
Expert Systems with Applications 38 (2011) 14290–14300
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Decision tree induction using a fast splitting attribute selection for large datasets

A. Franco-Arcega a,⇑, J.A. Carrasco-Ochoa a, G. Sánchez-Díaz b, J.Fco. Martínez-Trinidad a

a Computer Science Department, National Institute of Astrophysics, Optics and Electronics, Luis Enrique Erro #1, Santa Maria Tonantzintla, Puebla, C.P. 72840, Mexico
b Computational Science and Technology Department, University of Guadalajara, CUValles, Carretera Guadalajara-Ameca Km. 45.5, Ameca, Jalisco, C.P. 46600, Mexico

a r t i c l e i n f o a b s t r a c t
Keywords:
Decision trees
Large datasets
Gain-ratio criterion
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.05.087

⇑ Corresponding author. Tel.: +52 222 2663100x83
E-mail address: anifranco6@inaoep.mx (A. Franco-
Several algorithms have been proposed in the literature for building decision trees (DT) for large datasets,
however almost all of them have memory restrictions because they need to keep in main memory the
whole training set, or a big amount of it, and such algorithms that do not have memory restrictions,
because they choose a subset of the training set, need extra time for doing this selection or have param-
eters that could be very difficult to determine. In this paper, we introduce a new algorithm that builds
decision trees using a fast splitting attribute selection (DTFS) for large datasets. The proposed algorithm
builds a DT without storing the whole training set in main memory and having only one parameter but
being very stable regarding to it. Experimental results on both real and synthetic datasets show that our
algorithm is faster than three of the most recent algorithms for building decision trees for large datasets,
getting a competitive accuracy.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Classification is an important task in data mining (Tan,
Steinbach, & Kumar, 2006). Currently, there are many classification
problems where large training datasets are available, therefore
there is a big interest for developing classifiers that allow handling
this kind of datasets in a reasonable time.

Decision trees (Quinlan, 1986, 1993) are commonly used for
solving classification problems in Machine Learning and Pattern
Recognition. A DT is formed by internal nodes, leaves, and edges,
and it can be induced from a training set of instances, each one rep-
resented by a tuple of attribute values and a class label. Internal
nodes have a splitting attribute and each node has one or more
children (edges). Each one of these children has associated a value
for the splitting attribute and these values determine the path to
be followed during a tree traversal. Each leaf has associated a class
label. In order to classify a new instance, the tree is traversed from
the root to a leaf, when the new instance arrives to a leaf it is clas-
sified according to the class label associated to that leaf.

Several algorithms have been developed for building DTs from
large datasets (Alsabti, Ranka, & Singh, 1998; Domingos & Hulten,
2000; Gehrke, Ramakrishnan, & Ganti, 1998, 2000, 1999; Mehta,
Agrawal, & Rissanen, 1996; Shafer, Agrawal, & Mehta, 1996; Yang,
Wang, Yang, & Chang, 2008; Yoon, Alsabti, & Ranka, 1999). How-
ever, almost all of them have spatial restrictions, because they have
to keep the whole training set in main memory and some other use
a representation of the attributes that requires more space than the
ll rights reserved.

11; fax: +52 222 2472580.
Arcega).
whole training set. On the other hand, in those algorithms without
spatial restrictions, the construction of the DT is based only on a
small subset, but for obtaining this subset additional time is
required, which could be too expensive for large training sets; or
the algorithms uses several parameters, which could be very
difficult to determine.

Having these drawbacks identified, this work introduces a new
algorithm for building DTs that solves these problems. Our
algorithm (DTFS) follows two main ideas for building DTs, it uses
a fast splitting attribute selection for expanding nodes (deleting
the instances stored in the expanded node after its expansion)
and processes all the instances of the training set in an incremental
way, therefore it is not necessary to store the whole training set in
main memory.

In the literature some new techniques to select splitting attri-
butes have been proposed (Berzal, Cubero, Marn, & Snchez, 2004;
Chandra & Paul Varghese, 2009; Ouyang, Patel, & Sethi, 2009),
however these techniques are not proposed for handling large
datasets, because some of them have to evaluate a lot of candidate
splits for choosing the best attribute, other use discretization
methods to deal with numerical attributes, and some other use
expensive techniques to expand nodes. On the other hand, several
algorithms for building DTs in an incremental way have been pro-
posed, such as ID5R (Utgoff, 1989), PT2 (Utgoff & Brodley, 1990), ITI
(Utgoff, 1994), StreamTree (Jin & Agrawal, 2003) and UFFT (Gama &
Medas, 2005), however these algorithms cannot handle large data-
sets either, because they need to keep the whole training set in
main memory for building the DT.

In this paper, we propose an algorithm that processes the train-
ing instances one by one, thus each training instance traverses the

http://dx.doi.org/10.1016/j.eswa.2011.05.087
mailto:anifranco6@inaoep.mx
http://dx.doi.org/10.1016/j.eswa.2011.05.087
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

A. Franco-Arcega et al. / Expert Systems with Applications 38 (2011) 14290–14300 14291
DT until a leaf is reached, where the training instance will be
stored. In our algorithm, when a leaf has stored a predefined num-
ber of instances (a parameter of the algorithm), it will be expanded
choosing a splitting attribute, using the instances in the leaf, and
creating an edge for each class of instances in the leaf. After
expanding a leaf, the instances stored in that leaf are deleted.
Experimental results over several large datasets show that our
algorithm is faster than three of the most recent algorithms for
building DTs for large datasets, obtaining a competitive accuracy.

The rest of the paper is organized as follows. Section 2 gives an
overview of the works related to DT induction for large datasets.
Section 3 introduces the DTFS algorithm, which allows building
DTs for large datasets. Section 4 provides experimental results
and a comparison against other algorithms for DT induction for
large datasets, on both real and synthetic datasets. Finally, Section
5 gives our conclusions and some directions for future work.
2. Related work

In this section, several algorithms that have been proposed to
build DTs for large datasets are described.

Mehta et al. (1996) presented SLIQ (Supervised Learning In
Quest), an algorithm for building DTs for large datasets. This algo-
rithm uses a list structure for each attribute, these lists are used in
order to avoid storing the whole training set in main memory, by
storing them in disk. However, SLIQ uses an extra list that must
be stored in main memory, this list contains the class of each in-
stance and the number of the node where this instance is stored
in the tree. This could be a problem for large datasets, because
the size of this list depends on the number of instances in the train-
ing set. The process that SLIQ follows to build a DT is similar to
C4.5, but the difference is that SLIQ uses the lists for splitting attri-
bute selection, therefore, the lists must be read from disk each time
a node is going to be expanded.

Shafer et al. (1996) presented an improvement of SLIQ, called
SPRINT (scalable parallelizable induction of decision trees). The dif-
ference with respect to SLIQ lies in how SPRINT represents the lists
for each attribute. SPRINT adds a column to each list for storing the
class of each instance, hence SPRINT does not need to store in main
memory any whole list. However, since SPRINT has to read from
disk all the lists for expanding each node, just like SLIQ, the run-
time is too large if the training set has a lot of instances.

Alsabti et al. (1998) proposed CLOUDS (Classification for Large
or OUt-of-core DataSets), an algorithm that uses, as SLIQ and
SPRINT, lists for representing the information of the attributes in
the training set. However, these lists are simplified representing
the numerical attributes by intervals. This modification substan-
tially reduces the time required for choosing the attributes that
will represent the internal nodes of the DT, because it is not needed
to check all the values for each attribute. A drawback of SPRINT and
CLOUDS is that for storing the lists they require at least the double
of the space needed for storing the original training set.

Gehrke et al. (1998), Gehrke, Ramakrishnan, and Ganti (2000)
introduced the Rainforest algorithm. It follows the idea of using
lists for representing the attributes of a training set, but this algo-
rithm only stores all the different values for each attribute. In this
way, Rainforest tries to reduce the size of the lists, thus the list size
will not be the number of training instances but the number of dif-
ferent values. However, these lists must be stored in main memory,
therefore if the attributes have a lot of different values in the train-
ing set, the available space could be not enough. Besides, in order
to generate the lists, in each level of the DT, Rainforest has to read
the whole training set twice and write it once, which is very expen-
sive for large datasets. Nguyen and Tae-Choong (2007) presents an
improvement of Rainforest, the difference is that this improvement
adds to the lists, used by Rainforest, the position of each instance in
the training set, in order to use them in the expansion of each node,
in this way this algorithm does not have to read twice and write
once the whole training set in each level of the tree. This algorithm
only scans once the whole training set, however if an attribute has
too many values, its lists may not fit in main memory.

Gehrke, Ganti, Ramakrishnan, and Loh (1999) developed an
incremental algorithm for building DTs, called BOAT (Bootstrapped
Optimistic Algorithm for Tree construction). This algorithm avoids
to store the whole training set in main memory by using only an
instance subset as training for building the DT, however obtaining
this subset requires additional time for building the DT, which
could be expensive for large datasets. Starting from this subset,
BOAT applies a bootstrapping technique for generating multiple
DTs, using a traditional main memory DT induction algorithm
(for example C4.5, CART, etc.). The constructed DTs are combined,
and finally, BOAT refines the combined DT using the whole training
set.

Yoon et al. (1999) proposed another incremental algorithm for
building DTs, called ICE (Incrementally Classifying Ever-growing
large datasets). This algorithm divides the training set in subsets,
called epochs, and processes them separately, therefore ICE does
not need to store the whole training set in main memory. ICE
builds a DT for each epoch using a traditional main memory DT
induction algorithm (as C4.5, CART, etc.) and from each DT, ICE ob-
tains a subset of instances applying a sampling technique. Then ICE
joins the subsets, obtained from each epoch, for building the final
DT. A DT Ti is built from each subset Di (epoch i) of the training
set, and using a sampling technique a set Si of samples is extracted
from Ti. The union of Si and the previous sets of samples are stored
in Ui. Then the new set of samples Ui = Ui�1 [Si is preserved for
building the DT in the next epoch. For a training set divided in k
epochs, ICE joins S1,S2, . . . ,Sk, the subsets of instances extracted
from T1,T2, . . . ,Tk, and builds the final DT Ck with the last Uk, the
algorithm preserves the subset Uk and the DT Ck. If a new epoch
Dk+1 must be processed, ICE builds Tk+1 from Dk+1, extracts Sk+1 from
Tk+1 and uses Uk+1 = Uk [Sk+1 for building the new DT, Ck+1. A draw-
back of ICE is that when the algorithm processes large training sets,
it spends a lot of time for obtaining the subset of instances for
building the final DT.

Domingos and Hulten (2000) introduced an incremental algo-
rithm called VFDT (very fast decision trees). This work proposed
the Hoeffding trees, which can be learned in constant time per in-
stance, and they are similar to the trees built by traditional main
memory DT induction algorithms (for example C4.5, CART, etc.).
For building the DT, VFDT needs the training instances in a random
order, if this is not the case, they should be randomized in a pre-
processing step. VFDT starts with a tree produced by a conven-
tional DT induction algorithm, this tree is built from a small
subset of instances, then VFDT processes each instance of the train-
ing set traversing the DT and updating the statistics needed to
compute the information gain of each attribute in the leaf in which
the instance arrives. VFDT uses a user-defined parameter nmin,
which indicates the minimum number of instances that must be
stored in a leaf before checking if the node has enough information
to be expanded. When n instances have arrived to a leaf, VFDT ob-
tains the information gain of each attribute using the statistics
stored in the leaf, chooses the two attributes with highest informa-
tion gain, G(Xa) and G(Xb), and obtains the Hoeffding bound e using
Eq. (1).

e ¼

ffi
R2 ln 1=dð Þ

2n

s
ð1Þ

In Eq. (1) R is log(c) (c is the number of classes) and d is a user-
defined parameter, where 1 � d indicates the probability of

14292 A. Franco-Arcega et al. / Expert Systems with Applications 38 (2011) 14290–14300
choosing the correct splitting attribute. If the difference between
the information gain of the two best attributes (DG =
jG(Xa) � G(Xb)j) is greater than the Hoeffding bound (DG > e) then
the leaf must be expanded, if DG 6 e, the leaf must receive more in-
stances before it would be expanded. VFDT uses nmin to avoid check-
ing if DG > e each time an instance arrives to a leaf, which would
lead a large runtime for building the DT. If DG = 0, VFDT uses an-
other user-defined parameter s to decide if the current best attri-
bute can be chosen as splitting attribute (if e < s then VFDT uses
the best attribute as splitting attribute). VFDT finishes when all
the instances have been processed. This algorithm uses three
parameters that could be too difficult to be defined by the user. Be-
sides, for expanding a node, VFDT has to evaluate for each numeri-
cal attribute all the possible splits, which could be too expensive if
the attributes have a lot of different values.

Yang et al. (2008) developed a DT induction algorithm, called
BOAI (BOttom-up evaluation for ADTree Induction), based on the
ADT algorithm Freund and Mason, 1999, which is a DT induction
algorithm for two-class problems. A DT built by ADT, called AD-
Tree, contains two kinds of nodes, decision and prediction nodes.
The ADTree consists of alternating levels of prediction and decision
nodes, each prediction node is associated with a weight, which
represents its contribution to the final prediction score, while each
decision node has a splitting attribute. ADT associates a weight to
each training instance Freund and Mason, 1999, which is used for
computing the splitting attribute each time a prediction node is ex-
panded as well as for computing the prediction values associated
to new prediction nodes. ADT uses an iterative process to build
the DT, it starts with a root prediction node and chooses the best
splitting attribute for expanding this node, creating a decision node
and two prediction nodes associated to that decision node. At each
iteration, ADT expands a prediction node, traversing the DT using a
top-down approach and evaluating all possible splits for all attri-
butes in all prediction nodes, in order to find the best splitting test
attribute. A new decision node can be attached to any previous
prediction node, not only at the leaves. ADT continues expanding
prediction nodes until a predefined number of iterations is
reached. The classification of a new instance with an ADTree is
the sign of the sum of the prediction values along all paths that this
instance can traverse in the DT.

BOAI is an alternative way of building an ADTree for large data-
sets. For each attribute, BOAI creates a list which stores the weights
associated to the training instances, these lists are stored in the
prediction nodes and are used for computing the splitting attribute
when a prediction node is going to be expanded. BOAI uses a bot-
tom-up approach to choose the node to be expanded in each iter-
ation, instead of a top-down approach. The bottom-up approach
allows BOAI to maintain only the group of lists in the last predic-
tion node of each path in the DT (leaves), since these lists allow
creating the lists associated to previous prediction nodes in each
path. Besides, BOAI sorts the values of numeric attributes as a pre-
processing step, in order to avoid sorting these values each time
BOAI evaluates all possible splits for expanding a prediction node.
A drawback of BOAI is the size of the attributes’ lists, because their
size depends on the number of different attribute values in the
training set, and therefore these lists could be too big for large
datasets.

From the algorithms for building DT for large datasets above de-
scribed, we can notice that SLIQ, SPRINT and CLOUDS use a repre-
sentation of the attributes that requires at least the double of the
space required for storing the whole training set; Rainforest and
BOAI use structures for storing the training set, but these struc-
tures cannot be stored in main memory when a large training set
is being processed; VFDT needs three parameters for building the
DT, which could be very difficult to define by the user; and BOAT
and ICE use only a subset of the training set for building the DT,
but these algorithms require a lot of time for finding this subset
of instances for large training sets. To overcome these shortcom-
ings, we propose a new DT induction algorithm for large training
sets, called DTFS, which requires only one parameter for building
a DT, but DTFS is very stable respect to this parameter (as we will
show in the experimental results). Besides, our algorithm uses a
fast splitting attribute selection and it processes the whole training
set, without storing it in main memory.
3. Proposed algorithm

In this work, we propose a new algorithm for building DTs for
large datasets (DTFS) that overcomes the shortcomings of the re-
lated algorithms. In order to avoid storing the whole training set
in main memory, DTFS builds DTs in an incremental way. Thus
the training instances will be processed one by one, traversing
the DT with each one, until it reaches a leaf, where the instance will
be stored. Besides, to avoid storing all the training instances into
the tree, a leaf stores at most s instances (s is a parameter of DTFS),
and when the number of instances stored in a leaf reaches this lim-
it, DTFS expands or updates the leaf according to the instances
stored in it, and in both cases those instances are discarded. If
the leaf contains instances from two or more classes, DTFS will
expand the leaf choosing a splitting attribute and creating one edge
for each class of the stored instances (each edge will have a value
that represents the instances of the corresponding class). But if the
leaf contains instances from only one class, our algorithm only will
update the value of the input edge of the leaf.

This strategy helps DTFS to maintain only a small number of
instances in main memory for building a DT. Additionally, since
the expansion of a leaf is done attending only the s instances stored
in it, this strategy also allows a fast splitting attribute selection, in
comparison to the conventional splitting in DTs.

Since DTFS processes the training instances in an incremental
way, processing a long sequence of instances from only one class
would lead to represent them into a single node of the DT, because
DTFS only will update the input value of the node. In order to avoid
this situation, DTFS (function ReorganizeTS, called in the DTFS algo-
rithm in Fig. 2) reorganizes the training set alternating instances
from each class, i.e., the first instance from the first class, the sec-
ond instance from the second class and so on, if there are r classes,
the instance in the position r + 1 will be from class 1 and so on. In
the experiments the time required for this reorganization will be
included as part of the DTFS runtime.

The structure of the DT built by DTFS is similar to a traditional
DT, it will contain in each internal node a splitting attribute, each
edge will correspond to a possible outcome of the splitting attri-
bute and each leaf will have associated a class label.
3.1. Splitting attribute selection

One of the most commonly used criteria for splitting attribute
selection in DTs is Gain Ratio Quinlan, 1993. However, in tradi-
tional main memory DT induction algorithms this criterion be-
comes very expensive for large datasets. This fact is because for
choosing the best splitting attribute, these algorithms have to se-
lect the best splitting attribute for each non homogeneous node,
based on the instances stored in the node (usually a lot) and using
the selected splitting attribute they create several edges, one for
each different value of each attribute, and the instances stored in
the node (which as we mentioned usually are a lot) are classified
according to these edge values.

In order to do a fast selection of the splitting attribute, DTFS
uses the Gain Ratio Criterion in an different way. For choosing
the best splitting attribute when a leaf has to be expanded, only

Fig. 1. ExpandNode function.

Fig. 2. DTFS algorithm.

A. Franco-Arcega et al. / Expert Systems with Applications 38 (2011) 14290–14300 14293
the s instances stored in that leaf are taken into account. The idea is
to choose, as splitting attribute, the attribute and a set of splitting
values for it (one for each class) that best reconstruct the partition
defined by the classes of instances in the leaf to be expanded.
Hence, for each attribute, DTFS computes for each class, as splitting
value, the mean of the attribute values appearing in the instances
of the leaf belonging to that class. After, for each attribute, our
algorithm classifies the instances in the leaf using the computed
splitting values (finding the closest mean for each instance, accord-
ing to the current attribute), and measures the Gain Ratio as in
Quinlan (1993) but over these new partitions. Finally the attribute
jointly with its associated splitting values, which produce the best
partition (with the maximum Gain Ratio), is selected. If the maxi-
mum is reached by more than one attribute the first one is se-
lected. Measuring the Gain Ratio in this way, for each attribute
only one set of splitting values is evaluated using only the s in-
stances in the node, which allows a fast selection.

3.2. Building the DT

DTFS starts with an empty root node (a leaf) and processes one
by one the instances of the training set, traversing the DT with each
one until it reaches a leaf, where the instance will be stored.

When a leaf reaches the maximum number of instances allowed
by DTFS (s instances), DTFS follows one of the following cases. If a
leaf has instances from two or more classes, DTFS replaces the leaf
by an internal node. To expand a node, DTFS obtains the splitting
attribute that best divides the instances (i.e. the one which pro-
duces the most homogeneous partition) based on the criterion de-
scribed in Section 3.1, and then DTFS creates an edge connected to
a new empty leaf for each class of instances in the node. After, DTFS
assigns to each edge the mean computed for the selection process.
The splitting attribute and the values of the edges will be used by
DTFS for traversing the DT. Finally, DTFS deletes the instances that
were used for expanding the node.

On the other hand, when a leaf has instances from a single class,
our algorithm does not expand the node, it keeps the node as a leaf,
and DTFS only updates the value of the splitting attribute associ-
ated to the input edge. For this updating, DTFS computes the mean
of the values for the splitting attribute from the instances stored in
the leaf, and the new value of the splitting attribute will be the
average between this value and the value of the splitting attribute
associated to the input edge. Finally, DTFS deletes the instances
stored in it.

The DTFS’s pseudocode for expanding a node is shown in Fig. 1.
The induction of a DT finishes when all the instances of the

training set have been processed. Finally, our algorithm assigns
to each leaf the label of the majority class of the instances stored
in it or the label of the class from which the input edge was cre-
ated, if the leaf is empty.

The DTFS’s pseudocode for building the DT is shown in Fig. 2.

3.3. Traversing the DT

For traversing the DT, an instance starts at the root and des-
cends through the internal nodes until the instance reaches a leaf.
To descend to a node, DTFS follows the path of the splitting attri-
bute that best matches with the corresponding value of the attri-
bute of the instance that is traversing the DT. It is done
computing the smallest absolute difference between the instance’s
value and the edge’s value.

3.4. Classifying instances

The classification process in DTFS, as in all DT algorithms, con-
sists in traversing the DT with an unseen instance until a leaf is
reached, and assigning to the new instance the class label associ-
ated to that leaf.

3.5. Time complexity analysis of DTFS algorithm

For building a DT from a large dataset, DTFS has to traverse the
DT with each training instance until it reaches a leaf, in which the
instance is stored. Then, when a leaf has s instances stored in it,
DTFS expands the node, choosing the best splitting attribute and
creating an edge for each class of instances in the node.

For a training set of m instances, described by d attributes and
divided in k classes, traversing the DT for each instance is, in the
worst case, O(k⁄logk(m)), since an instance has to choose among
at most k edges per internal node to descend at most logk(m) levels
of the tree, then traversing the DT with all m instances is
O(m⁄k⁄logk(m)), however, since for large datasets k�m

Table 1
Datasets used in the experiments.

Dataset # Classes # Instances # Attributes

Poker (UCI Machine Learning
Repository, 2008)

2 923,707 10

SpecObj⁄ (SDSS-Adelman-McCarthy
et al., 2008)

6 884,054 5

GalStar⁄ (SDSS-Adelman-McCarthy
et al., 2008)

2 4,000,000 30

Synthetic_1 2 4,000,000 5
Synthetic_2 3 4,000,000 5
Synthetic_3 5 4,000,000 5
Synthetic_4 2 4,000,000 40
Synthetic_5 3 4,000,000 40
Synthetic_6 5 4,000,000 40

14294 A. Franco-Arcega et al. / Expert Systems with Applications 38 (2011) 14290–14300
(commonly there are only a few classes) the complexity for tra-
versing the DT with the m instances of the training set is
O(m⁄logk(m)).

In the expansion process, for a single node, DTFS chooses the best
splitting attribute applying to each attribute the Gain Ratio Criterion
(as we explained in Section 3.1) but using only the s instances stored
in the leaf to be expanded, thus, DTFS computes for each attribute the
mean of each class of instances stored in the leaf, then selecting the
splitting attribute is O(d⁄s). Once the splitting attribute has been
chosen, DTFS creates at most k edges and assigns to each edge the
mean computed from the instances belonging to the corresponding
class, this process is O(k). Therefore, the expansion process for a sin-
gle node is O((d⁄s) + k) = O(d⁄s) and the maximum number of expan-
sions that DTFS does for building a DT is O(m/s), then the whole
expansion process in DTFS is O((d⁄s)⁄(m/s)) = O(d⁄m), however,
since for large datasets d�m the complexity of all the expansions
for building a DT is O(m).

Finally, the complexity for building a DT using the DTFS
algorithm is the sum of traversing and expansion components:

O(m⁄logk(m) + m) = O(m⁄logk(m)).

Yoon et al. (1999) analyzed the complexity of ICE algorithm,
which is O(m⁄log(m)). The complexity of BOAI is also O(m⁄log(m))
Yang et al., 2008 and the complexity of VFDT is O(m2) (Li, Wang,
Wang, Yan, & Chen, 2007). As it can be observed, the complexity
of DTFS, is lower than VFDT’s and is the same than ICE’s and BOAI’s.
The difference among DTFS, VFDT, ICE and BOAI is in the effective
cost of building the DT. Therefore, in Section 4 we show an exper-
imental analysis of the runtime spent by each algorithm for build-
ing DTs for large datasets.

3.6. Spatial complexity analysis

For building the DT, DTFS has to keep in main memory only the
instance that is being processed at each moment and the DT built
with the previous instances. The maximum number of expansions
that DTFS can do is m/s, then the space required for our algorithm
is O(m/s) = O(m).

The space that ICE needs for building the DT depends on the num-
ber of epochs (e) that is established by the user and the proportion of
instances (0 < p 6 1) that must be extracted from each epoch. Each
epoch contains m/e instances, thus the size of each subsample is
p⁄(m/e), therefore the space required for storing all the subsamples
is p⁄(m/e)⁄e = p⁄m. Finally, since only one epoch and all the subsam-
ples need to be stored at each moment, the number of instances that
ICE needs to store is O((p⁄m) + (m/e)) = O(p⁄m) = O(m).

VFDT needs to store the instance that is being processed at each
moment and the DT built previously. Therefore, the space required
for this algorithm depends on the maximum number of expansions
that VFDT can make, which is m/n, where n is the number of in-
stances used for verifying if a node must be expanded, then the
space required by VFDT is O(m/n) = O(m).

BOAI is an algorithm that needs to store the whole training set
in main memory for building the DT. The instances are stored in
the leaves of the DT as a set of lists, then the space that BOAI re-
quires is O(m).

As it can be noticed, the space required by BOAI, VFDT, ICE and
DTFS for building a DT is, in the worst case, O(m).

4. Experimental results

The experiments were conducted in four directions. First in
Section 4.1 we analyze the behavior of our algorithm when the
parameter s (the maximum number of instances in a leaf) varies.
In Section 4.2 we analyze the behavior of DTFS when the number
of attributes in the training set varies, since we want to show that
our algorithm does a fast selection of the splitting attribute no
matter the number of attributes in the dataset. Additionally, in Sec-
tion 4.3 we present a comparison among DTFS and three of the
most recent algorithms for building DTs for large datasets, ICE
(Yoon et al., 1999), VFDT (Domingos & Hulten, 2000) and BOAI
(Yang et al., 2008), using both synthetic and real datasets. Finally,
Section 4.4 shows a significance test, in order to study the differ-
ence in runtime and accuracy rate between DTFS’ results and those
results obtained by ICE, VFDT and BOAI.

In all the experiments we evaluated the runtime (including
induction and classification time, and for DTFS also the time for
the preprocessing step) and the accuracy rate over a testing set.
For all experiments, we used 10-fold cross validation and all figures
include the 95% confidence interval. However, in some cases these
confidence intervals are not visible because they are very small. All
our experiments were performed on a PC computer with a Pentium
4 at 3.06 GHz, with 2 GB of RAM, running Linux Kubuntu 7.10.

The datasets used for the experiments are described in Table 1.
The first three are real datasets and the remaining are synthetic
datasets.

4.1. DTFS’ parameter

For the three real datasets in Table 1, we applied DTFS over a
training set and a test set containing 100,000 instances each one,
taking the first instances of each class and maintaining the class
proportion. For each dataset s = 50 and s from 100 to 600 with
increments of 100 were evaluated.

Fig. 3 shows the runtime and the accuracy rate obtained by
DTFS when the value of the parameter s varies. As we can observe,
when the value of s increases the runtime slightly decreases, but
the accuracy rate also decreases. We chose s = 100, which is a value
that maintains a good compromise between runtime and accuracy.

4.2. Increasing the number of attributes

In order to study the performance of DTFS when the number of
attributes increases, we generated several synthetic datasets with
different number of attributes, from 5 to 40 attributes with incre-
ments of 5. These datasets were randomly generated following the
normal distribution with mean Mij and standard deviation SDij for
each class Ci and each attribute j. We generated instances for
two, three and five classes, with values of Mi and SDi as appear in
Table 2 (the values in Table 2 correspond to the 5-attribute syn-
thetic datasets, for the synthetic datasets with a number of attri-
butes greater than five, we repeated the first two means to get a
number of means equal to the number of attributes; we used the
same standard deviation for all the attributes).

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10
Runtime

Value of s

Se
co

nd
s

Poker
SpecObj
GalStar

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100
Accuracy Rate

Value of s

Ac
cr

ac
y

Poker
SpecObj
GalStar

Fig. 3. Runtime and accuracy rate varying the value of s.

Table 2
Mean and standard deviation for synthetic datasets.

Two-class M1 = [0,0,0,0,0] SD1 = [0.6,0.6,0.6,0.6,0.6]
M2 = [1,1,1,1,1] SD2 = [0.6,0.6,0.6,0.6,0.6]

Three-class M1 = [0.2,0.5,0.2,0.5,0.2] SD1 = [0.15,0.15,0.15,0.15,0.15]
M2 = [0.3,0.9,0.3,0.9,0.3] SD2 = [0.15,0.15,0.15,0.15,0.15]
M3 = [0.7,0.9,0.7,0.9,0.7] SD3 = [0.10,0.10, 0.10,0.10,0.10]

Five-class M1 = [0.2,0.5,0.2,0.5,0.2] SD1 = [0.15,0.15,0.15,0.15,0.15]
M2 = [0.3,0.9,0.3,0.9,0.3] SD2 = [0.15,0.15,0.15,0.15,0.15]
M3 = [0.7,0.9,0.7,0.9,0.7] SD3 = [0.10,0.10, 0.10,0.10,0.10]
M4 = [0.9,0.4,0.9,0.4,0.9] SD4 = [0.15,0.15,0.15,0.15,0.15]
M5 = [0.5,0.0,0.5,0.0,0.5] SD5 = [0.10,0.10, 0.10,0.10,0.10]

A. Franco-Arcega et al. / Expert Systems with Applications 38 (2011) 14290–14300 14295
To show the distribution of the synthetic datasets, some data-
sets with two attributes were generated, these datasets are shown
in Fig. 4.

Fig. 5 shows the runtime and the accuracy rate obtained with
DTFS, ICE and VFDT when the number of attributes varies in the
synthetic datasets with two, three and five classes.

We can notice from Fig. 5 that the runtime of DTFS only has a
small variation when the number of attributes in the training set
is increased, while the runtimes of ICE and VFDT increase a lot.
In a DT induction algorithm, the number of attributes in a dataset
is mainly related to the selection of the splitting attributes, since
for each expansion of a node each attribute must be evaluated to
choose the best one. For these datasets the accuracy rate of each
algorithm was very similar no matter the number of attributes in
the training set.
−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

Class 1
Class 2

−0.4 −0.2 0 0.2 0.4
0

0.5

1

1.5

Fig. 4. Synthetic datasets with
4.3. Comparison against other DT induction algorithms for large
datasets

This section presents the comparison of DTFS against three of
the most recent algorithms for building DTs for large datasets.
The algorithms used to compare our algorithm were ICE, VFDT
and BOAI. For our experiments we implemented ICE based on Yoon
et al. (1999), extracting 10% of the instances, as the subsample for
building the DT (this percentage of instances was chosen according
to the experiments presented by Yoon et al. (1999)), for BOAI we
got the authors’ version, establishing 30 iterations for building
the DT (this value was chosen based on Yang et al. (2008)) and
for VFDT we also got the authors’ version (for this algorithm we
did the experiments with the default values of the program).

In order to show the performance of DTFS, first we show a com-
parison on the real datasets (Poker, SpecObj and GalStar) and then
we present a comparison using the synthetic datasets. In these
experiments the performance of the algorithms was evaluated
when the size of the training set increases.
4.3.1. Real datasets
For Poker we created different-size training sets (from 50,000 to

500,000 with increments of 50,000). Fig. 6 shows the runtime and
the accuracy obtained for this dataset with the four algorithms.
Based on these results it can be seen that DTFS, ICE, VFDT and BOAI
obtained similar accuracy for this dataset, and DTFS is one of the
fastest algorithms.

For SpecObj, we created different-size training sets (from
50,000 to 500,000 with increments of 50,000). With this dataset
0.6 0.8 1 1.2

Class 1

Class 2

Class 3

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Class 1
Class 2
Class 3
Class 4
Class 5

two, three and five classes.

0 5 10 15 20 25 30 35 40 45
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of attributes

Se
co

nd
s

Runtime

DTFS
ICE
VFDT

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

Number of attributes

Ac
cu

ra
cy

Accuracy Rate

DTFS
ICE
VFDT

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

3500

4000

Number of attributes

Se
co

nd
s

Runtime

DTFS
ICE
VFDT

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

Number of attributes

Ac
cu

ra
cy

Accuracy Rate

DTFS
ICE
VFDT

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of attributes

Se
co

nd
s

Runtime

DTFS
ICE
VFDT

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

Number of attributes

Ac
cu

ra
cy

Accuracy Rate

DTFS
ICE
VFDT

Fig. 5. Runtime and accuracy rate for DTFS, ICE and VFDT with 2-class, 3-class and 5-class synthetic dataset, respectively, when the number of attributes increases.

14296 A. Franco-Arcega et al. / Expert Systems with Applications 38 (2011) 14290–14300
we only compared our algorithm against ICE and VFDT, because
BOAI is only for two-class problems. Fig. 7 shows the runtime
and the accuracy for SpecObj. As it can be seen, our algorithm
was similar than ICE and VFDT in accuracy but DTFS was about
13 and 9 times faster than ICE and VFDT, respectively.

For GalStar we created different-size training sets (from
500,000 to 4,000,000 with increments of 500,000). Fig. 8 presents
the comparison between DTFS, ICE and VFDT. BOAI does not appear
in this figure because for this dataset it could not process training
sets with more than 300,000 instances. As it can be noticed DTFS,
ICE and VFDT obtained a similar accuracy rate, but DTFS was about
56 and 8 times faster than ICE and VFDT, respectively.

4.3.2. Synthetic datasets
For these experiments we used the 5-attribute and 40-attribute

synthetic datasets created for the experiment of Section 4.2. BOAI
is only included in the results for the 5-attribute synthetic dataset
with two classes, because for the 40-attribute synthetic dataset

0 1 2 3 4 5
x 10

5

0

50

100

150

200

250

300

Size of TS

S
ec

on
ds

Runtime

DTFS
ICE
VFDT
BOAI

0 1 2 3 4 5
x 10

5

0

10

20

30

40

50

60

70

80

90

100

Size of TS

A
cc

ur
ac

y

Accuracy Rate

DTFS
ICE
VFDT
BOAI

Fig. 6. Runtime and accuracy rate for DTFS, ICE, VFDT and BOAI algorithms for Poker.

0 1 2 3 4 5
x 105

0

20

40

60

80

100

120

140

160

Size of TS

Se
co

nd
s

Runtime

DTFS
ICE
VFDT

0 1 2 3 4 5
x 105

0

10

20

30

40

50

60

70

80

90

100

Size of TS

Ac
cu

ra
cy

Accuracy Rate

DTFS
ICE
VFDT

Fig. 7. Runtime and accuracy rate for DTFS, ICE and VFDT algorithms for SpecObj.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Size of TS

S
ec

on
ds

Runtime

DTFS
ICE
VFDT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

10

20

30

40

50

60

70

80

90

100

Size of TS

A
cc

ur
ac

y

Accuracy Rate

DTFS
ICE
VFDT

Fig. 8. Runtime and accuracy rate for DTFS, ICE and VFDT algorithms for GalStar.

A. Franco-Arcega et al. / Expert Systems with Applications 38 (2011) 14290–14300 14297
with two classes the program failed, and the remaining synthetic
datasets are not two-class problems.

Fig. 9 shows the runtime and the accuracy rate obtained with
the 5-attribute synthetic datasets with two, three and five classes.
As it can be noticed in Fig. 9, DTFS is better than ICE and VFTD,
since DTFS is the fastest algorithm for the three datasets and ob-
tains a higher accuracy rate than ICE’s and a similar accuracy rate
with VFDT.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 106

0

500

1000

1500

2000

2500

Size of TS

Se
co

nd
s

Runtime

DTFS
ICE
VFDT
BOAI

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 106

0

10

20

30

40

50

60

70

80

90

100

Size of TS

Ac
cu

ra
cy

Accuracy Rate

DTFS
ICE
VFDT
BOAI

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 106

0

50

100

150

200

250

300

350

400

450

Size of TS

Se
co

nd
s

Runtime

DTFS
ICE
VFDT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 106

0

10

20

30

40

50

60

70

80

90

100

Size of TS

Ac
cu

ra
cy

Accuracy Rate

DTFS
ICE
VFDT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 106

0

100

200

300

400

500

600

Size of TS

Se
co

nd
s

Runtime

DTFS
ICE
VFDT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 106

0

10

20

30

40

50

60

70

80

90

100

Size of TS

Ac
cu

ra
cy

Accuracy Rate

DTFS
ICE
VFDT

Fig. 9. Runtime and accuracy rate for DTFS, ICE, VFDT and BOAI with 2-class, 3-class and 5-class for the 5-attribute synthetic datasets, respectively.

14298 A. Franco-Arcega et al. / Expert Systems with Applications 38 (2011) 14290–14300
In Fig. 10 we can observe the runtime and the accuracy rate ob-
tained with the 40-attribute synthetic datasets with two, three and
five classes.

DTFS and VFDT obtained similar accuracy rate for these three
synthetic datasets, and their accuracies were better than ICE’s
accuracies for the 3-class and 5-class datasets. However, DTFS
was faster than ICE and VFDT for all the datasets, for the 2-class
datasets our algorithm was 19 and 7 times faster, for the 3-class
dataset it was 14 and 11 times faster and for the 5-class dataset
it was 13 and 12 times faster, than ICE and VFDT, respectively.
4.4. Significance test

In order to evaluate if the difference among DTFS, ICE, VFDT and
BOAI is statistically significant, we applied over the 10-fold cross

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 106

0

1000

2000

3000

4000

5000

6000

7000

8000

Size of TS

Se
co

nd
s

Runtime

DTFS
ICE
VFDT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 106

0

10

20

30

40

50

60

70

80

90

100

Size of TS

Ac
cu

ra
cy

Accuracy Rate

DTFS
ICE
VFDT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 106

0

500

1000

1500

2000

2500

3000

3500

4000

Size of TS

Se
co

nd
s

Runtime

DTFS
ICE
VFDT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 106

0

10

20

30

40

50

60

70

80

90

100

Size of TS

Ac
cu

ra
cy

Accuracy Rate

DTFS
ICE
VFDT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 106

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Size of TS

Se
co

nd
s

Runtime

DTFS
ICE
VFDT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 106

0

10

20

30

40

50

60

70

80

90

100

Size of TS

Ac
cu

ra
cy

Accuracy Rate

DTFS
ICE
VFDT

Fig. 10. Runtime and accuracy rate for DTFS and VFDT with 2-class, 3-class and 5-class for the 40-attribute synthetic datasets, respectively.

A. Franco-Arcega et al. / Expert Systems with Applications 38 (2011) 14290–14300 14299
validation the paired t test (Demsar, 2006) with a confidence level
of 99.9%.

With respect to the accuracy rate, there is no statistically signif-
icant difference among DTFS, ICE, VFDT and BOAI for most of the
datasets. But, with respect to the runtime, DTFS is statistically sig-
nificant faster than ICE, VFDT and BOAI in all datasets.

5. Conclusions and future work

In this work, we have introduced a decision tree induction algo-
rithm, called DTFS, which uses a fast splitting attribute selection
for expanding nodes. Our algorithm does not require to store the
whole training set in memory and processes all the instances in
the training set. The key insight is to process one by one the in-
stances for updating the DT with each one (processing the data
in an incremental way) and to use a small number of instances
for expanding a leaf (discarding them after the node expansion).
Besides, using only a predefined number of instances for expanding
a leaf allows a fast splitting attribute selection, therefore DTFS is
able to process large datasets. This fast selection of the splitting
attributes makes DTFS stable in runtime when the number of attri-
butes increases. This fact was shown in the experimental results.

14300 A. Franco-Arcega et al. / Expert Systems with Applications 38 (2011) 14290–14300
DTFS is an algorithm that has a user-defined parameter (s),
however, our experiments showed that the behavior of our algo-
rithm with respect to this parameter is very stable, since the pro-
cessing time just varies a little and the accuracy rate is very
similar for the different values of s.

Since pruning is an expensive process, especially for large data-
sets, DTFS does not include a pruning step. However, our algorithm
does not always expand a node. The option of updating a node in-
stead of doing an expansion (case two in Section 3.2), allows DTFS
to avoid expanding homogeneous nodes which do not provide use-
ful information for separating classes, and it also avoids to build big
DTs.

In the experiments over both real and synthetic datasets our
algorithm was statistically significant faster than three of the most
recent algorithms for building DTs, ICE, VFDT and BOAI algorithms,
while DTFS maintains competitive accuracy.

As future work, we will try to speed up DTFS even more using
parallel computing or hardware implementation techniques.

Acknowledgement

Funding for the SDSS and SDSS-II has been provided by the
Alfred P. Sloan Foundation, the Participating Institutions, the
National Science Foundation, the US Department of Energy, the
National Aeronautics and Space Administration, the Japanese Mon-
bukagakusho, the Max Planck Society, and the Higher Education
Funding Council for England. The SDSS Web Site is http://
www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium
for the Participating Institutions. The Participating Institutions are
the American Museum of Natural History, Astrophysical Institute
Potsdam, University of Basel, University of Cambridge, Case Wes-
tern Reserve University, University of Chicago, Drexel University,
Fermilab, the Institute for Advanced Study, the Japan Participation
Group, Johns Hopkins University, the Joint Institute for Nuclear
Astrophysics, the Kavli Institute for Particle Astrophysics and
Cosmology, the Korean Scientist Group, the Chinese Academy of
Sciences (LAMOST), Los Alamos National Laboratory, the Max-
Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute
for Astrophysics (MPA), New Mexico State University, Ohio State
University, University of Pittsburgh, University of Portsmouth,
Princeton University, the United States Naval Observatory, and
the University of Washington.

References

Alsabti, K., Ranka, S., & Singh, V. (1998). CLOUDS: A decision tree classifier for large
datasets. In Proceedings of conference knowledge discovery and data mining
(KDD’98) (pp. 2–8).
Berzal, F., Cubero, J. C., Marn, N., & Snchez, D. (2004). Building multi-way decision
trees with numerical attributes. Information Sciences, 165(1–2), 73–90.

Chandra, B., & Paul Varghese, P. (2009). Moving towards efficient decision tree
construction. Information Sciences, 179(8), 1059–1069.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7, 1–30.

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of
of sixth international conference on knowledge discovery and data mining
(pp. 71–80). ACM Press.

Freund, Y., & Mason, L. (1999). The alternating decision tree learning algorithm. In
16th international conference on machine learning (pp. 124–133).

Gama, J., & Medas, P. (2005). Learning decision trees from dynamic data streams.
Journal of Universal Computer Science, 11(8), 1353–1366.

Gehrke, J., Ramakrishnan, R., Ganti, V. (1998). Rainforest-A framework for fast
decision tree classification of large datasets. In Proceedings of VLDB conference
(pp. 416–427).

Gehrke, J., Ganti, V., Ramakrishnan, R., & Loh, W. (1999). BOAT – Optimistic decision
tree construction. ACM SIGMOD Record, 28(2), 169–180.

Gehrke, J., Ramakrishnan, R., & Ganti, V. (2000). Rainforest – A framework for fast
decision tree construction of large datasets. Data Mining and Knowledge
Discovery, 4, 127–162.

Jin R., & Agrawal G. (2003). Efficient decision tree construction on streaming data. In
Proceedings of ninth ACM SIGKDD international conference on knowledge discovery
and data mining (pp. 571–576).

Li, Z., Wang, T., Wang, R., Yan, Y., & Chen, H. (2007). A new fuzzy decision tree
classification method for mining high-speed data streams based on binary
search trees. In Proceedings of of FAW conference (pp. 216–227).

Mehta, M., Agrawal, R., Rissanen, J. (1996). SLIQ: A fast scalable classifier for data
mining. In Proceedings of fifth international conference extending database
technology (EDBT), Avignon, France (pp. 18–32).

Nguyen U., & Tae-Choong, C. (2007). An efficient decision tree construction for large
datasets. In Proceedings of fourth international conference on innovations in
information technology (pp. 21–25).

Ouyang, J., Patel, N., & Sethi, I. (2009). Induction of multiclass multifeature split
decision trees from distributed data. Pattern Recognition, 42(9), 1786–1794.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Francisco, CA: Morgan

Kaufmann.
SDSS-Adelman-McCarthy, J., Agueros, M. A., & Allam, S. S. (2008). Data release 6.

ApJS, 175, 297.
Shafer, J.C., Agrawal, R., & Mehta, M. (1996). SPRINT: A scalable parallel classifier for

data mining. In Proceedings of 22nd international conference very large databases
(pp. 544–555).

Tan, P. N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining. Addison
Wesley.

UCI Machine Learning Repository, University of California (2008). <http://
archive.ics.uci.edu/ml>.

Utgoff, P. E. (1989). Incremental induction of decision trees. Machine Learning, 4,
161–186.

Utgoff P. E., & Brodley C. E. (1990). An incremental method for finding multivariate
splits for decision trees. In Proceedings of seventh international conference on
machine learning (pp. 58–65).

Utgoff P. E. (1994). An improved algorithm for incremental induction of decision
trees. In Proceedings of 11th international conference on machine learning (pp.
318–325).

Yang, B., Wang, T., Yang, D., & Chang, L. (2008). BOAI: Fast alternating decision tree
induction based on bottom-up evaluation. In Proceedings of PAKDD conference
(pp. 405–416).

Yoon, H., Alsabti, K., & Ranka, S. (1999). Tree-based incremental classification for
large datasets. Technical Report TR-99-013, CISE Department, University of
Florida, Gainesville, FL. 32611.

http://www.sdss.org/
http://www.sdss.org/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Decision tree induction using a fast splitting attribute selection for large datasets
	1 Introduction
	2 Related work
	3 Proposed algorithm
	3.1 Splitting attribute selection
	3.2 Building the DT
	3.3 Traversing the DT
	3.4 Classifying instances
	3.5 Time complexity analysis of DTFS algorithm
	3.6 Spatial complexity analysis

	4 Experimental results
	4.1 DTFS’ parameter
	4.2 Increasing the number of attributes
	4.3 Comparison against other DT induction algorithms for large datasets
	4.3.1 Real datasets
	4.3.2 Synthetic datasets

	4.4 Significance test

	5 Conclusions and future work
	Acknowledgement
	References

