample

time at process px. Using sample rates between 25 and 1000 milliseconds, we

show that the synchronization error can be bounded according to the average

transmission delay (see Figure 5.14).

The simulation results show that the synchronization error among streams

is bounded according to the average transmission delay when sample rates are

between 75 ms and 830 ms; this fulfills the requirements for the transmission of

multimedia data [ITU01].
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Figure 5.14: Contrast between the synchronization error and the transmission
delay.

5.2.4.1 Analysis of the simulation results

The proposed mechanism performs the data alignment in the intermediate nodes

while the streams are propagated through the network. In our case, the data align-

ment is achieved by ensuring that at each intermediate node the synchronization

error εj(e
∗
α, e

∗
ρ) is bounded by the transmission delay for a pair of endpoints e∗α

and e∗ρ. This means that the execution of the send events of such pair of endpoints

takes place at most at εj(e
∗
α, e

∗
ρ) units of time, one with respect to the another.

This result is achieved as follows. When pj locally constructs an event-streaming,

such event-streaming is the output of the alignment of two or more local-streams

according to the causal relations established by the mechanism. In such event-

streaming, a pair of endpoints (e∗α, e
∗
ρ) is related at pj, as shown in Figure 5.13.

When such endpoints are retransmitted/propagated to another node (final or in-

termediate), and because they have the same source, their transmission delays will
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be affected by the same network conditions, and therefore the synchronization er-

ror remains bounded according to the transmission delay of the current hop. This

phenomenon is quite similar to the relative velocity between two physical objects.

In Figure 5.14, we can see that the average synchronization error is bounded

between sampling rates of 75 ms to 830 ms. The synchronization error cannot

be bounded lower than 75 ms because a faster sampling rate causes a greater

saturation in communication channels and indeterminism of the transmission de-

lay. The latter is mainly due to the signal-to-noise ratio (SNR), as well as to the

medium access contention. On the other hand, the synchronization error cannot

be bounded when the sampling rates are greater than 830 ms since the temporal

distance between two consecutive local samples at a process pj is much larger than

the maximum transmission delay of the current hop.

5.2.5 Analysis of the mechanism

Storage overhead. To identify and establish the causal relations among streams,

the mechanism uses a boolean variable along with the data structures V Tp[],

P_involvedp, Causal_mp and ES_CIp. The size of these structures depends

directly on nr, the number of nodes related to the node that is performing the

data alignment. Since the mechanism is designed to perform the data alignment

in the intermediate nodes, nr is determined by the number of hops along the path

from the farthest node to the node that performs the data alignment. We note

that in a WSN with multi-hop communication, we have that nr << n, where n is

the number of nodes in the whole network.
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Let ς be the number of bytes used to represent an integer value, the storage

overhead of a node which performs the data alignment is determined by:

SCp = ς(|V Tp[]|+ |P_involvedp|+ |Causal_mp|+ |ES_CIp|) + 1 (5.2)

Assuming the worst case, where all the processes in the node’s path are in-

volved with the generation of the event-streaming and a segmentation is per-

formed, we have that SCp = ς(6nr − 1) + 1, since |V Tp[]| = |P_involvedp| = nr,

|Causal_mp| = nr − 1 and |ES_CIp| = 3nr. Therefore, by (5.2) the asymptotic

storage overhead is:

SCp ∼ O(nr) (5.3)

Communication overhead. Besides the data payload, the mechanism piggy-

backs control information on each transmitted message. This control information

comprises three integers for the processes identifiers and the logical time value, a

byte-length variable to identify the message type and the structure Hm. Thereby,

the communication overhead is determined by:

COp = ς(|Hm|+ 3) + 1 (5.4)

The size of Hm is 0 for the fifo_p messages, which is the most frequently

message type exchanged. For the causal messages begin, end and discrete Hm

depends of nr. Therefore, by (5.4) the asymptotic communication overhead is:

COp ∼ O(nr) (5.5)
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Computational cost. In the mechanism, the major computational cost is re-

lated to the segmentation procedure. Within the segmentation procedure a loop,

that iterates many times as identifiers are in the structure P_involvedp, is used

to read the values stored in the structure V Tp[] and construct the immediate his-

tory set ES_CIp. Let τ be the time required to read the value of V Tp[i] (for

0 ≤ i ≤ |P_involvedp|) and perform the assignment used to store the entries for

the immediate history set ES_CIp. The time required to perform the segmenta-

tion procedure is determined by:

CCp = |P_involvedp|τ (5.6)

Therefore, assuming the worst case where |P_involvedp| = nr, by (5.6) the

asymptotic computational cost is:

CCp ∼ O(nr) (5.7)

We note that the segmentation procedure is only performed when a begin or end

message is received, the less exchanged message types.



Chapter 6

Temporal data alignment and

association for event-streaming

6.1 Spatio-temporal data association approach

As we showed in the previous chapter, by performing the data alignment following

the ES-LM model, the synchronization error among streams is bounded according

to the average transmission delay between a pair of processes. However, there exist

certain cases where such a bound is not sufficient to estimate the original sample

time. In environments with multi-hop communication, where each hop induces

extra propagation delays, or where not always are all the devices transmitting

local-streams, the causal dependencies are not sufficient to establish temporal

references according to the real execution of the system.

In order to mitigate such problems, we propose a spatio-temporal association

taking advantage of two concepts: the place where the messages were originated

and the logical/temporal distance among their transmission events [PCPH14b].

For this, we define a fuzzy-causal relation in such a way that a degree of closeness

among events can be inferred, considering the information about the spatial and

the logical/temporal distance of the events’ sources.
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6.1.1 The fuzzy-causal relation (FCR)

We formulate the FCR to relate the logical/temporal domain with the spatial

domain in the following way:

“how ancient and how far it happened imply how close an event e1

happened before an event e2”.

To achieve this, we define the following three linguistic variables:

• Causal distance (CD), is the variable whose universe of discourse is the

logical/temporal domain. Based on the definition of causal distance pro-

posed by [PHLDRGF09], we define the causal distance as follows.

Definition 17. The causal distance (CD) is the number of send events in-

volved in the linearization send1(m(s, ts))→ send2(m(i, ti)) · · · → sendδ(m(k, tk)),

such that sendδ(m(k, tk)) ↓ delivery(m(k, tk), f) with s 6= i 6= k 6= f , con-

structed from the multi-hop transmission of a sample m from its original

source s until the final destination f .

• Physical distance (PD), whose universe of discourse is the spatial domain,

refers to the distance between two points in a coordinate system.

• Fuzzy-causal closeness (FCC), whose universe of discourse is the degree

of closeness among events considering both logical/temporal and spatial

domains.

To determine the fuzzy-causal closeness, the causal and the physical distances

are related by using a fuzzy inference system (FIS) as explained in the following

sections.
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6.1.1.1 Fuzzification process

For the Mamdani FIS, we fuzzify the inputs and the outputs using triangular

fuzzifiers (see Definition 10). For each linguistic variable, we define five triangular

membership functions (fuzzy sets) related to five linguistic terms as follows:

• for the causal distance: V R(e) related to very recent, R(e) related to recent,

MR(e) related to medium recent, A(e) related to ancient, V A(e) related to

very ancient ;

• for the physical distance: V N(e) related to very near, N(e) related to near,

MN(e) related to medium near, F (e) related to far, V F (e) related to very

far ;

• and finally for the fuzzy-causal closeness: V C(e) related to very close, N(e)

related to close, MC(e) related to medium close, D(e) related to distant,

and V D(e) related to very distant.

The different fuzzy sets are delimited as shown in Table 12.

Table 12: Values of variables used in definition of membership functions.

Universe of discourse Set L C R

Causal distance

VR σ0 − σ2 σ0 σ2

R σ0 σ2 σ4

MR σ2 σ4 σ6

A σ4 σ6 σ8

VA σ6 σ8 σ8 + σ2

Physical distance

VN ε0 − ε2 ε0 ε2

N ε0 ε2 ε4

MN ε2 ε4 ε6

F ε4 ε6 ε8

Continued on next page
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Table 12 – continued from previous page

VF ε6 ε8 ε8 + ε2

Fuzzy-causal closeness

VC ϕ0 − ϕ2 ϕ0 ϕ2

C ϕ0 ϕ2 ϕ4

MC ϕ2 ϕ4 ϕ6

D ϕ4 ϕ6 ϕ8

VD ϕ6 ϕ8 ϕ8 + ϕ2

The values σ0, σ8, ε0, ε8, ϕ0 and ϕ8 must be chosen using previous knowledge

about the network conditions. Thus, σ0 and σ8 are determined by the total number

of hops; ε0 and ε8 are the minimum and the maximum linear distances; while ϕ0

and ϕ8 can be estimated from the average network delays.

The graphical representations of the fuzzy sets described in Table 12 are shown

in Figures 6.1, 6.2 and 6.3.
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Figure 6.1: Input fuzzy sets for the logical/temporal domain.
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Figure 6.2: Input fuzzy sets for the spatial domain.
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Figure 6.3: Output fuzzy sets

6.1.1.2 Fuzzy inference

Once the inputs and outputs variables were fuzzified, the degree of fuzzy-causal

closeness is determined by a Mamdani-type FIS [MA75]. Such a FIS consists of

25 if-then rules, that relate the different values of the fuzzy inputs as shown in

Table 13.

Table 13: Inference rules

1) If PD is VN and CD is VR, then fuzzy-causal closeness is VC

2) If PD is VN and CD is R, then fuzzy-causal closeness is C

3) If PD is VN and CD is MR, then fuzzy-causal closeness is C

4) If PD is N and CD is VR, then fuzzy-causal closeness is C

5) If PD is N and CD is R, then fuzzy-causal closeness is C

6) If PD is MN and CD is VR, then fuzzy-causal closeness C

7) If PD is MN and CD is R, then fuzzy-causal closeness is C

8) If PD is F and CD is VR, then fuzzy-causal closeness C

Continued on next page
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Table 13 – continued from previous page

9) If PD is VN and CD is VA, then fuzzy-causal closeness is MC

10) If PD is VN and CD is A, then fuzzy-causal closeness is MC

11) If PD is N and CD is MR, then fuzzy-causal closeness is MC

12) If PD is N and CD is A, then fuzzy-causal closeness is MC

13) If PD is MN and CD is MR, then fuzzy-causal closeness is MC

14) If PD is MN and CD is A, then fuzzy-causal closeness is MC

15) If PD is F and CD is MR, then fuzzy-causal closeness is MC

16) If PD is F and CD is R, then fuzzy-causal closeness is MC

17) If PD is N and CD is VA, then fuzzy-causal closeness is D

18) If PD is MN and CD is VA, then fuzzy-causal closeness is D

19) If PD is F and CD is A, then fuzzy-causal closeness is D

20) If PD is F and CD is VA, then fuzzy-causal closeness is D

21) If PD is VF and CD is VR, then fuzzy-causal closeness MC

22) If PD is VF and CD is R, then fuzzy-causal closeness is MC

23) If PD is VF and CD is MR, then fuzzy-causal closeness is D

24) If PD is VF and CD is A, then fuzzy-causal closeness is D

25) If PD is VF and CD is VA, then fuzzy-causal closeness is VD

The outputs of the inference system are fuzzy output variables. For this, it is

necessary to convert the fuzzy output variables into crisp values, through the de-
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fuzzification process. Defuzzification can be performed in several ways. We choose

the Weighted Average method (see Definition 11) since it has a low computational

cost and we have defined symmetrical membership functions. Therefore, the over-

all input-output surface corresponding to the above membership functions, values

of variables, and rules is depicted in Figure 6.4.
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Figure 6.4: Input-output surface corresponding to the membership values of PD,
CD and FCC.

6.1.1.3 Fuzzy Causal Relation formal definition

Considering the inferred FCC value, we formally define the FCR (denoted by
λ→)

as follows:

Definition 18. The FCR over a set of events must satisfy:

1. a
λ→ b If a→ b and 0 < FCC < ϕ8

2. a
λ→ b If ∃ c | a λ→ c

λ→ b and 0 < FCC < ϕ8,

where FCC is the degree of fuzzy-causal closeness between a and b.
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From this definition we have that for a pair of causally-related events we can

estimate how long ago an event happened with respect the other, by using the

physical location of their sources, and the transmission events involved to their

final delivery.

Based on this principle, in the following section we describe how the data

alignment, performed through the ES-LM model, can be refined by incorporating

the notion of the fuzzy-causal relation.

6.2 Temporal data alignment and association mech-

anism

The proposed mechanism is an extension of the data alignment mechanism de-

scribed in Section 5.2. Such extension, incorporates the Mamdani FIS (described

in Section 6.1.1.2) to the data alignment mechanism in order to establish how long

ago the events, of a received stream, were generated.

6.2.1 Mechanism specification

In the same way that described in section 5.2, the mechanism uses three different

causal messages: begin, end and discrete, and a type of FIFO messages: fifo_p.

However, one new field has to be added to the general format of the messages.

Such new field is used to exchange the information used by the FIS. Thus, a

message m is a tuple m = (k, sts, tsts, TP,Hm, DI, data), where:

• k is the local process identifier.

• sts is the identifier of the process that originally generated the message of

an event-streaming.
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• tsts is the value of the local clock, in the original source.

• TP is the message type (begin, end, discrete and fifo_p).

• Hm, the immediate history of m, contains the identifiers of the messages

(k, sts, tsts) that immediately precede m. For fifo_p the set Hm is always

the empty set.

• DI is a tuple (loc(x, y), cdist), where loc(x, y) are the coordinates of the

physical location of psts and cdist is the causal distance associated to m.

For end, and fifo_p the set DI is always the empty set.

• data is the structure that carries the media data.

Respect to the data structures that each process has to store, only one new

structure is added. Thereby, process k has to store the following data structures:

• V Tp[] is the vector clock established by Mattern and Fidge [Mat88, Fid88].

The size of V Tp[] is equal to the number of nodes that are associated with

a node which performs the data alignment.

• P_involvedp is a set with the identifiers of the processes that originated the

messages that compose an event-streaming.

• Causal_mp is a set with the identifiers of the processes that generated the

last aligned subset Q
Rq
q .

• ES_CIp is a set composed by entries (k, sts, tsts) used to store the imme-

diate history that will be piggybacked in certain messages.

• ES_Act is a state variable that indicates when a process is aligning an

event-streaming.
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• FCC[] is a vector which stores the fuzzy-causal degree associated to certain

streams.

The data alignment and association mechanism is specified by six algorithms:

two algorithms for managing the control information (Algorithms 6 and 7), an

algorithm to infer the fuzzy-causal closeness by performing the Mamdani FIS

(Algorithm 8), and three algorithms for the data exchange (Algorithms 9, 10 and

11).

Algorithm 6: Initialization

1: procedure Initialize()

2: V Tp[k]← 0, ∀k : 1...n

3: FCC[k]← 0, ∀k : 1...n

4: P_involvedp ← ∅
5: Causal_mp ← ∅
6: ES_CIp ← ∅
7: ES_Act← 0

8: #define: d_required = {true|false}
9: #define: lpdk , āc

pd
k , rpdk ∀k : 1...5 /* definition of the 5 triangular*/

10: #define: lcdk , āc
cd
k , rcdk ∀k : 1...5 /* membership functions for */

11: #define: lcck , āc
cc
k , rcck ∀k : 1...5 /* each linguistic variable*/

12: end procedure

Algorithm 7 performs the operations required to construct the immediate his-

tory sets, that are piggybacked in certain messages, in order to establish a seg-

mentation of a local-stream or an event-streaming.

Algorithm 7: Construction of the immediate history sets

13: procedure Segmenting_es(TP = {begin|end|discrete})
14: if Causal_mp 6= ∅ then

15: ES_CIp ← ∅
16: for all x ∈ P_involvedp do

17: ES_CIp ← ES_CIp ∪ {(i, x, V Tp[x])}
18: end for

19: end if

20: end procedure



6.2 Temporal data alignment and association mechanism 77

Algorithm 8 performs the Mamdani FIS to infer the fuzzy-causal closeness

degree, by using the exchanged information about the physical location of the

original source of the received stream and the causal distance associated to the

received messages.

Algorithm 8: Fuzzy-causal closeness computation

21: procedure MamdaniFIS(x1, x2, y1, y2, cdist, sts)

22: for i← 1 to i = 5 do

23: pdi ← max(min(

√
(x1−x2)2+(y1−y2)2 − l

pd

i

āc
pd

i
− l

pd

i

,
r
pd

i
−
√

(x1−x2)2+(y1−y2)2

r
pd

i
− āc

pd

i

), 0)

24: cdi ← max(min(
cdist−lcdi
āc

cd
i

−lcd
i

,
rcdi −cdist

rcd
i

−āc
cd
i

), 0)

25: end for

/* If-then rules, evaluated by using the Mamdani fuzzy implication: */

26: fcc1 ← min(pd1, cd1) fcc2 ← min(pd1, cd2) fcc3 ← min(pd1, cd3)

27: fcc4 ← min(pd2, cd1) fcc5 ← min(pd2, cd2) fcc6 ← min(pd3, cd1)

28: fcc7 ← min(pd3, cd2) fcc8 ← min(pd4, cd1) fcc9 ← min(pd1, cd5)

29: fcc10 ← min(pd1, cd4) fcc11 ← min(pd2, cd3) fcc12 ← min(pd2, cd4)

30: fcc13 ← min(pd3, cd3) fcc14 ← min(pd3, cd4) fcc15 ← min(pd4, cd3)

31: fcc16 ← min(pd4, cd2) fcc17 ← min(pd5, cd1) fcc18 ← min(pd5, cd2)

32: fcc19 ← min(pd2, cd5) fcc20 ← min(pd3, cd5) fcc21 ← min(pd4, cd4)

33: fcc22 ← min(pd4, cd5) fcc23 ← min(pd5, cd3) fcc24 ← min(pd5, cd4)

34: fcc25 ← min(pd5, cd5)

35: FCC[sts]←
fcc1 ·āc

cc
1
+(

8∑

i=2

fcci ·āc
cc
2
)+(

18∑

i=9

fcci ·āc
cc
3
)+(

24∑

i=19

fcci ·āc
cc
4
)+fcc25 ·c

cc
5

25∑

i=1

fcci

36: end procedure

Algorithm 9 performs the operations required to send begin, end, and fifo_p

messages.

Algorithm 9: Sending of messages, performed by a process i

37: procedure SendContinuous(TP = {begin|end|fifo_p})
38: V Tp[i]← V Tp[i] + 1

39: if TP = begin then

40: if ES_Act 6= 0 then /* if process i is generating a local-stream */

41: Segmenting_es(TP ) /* or is aligning an event-streaming, */

42: else /* it performs a segmentation */

Continued on next page
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Algorithm 9 – continued from previous page

43: ES_Act← 1

44: end if

45: Causal_mp ← P_involvedp

46: P_involvedp ← P_involvedp ∪ {i}
47: Sending(i, i, V Tp[i], TP,ES_CIp, (loc(xi, yi), 1), data)

48: else if TP = end then

49: Hm ← ES_CIp

50: if ES_Act 6= 0 then

51: Segmenting_es(TP )

52: end if

53: P_involvedp ← P_involvedp − {i}
54: Causal_mp ← P_involvedp

55: if P_involvedp = ∅ then

56: ES_Act← 0

57: end if

58: Sending(i, i, V Tp[i], TP,Hm, ∅, data)
59: else

60: if i ∈ Causal_mp then /* the first messages after a */

61: Causal_mp ← Causal_mp − {i} /* segmentation are sent */

62: Sending(i, i, V Tp[i], begin,ES_CIp, (loc(xi, yi), 1), data) /* as begin */

63: if Causal_mp = ∅ then

64: ES_CIp ← ∅
65: end if

66: else

67: Sending(i, i, V Tp[i], TP, ∅, ∅, data)
68: end if

69: end if

70: end procedure

Algorithm 10 performs the operations required to send discrete messages.

Algorithm 10: Sending of discrete messages, performed by a process i

71: procedure SendDiscrete(TP = {discrete})
72: V Tp[i]← V Tp[i] + 1

73: if ES_Act 6= 0 then

74: Segmenting_es(TP )

75: Causal_mp ← P_involvedp

Continued on next page
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Algorithm 10 – continued from previous page

76: Hm ← ES_CIp

77: ES_CIp ← {(i, i, V Tp[i])}
78: else

79: Hm ← ∅
80: ES_CIp ← {(i, i, V Tp[i])}
81: end if

82: Sending(i, i, V Tp[i], TP,Hm, (loc(xi, yi), 1), data)

83: end procedure

Algorithm 11 performs the operations required to retransmit or deliver the

received packets.

Algorithm 11: Reception of messages, performed by a process j

84: procedure Receive(m = (i, sts, tsts, TP,Hm, data))

85: if tsts = V Tp[sts] + 1 then /* FIFO delivery condition */

86: if TP 6= fifo_p then

87: if t′ ≤ V Tp[l] ∀(u, l, t′) ∈ Hm then /* causal delivery condition */

88: V Tp[sts]← V Tp[sts] + 1

89: if TP = begin then

90: if sts /∈ Causal_mp then

91: if ES_Act 6= 0 then

92: Segmenting_es(begin)

93: Causal_mp ← P_involvedp

94: else

95: ES_Act← 1

96: end if

97: P_involvedp ← P_involvedp ∪ {sts}
98: else

99: Causal_mp ← Causal_mp − {sts}
100: end if

101: if d_required = true then

102: MamdaniFIS(xj, xsts, yj, ysts, cdist, sts)

103: Delivery((j, sts, tsts, TP,ES_CIp, data), FCC[sts])

104: else

105: Sending(j, sts, tsts, TP,ES_CIp, (loc(xsts, ysts), cdist+ 1), data)

106: end if

107: else if TP = end then

Continued on next page
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Algorithm 11 – continued from previous page

108: Hm ← ES_CIp

109: if |P_involvedp| > 1 then

110: Segmenting_es(TP )

111: else

112: ES_CIp ← ∅
113: ES_Act← 0

114: end if

115: if d_required = true then

116: Delivery((j, sts, tsts, TP,Hm, ∅, data), FCC[sts])

117: else

118: Sending(j, sts, tsts, TP,Hm, ∅, data)
119: end if

120: P_involvedp ← P_involvedp − {sts}
121: if Causal_mp = ∅ then

122: Causal_mp ← P_involvedp

123: else

124: Causal_mp ← Causal_mp − {sts}
125: end if

126: else if TP = discrete then

127: if ES_Act 6= 0 then

128: Segmenting_es(TP )

129: Causal_mp ← P_involvedp

130: Hm ← ES_CIp

131: ES_CIp ← {(j, sts, tsts)}
132: else

133: Hm ← ∅
134: end if

135: if d_required = true then

136: MamdaniFIS(xj, xsts, yj , ysts, cdist, sts)

137: Delivery((j, sts, tsts, TP,Hm, data), FCC[sts])

138: else

139: Sending(j, sts, tsts, TP,Hm, (loc(xsts, ysts), cdist+ 1), data)

140: end if

141: end if

142: else

143: Wait()

144: end if

Continued on next page
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Algorithm 11 – continued from previous page

145: else if (sts ∈ P_involvedp) then

146: V Tp[sts]← V Tp[sts] + 1

147: if sts ∈ Causal_mp then

148: if d_required = true then

149: Delivery((j, sts, tsts, begin,ES_CIp, data), FCC[sts])

150: else

151: Sending(j, sts, tsts, begin,ES_CIp, (loc(xsts, ysts), cdist+ 1), data)

152: end if

153: Causal_mp ← Causal_mp − {sts}
154: if Causal_mp = ∅ then

155: ES_CIp ← ∅
156: end if

157: else

158: if d_required = true then

159: Delivery((j, sts, tsts, TP,Hm, data), FCC[sts])

160: else

161: Sending(j, sts, tsts, TP,Hm, ∅, data)
162: end if

163: end if

164: end if

165: else

166: Wait_FIFO()

167: end if

168: end procedure

6.2.2 Functional description of the mechanism

The data alignment and association is performed by taking advantage of the mul-

tiple retransmissions of a multi-hop communication. This implies that the data

alignment and association take place during the execution of the send, receive and

delivery events.

Sending of messages A process pi generates a local-stream by sequentially

sending a certain number of messages. All the sent messages must be time-
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stamped by setting the field tsts with the current value of the local vector clock.

Besides the time-stamp, the begin messages, the first of the sequence, must be

stamped with the physical location of the process by setting the corresponding

values of loc(x, y) and setting the field cdist = 1 (see lines 47 and 62 of Algorithm

9). As explained in section 5.2.2, there are some local-streams that are composed

by only one message. For such cases, the emission is performed by sending a

discrete message. As the begin messages, the discrete messages must be stamped

with the physical location of the process by setting the corresponding values of

loc(x, y) and setting the field cdist = 1 (see line 82 of Algorithm 10).

Reception of messages Any process pj can receive the messages of a local-

stream or an event-streaming from another process before or during the generation

of its own local-stream. Whatever the case, as soon as an overlap between the

local-streams is detected, an event-streaming is generated by performing the nec-

essary segmentations according to Cases A.1, B.1, B.2 and B.3 of the ES-LM (see

Section 5.1.1).

A process pj can deliver the received messages to the application or forward

it to another process (using a send event). When a process pj receives a begin

or a discrete message and pj is acting as a relay node, it forwards such a mes-

sage increasing by one the value of the field cdist (see lines 105, 139 and 151 of

Algorithm 11).

Delivery of messages If pj needs to deliver the begin or the discrete message

to the application, it calculates the fuzzy-causal closeness of such a message by

using the Mamdani FIS (see lines 102 and 136). By defuzzificating the output of

the Mamdani FIS, the process pj establishes the degree of fuzzy-causal closeness of
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the whole stream that has begun to receive. Thereby, it delivers a causal message,

associated with a fuzzy-causal degree to the application.

We explain the previous procedures with the following example. Consider that

there are three processes pi, pj and pk in a WSN with a mult-hop communication,

where the maximum number of hops is 8 and the maximum physical distance is

100. pi (with coordinates (60, 15)) can communicate with pk (with coordinates

(17, 40)) through pj . At a certain time ti, pi starts the transmission of a local-

stream Si, as depicted in Figure 6.5.

Sk
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m  =(i,t  ,(loc(60,15,2),cd=1))-
i
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m  =(i,t  ,(loc(60,15,2),cd=2))-
i

Figure 6.5: Alignment and association of two local-streams at pk.

When pj receives the begin message of Si, it simply forwards such a message

to pk, setting cdist = 2. When pk receives begin message, it determines the

fuzzy-causal closeness of such a message. By fuzzifying the values of cdist and

the physical distance PD, the respective degrees of membership to the fuzzy sets

related to the physical and causal distances are obtained as shown in Figure 6.6.

By using the Mamdani FIS with the fuzzy variables for the values PD and

cdist, the fuzzy causal-closeness is determined by the degree of membership to the

fuzzy set C, as shown in Figure 6.7.

For this example we set the scalar values of the FCC between 0 and 1000,

however, such scale can be adjusted according to the known transmission delays
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Figure 6.6: Membership degrees for PD = 49.74 and cdist = 2.

C

Figure 6.7: Degree of membership to the set C for the FIS output.

depending on the network conditions. Therefore, with the WA defuzzification

method, we determine that the value of the FCC is 250; in terms of the temporal

domain this can be interpreted by pk, that the messages of Si was generated 250

units of physical time ago. With this information, the process pk delivers the

messages of the stream Si along with a closeness degree to the application. In this

case, such closeness degree determines that the streams Si and Sk are not com-

pletely overlapped. We note that for this case, based only on causal dependencies,

the alignment of the two local-streams cannot be established according to the real

execution, since with causal dependencies we cannot establish the time in which

an event was generated before another process.

6.2.3 Discussion

As we previously argued, the FIS used to determine the fuzzy-causal closeness,

like all the fuzzy systems, is configured using previous knowledge about the system

properties and conditions. In this sense, the values that describe the fuzzy sets
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related to the fuzzy-causal closeness can be configured by considering the average

network delays between nodes.

We have simulated the temporal data alignment and association mechanism

for event-streaming using the Castalia simulator [Bou13]. We took the same

network configuration depicted in Section 5.2.4, which consists of an arrangement

of 50 nodes, separated by distances between 10 and 15 meters in a field of 200

x 200 meters, with a multi-hop communication. With such a configuration, the

input crisp values to delimit the fuzzy sets related to the causal distance (CD)

are between 1 and 9, that are the maximum number of hops. On the other hand,

the values for the physical distance are between 17.97 and 152.73 meters. By

adopting the same interference model depicted in Section 5.2.4, we obtained an

average transmission delay of 0.3045 seconds between a pair of nodes. Based on

such average delay, the values for the fuzzy-causal closeness were fixed between

-0.3045 and 3.3492.

In the same manner as in the simulation described in Section 5.2.4, each node

generated a random number of local-streams throughout the simulation (in an

hour of simulation, each node generated around 90 and 130 local-streams). Each

generated local-stream was composed of a random number of messages between

9 and 100, which were generated using a fixed sampling rate. The simulation

scenario was proved with sampling rates between 25 and 1000 ms.

In order to show how the fuzzy-causal closeness can be used to estimate how

long ago an event happened, we took the simulation time as a global clock to

compare the sampling time of an event e, registered at its source (process pi), and

the estimated sampling time, computed from the FCC value and inferred in the

receptor process (process pj). Let ETj(e) be the estimated sampling time of an

event e, computed in process pj, and let STi(e) be the sampling time of the event
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e in process pi. For a message m(pi, α) the estimated sampling time is computed

as follows:

ETj(send(m(pi, α))) = STj(receive(pj , m(pi, α)))− FCC. (6.1)

Since the FCC value is an estimation of the transmission duration of m(pi, α),

from pi to pj (see Figure 6.8), we determine the error of such estimation in the

following way:

ε(FCC) = |STi(send(m(pi, α)))−ETj(send(m(pi, α)))|. (6.2)

p j

p i

z5

α

ρ

TS (send(α)) i

α

≈ FCC

TS (receive(p ,α)) j  j
t

Figure 6.8: Example of the alignment of causal messages.

By simulating the mechanism with sampling rates between 25 and 1000 ms,

and using the equation 6.2 to compute the error ε(FCC), between the estimated

sampling time and the real sampling time of the events involved in the transmission

of each begin message; we obtained that ε(FCC) is always under the average

transmission delay as shown in Figure 6.9.

As can be noticed in Figure 6.9, unlike the synchronization error εj(e
∗
α, e

∗
ρ),

which establishes a temporal distance between a pair of endpoints of two aligned

streams (see Section 5.2.4); the error ε(FCC), of the temporal distance inferred
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Figure 6.9: Contrast among the error of the estimated sampling time, established
by ε(FCC); the synchronization error of the simple temporal data alignment
εj(e

∗
α, e

∗
ρ), and the transmission delay.

from the FCC, remains under the average transmission delay. In this way, the

spatio-temporal association mechanism can be used to refine the virtual time-line

established by the simple temporal data alignment.
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Chapter 7

Conclusions and future work

7.1 Conclusions

7.1.1 Summary

In this dissertation, a distributed data alignment and association mechanism for

the event-streaming in wireless sensor networks has been presented. This mecha-

nism has three main characteristics:

a) the data streams generated by the various sensors of a network are aligned ac-

cording to a virtual time-line specified through the causal dependencies among

streams, without requiring a global physical clock;

b) the alignment is performed in the intermediate nodes while the streams are

propagated through the network, by considering a multi-hop communication;

c) by using the information about the physical location of the sources and the

causal information of the streams, any node can estimate how long ago an

event happened before another event.

In the course of this research, we found that the event-streaming can be repre-

sented as a partially ordered set of disjoint subset of events generated by multiple
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sources. Based on such representation, we defined the event-streaming as an ab-

stract data type (ADT).

From the event-streaming ADT, we found that if the subsets of events of an

event-streaming are causally ordered and arranged, one after another without

interruption, a virtual time line is established, where each subset of events repre-

sents a unique time-slot. Considering this fact, we designed a new model for data

alignment, called Event-Streaming Logical Mapping (ES-LM). With the ES-LM

model, the data alignment is performed by constructing an event-streaming as a

causal arrangement of subset of events, in such a way that each event must be

located in an unique time-slot, without requiring global references or synchronized

physical clocks. Thus, the ES-LM model is the main contribution of this work.

Another important finding is that by relating the logical/temporal domain

(determined by the causal order) with the spatial domain, a degree of “close-

ness” between events can be inferred and it can be established “how long ago” an

event happened before another. For this, we defined a fuzzy-causal relation that

relates the spatial and logical/temporal domains and infer a degree of “causal

closeness” between events. By including the fuzzy-causal relation to the data

alignment based on the ES-LM, a degree of “causal closeness” among streams

can be established. In this way, the definition of the fuzzy-causal relation is a

secondary contribution of this work.

7.1.2 Achievements

During the development of this research, some original and innovative findings

were reached. These findings can be useful to solve some open problems related

to distributed systems, as we explain below.
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• The usefulness of the event-streaming abstract data type. There are

several distributed applications, such as event stream processing or global

predicate detection, where it is necessary to detect some temporal patterns

from the various streams exchanged by multiple sources. To detect such

temporal patterns, existing solutions recursively examine all the exchanged

streams pair by pair. This last requires that all the exchanged streams be

stored to perform an outline examination; or that all the involved sources

collectively examine the streams using pairwise interactions among them.

Whichever of those two schemes increase the requirements of storage, time

or communication overheads.

We defined the event-streaming as an abstract data type, based on a causal

data structure, which inherently holds all the temporal patterns detected

among various examined streams. In this way, when an event-streaming is

analyzed along another stream, temporal patterns among several streams

can be detected, instead only detect patterns between a pair of streams.

In this way, the detection of the temporal patterns can be performed on

the fly without store all the involved streams, while the number of pairwise

interactions is reduced, decreasing the communication overhead.

• The usefulness of the fuzzy-causal relation. Causal ordering is an

important research subject in distributed systems since allows to provide

reliability for some applications, preserving the asynchronous execution of

the system. However, for certain applications, for example multimedia syn-

chronization, where some degradation of the system is allowed, ensuring the

causal order based on the happened-before relation is rigid, and negative

affects the performance of the system.
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In this dissertation we proposed a fuzzy-causal relation with the aim to

infer a degree of causal closeness between events. In this sense, the fuzzy-

causal closeness can be used to determine if the delivery of certain messages

is mandatory or such messages can be discarded. Thereby, by applying a

delivery criteria, based on the fuzzy-causal closeness, the asynchrony of a

system can be increased, improving its performance.

7.1.3 Limitations

The mechanisms proposed in this dissertation were designed to achieve certain

objectives. For this reason, the mechanisms have the two limitations explained

below.

• The linear growth of the causal structures. For the development of

the data alignment and association mechanism, the well-known vector clock

structure [Mat88, Fid88] was used to identify and preserve the causal rela-

tions among events. Such a structure is characterized by its linear growth,

bounded by the number of nodes that are associated with the entity which

executes the mechanism. In order to control the growth of such a structure,

and make an appropriate use of the network and computational resources,

a WSN can be organized following a clustering technique (for example the

LEACH protocol [HCB00]). However, the development or the implementa-

tion of clustering techniques for WSN is out of the scope of this work and

was left as an open topic.

• The lack of packet loss tolerance. The development of the mechanism

was based on a specific system model which considered reliable communica-

tion channels. For this reason, we do not implemented techniques to support
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the packet loss. To support the packet loss, it is necessary to develop or im-

plement methods for the detection and the recovery of lost messages (for

example forward error correction). Nevertheless, the packet loss tolerance

was not part of the objectives of this dissertation.

7.1.4 Dissertation-derived articles

• Jose Roberto Perez Cruz, Saul Eduardo Pomares Hernandez, and Enrique

Munoz de Cote. Data alignment for data fusion in wireless multimedia sen-

sor networks based on M2M. KSII Transactions on Internet and Information

Systems, 6(1):229–240, 2012.

• Jose Roberto Perez Cruz and Saul E. Pomares Hernandez. Temporal data

alignment and association for event-streaming in ubiquitous environments

based on fuzzy-causal dependencies. In 2014 International Conference on

Electronics, Communications and Computers (CONIELECOMP), pages 127–

134. IEEE Computer Society, February 2014.

• Jose Roberto Perez Cruz and Saul E. Pomares Hernandez. Temporal align-

ment model for data streams in wireless sensor networks based on causal de-

pendencies. International Journal of Distributed Sensor Networks, 2014:1–

11, 2014.

7.2 Future work

During the development of this research, it was observed that the proposed theory

can be extended in some directions in order to solve some open problems in some

kinds of distributed systems. Thereby, the future directions of this work include:



94 Conclusions and future work

the development of novel solutions for intermedia synchronization in multimedia

distributed systems, data alignment and association in mobile ad-hoc networks,

and event-streaming processing for the self-managing in Machine-to-Machine en-

vironments (M2M). A more detailed description of the future directions of this

work is presented below.

• Distributed intermedia synchronization. The native Logical Mapping

Model [PEMR08], designed to perform intermedia synchronization in multi-

media distributed systems, is designed to determine synchronization points

between a pair of streams. In some environments where streams are gener-

ated and exchanged among several sources, performing the synchronization

pair by pair can be highly expensive, since requires pairwise interactions

among the all processes that generate the streams.

The ES-LM model can be adapted to perform intermedia synchronization

to allow that a single stream can be synchronized with several streams. By

the form that the ES-LM was designed, the endpoints of the subsets of

events that compose an event-streaming can determine the synchronization

points for several streams. In this way, a pair of processes can exchange

collections of synchronization points, avoiding the interactions with all the

related sources.

• Establishment of a delivery order for concurrent events. In some

emerging applications, such as interactive and collaborative systems like hap-

tic1 teleoperations, in order to ensure a consistent system view, the users

must see, hear and/or feel the actions (events) as they were originally ex-

1Haptic technology, or haptics, is a tactile feedback technology which takes advantage of the
sense of touch by applying forces, vibrations, or motions to the user, “doing for the sense of
touch what computer graphics does for vision” [RDLT09].
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ecuted. For this reason, such systems must be reactive to stimulus which

result in consecutive series of concatenated cause-effect events, either con-

tinuous and/or discrete.

For such applications, the distributed ordering of events, oriented to interme-

dia synchronization or data alignment, requires to identify and to represent

cause-effect dependencies among multimedia data, besides to only repre-

sent multimedia elemental temporal relations based on causal dependencies.

Under such requirements, the concurrency among events not only must be

treated as the opposite of the causal relation, but it may treated as a partial

affection among events that co-occur at an instant of time. This last in order

to reduce the uncertainty of the system.

In this sense, the research could be focused on how the fuzzy-causal relation,

defined in this work, can be extended to determine certain order among the

concurrent events. Based on the concept of fuzzy-causal closeness, it can be

inferred a degree of affection among concurrent events by considering some

temporal and spatial patterns.

• Data alignment and association of event-streaming in mobile ad

hoc networks. In some applications such as emergency services for disaster

recovery there is a need for networks where devices can move and be free to

dynamically associate with any other devices in their communication range.

In this dissertation, we tackled the data alignment and association for event-

streaming by considering a network of fixed devices with a pre-existing in-

frastructure. Future extensions of this work will tackle problems that arise

when considering the restrictions imposed by the devices’ mobility and there

is no infrastructure for the network deployment.
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• Event-streaming processing for the self-managing in Machine-to-

Machine (M2M) environments. Ubiquitous computing environments

based on M2M, such as Environment-to-Environment (E2E) connection,

has been developed as a new form of communication that allows users to

interact among people and objects by connecting their natural physical en-

vironments. The goal is to equip many devices into a person environment

to focus on natural human-interaction. Thus, users would not need worry

about staying within proximity, field of view, or audible distance of an output

device, because the system should be responsible to find the most appro-

priate input and output devices to support communication. For this, the

data harvested by the devices must be processed to produce information

that enables the devices to react intelligently to their environment.

In this sense, future directions of this work can be focused on the develop-

ment of solutions oriented to:

– Data aggregation for event-streaming. This concerns in future exten-

sions of the ES-LM and the fuzzy-causal relation to support handling

of atomic events that can describe actions occurred within the phys-

ical environment at a certain instant of time. By handling this kind

of events, the subsets that compose an event-streaming would repre-

sent composite events, which are complex temporal relationships among

atomic events and could be useful to describe complex happenings of

the physical environment.

– Distributed detection of predicates. Considering the concept of com-

posite events, another extension for the ES-LM concerns to detect the

temporal dependencies among streams under a rich palette of time
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modalities. Thus, the subsets that compose an event-streaming would

represent predicates of interest.
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