
Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

Reducing the Number of Canonical Form Tests
for Frequent Subgraph Mining

Andrés Gago Alonso
1
, Jesús A. Carrasco Ochoa

2
, José E. Medina Pagola

1
,

and José F. Martínez Trinidad
2

1
Data Mining Department, Advanced Technologies Application Center, La Habana, Cuba

{agago, jmedina}@cenatav.co.cu
2
Computer Science Department, National Institute of Astrophysics, Optics and Electronics,

Santa María de Tonantzintla, Puebla, México
{ariel, fmartine}@inaoep.mx

Abstract. Frequent connected subgraph (FCS) mining is
an interesting problem with wide applications in real
life. Most of the FCS mining algorithms have been
focused on detecting duplicate candidates using
canonical form tests. Canonical form tests have high
computational complexity, and therefore, they affect
the efficiency of graph miners. In this paper, we
introduce novel properties to reduce the number of
canonical form tests in FCS mining. Based on these
properties, a new algorithm for FCS mining called gRed
is presented. The experimentation on real world
datasets shows the impact of the proposed properties
on the efficiency of gRed reducing the number of
canonical form tests regarding gSpan. Besides, the
performance of our algorithm is compared against
gSpan and other state-of-the-art algorithms.

Keywords. Data mining, frequent patterns, graph
mining, frequent subgraph.

Reduciendo el número de pruebas
de forma canónica para la minería

de subgrafos frecuentes

Resumen. La minería de subgrafos conexos frecuentes
es un problema interesante con amplias aplicaciones en
la vida práctica. La mayor parte de los algoritmos para
este tipo de minería detectan los candidatos duplicados
utilizando pruebas de forma canónica. Este tipo de
pruebas tienen una alta complejidad computacional, lo
cual afecta el desempeño de los algoritmos de minería
de grafos. En este artículo se proponen nuevas
propiedades para reducir el número de pruebas de
forma canónica en este tipo de minería. Basado en
estas propiedades, se propone un nuevo algoritmo
llamado gRed. Los resultados experimentales en
colecciones de datos reales muestran el impacto de las
nuevas propiedades en la eficiencia de gRed,
reduciendo el número de pruebas de forma canónicas

con respecto a gSpan. Además, el desempeño de gRed
es comparado respecto gSpan y otros algoritmos
reportados en el estado del arte.

Palabras clave. Minería de datos, patrones frecuentes,
minería de grafos, subgrafos frecuentes.

1 Introduction

Graph mining is becoming increasingly important
since advances in collecting and storing data
have produced an explosive growth in the amount
of available structured data. This situation has
boosted the necessity of new tools to transform
this big amount of complex data into useful
information or knowledge for decision makers.
The development of such tools requires
techniques that usually need long time and have
high memory requirements. Frequent connected
subgraph (FCS) mining is an example of these
techniques.

FCS mining is the process of finding
connected subgraphs that frequently occur in a
collection of graphs. Recently, this topic has been
an interesting theme in data mining with wide
applications, including mining substructures from
chemical compound databases [3], XML
documents [9], biological networks [14], and so
forth [7]. Labeled graphs can be used to model
relations among data in the aforementioned
applications because labels can represent
attributes of entities and relations among
themselves [10]. As a consequence, several
algorithms have been proposed for FCS mining in
collections of labeled graphs.

252 Andrés Gago Alonso, Jesús A. Carrasco Ochoa, José E. Medina Pagola…

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

The first algorithm for finding all frequent
subgraphs (connected or unconnected) in a
collection of labeled graphs was AGM [12]. This
algorithm was followed by FSG [15] and AcGM
[12] algorithms, for mining all frequent connected
subgraphs (FCSs). These algorithms are similar
to the original Apriori algorithm [1] for mining
frequent itemsets.

To avoid overheads of the earlier algorithms,
new pattern growth based algorithms such as
gSpan [24, 25], MoFa [3], FFSM [11], and Gaston
[17] were developed. These algorithms were
compared in a common framework [22]. In this
experimentation, the four algorithms were
competitive among themselves, although Gaston
and MoFa were the fastest and slowest
algorithms respectively, in almost all tests. On the
other hand, gSpan was the best algorithm
regarding its memory requirements since the
embedding structures, used by MoFa, FFSM, and
Gaston for frequency calculation and candidate
enumeration, could be a problem if not enough
memory is available or if the memory throughput
is not high enough.

The emergence of duplicate candidates during
the enumeration process is one of the major
problems in all recent approaches. Duplicate
candidates are treated by representing the
subgraphs with a unique code called canonical
form. The DFS code (Depth First Search code) is
an example of promising kind of canonical form
for FCS mining [17]. Candidate enumeration
strategies are commonly defined by means of
these codes, trying to avoid non-canonical forms
by performing canonical form tests which has very
high computational complexity [2].

In this paper, we introduce non-minimality
conditions, a reuse condition, and a cut property
for DFS codes, which are useful for reducing the
number of canonical form tests in FCS mining.
The non-minimality conditions allow knowing the
results of some canonical form tests in constant
time. These conditions do not remove all the
duplicate candidates; therefore, canonical form
tests are required for non-filtered candidates.
However, the reuse condition helps to reduce the
number of such expensive tests by reusing
previous test results for predicting new results
without performing a test. The cut property
provides an efficient way for taking advantage of

the reuse condition by defining boundaries
between canonical and non-canonical forms in
the candidate space. Additionally, this paper
introduces a new algorithm called gRed (graph
Candidate Reduction Miner) based on these
properties. Our algorithm uses the non-minimality
conditions to reduce the number of candidate
graphs and applies the cut property for finding the
boundaries between useful and duplicate
candidates, in an efficient way.

Preliminary results of this research were
introduced in a previous conference paper [6]. In
this conference paper, a version of gRed, which is
referenced in our research as gRed-v1, is
presented. The version gRed-v1 does not exploit
the reuse conditions for locating the above
mentioned boundaries.

The basic outline of this paper is as follows.
Section 2 provides some basic concepts. Section
3 contains the related work. The novel DFS code
properties are introduced, discussed, and proved
in Section 4, including the details of the gRed
algorithm. In Section 5, the experimental results
are presented. Finally, conclusions of the
research and some ideas about future directions
are exposed in Section 6.

2 Basic Concepts

In this section, the background and notation used
in the next sections are provided. This work is
focused on simple undirected labeled graphs.
Henceforth, when we refer to graphs we assume
this kind of graph. The formal definition of this
type of graph is as follows.

A simple undirected labeled graph is a -tuple,

 ⌌ ⌍, where is a set whose elements

are called vertices, {* +| } is a set

whose elements are called edges, is the set of
labels and is a labeling function for
assigning labels to vertices and edges.

Let ⌌ ⌍ and ⌌ ⌍ be

two graphs having the same set of labels and
the same function . We say that is a subgraph

of if and . In this case, we use

the notation .
In graph mining over collections of labeled

graphs, the frequency of the candidates is
calculated using subgraph isomorphism tests. We

Reducing the Number of Canonical Form Tests for Frequent Subgraph Mining 253

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

say that is an isomorphism between
⌌ ⌍ and ⌌ ⌍ if
is a bijective function such that preserves vertex

labels (that is () (())),
preserves edges and edges labels (that is
 * + * () ()+ and (* +)
 (* () ()+).

A subgraph isomorphism from to is an

isomorphism from to a subgraph of . In this

case we will say that holds .
We say that () is a path in a

graph ⌌ ⌍, if for all ,

and for each pair of consecutive vertices and

 , * + . In this case we say that and
 are connected by . If and , we

say that is a cycle. A graph is connected if

each pair of vertices in is connected by a path.
Trees are a special kind of graph. A tree is a

connected graph without cycles. A tree is called a
rooted tree if one vertex has been selected as
root; in this case, the edges have a natural
orientation starting from the root. In graph theory,
a tree is a graph in which any two vertices are
connected by exactly one path [5].

Let ⌌ ⌍ be a rooted tree with

root and let be two vertices in . We
say that is the parent of if the unique path

from to passes through and * + ; in

this case, we also say that is a child of .

Let * | |+ be a collection of

labeled graphs and let be a predefined support
threshold. The support of a graph in is

defined as the number of graphs such that

 holds . We use the notation () to refer to
the support of in the collection . A graph

occurs frequently in the collection if () .
Frequent connected subgraph (FCS) mining is the
process of finding connected subgraphs that
occur frequently in a collection of graphs.

3 Related Work

Algorithms for FCS mining have been classified,
according to the candidate enumeration strategy,
in two classes: the Apriori based algorithms and
the pattern growth based algorithms [7]. Previous
comparative studies have shown that the second

class of algorithms has better performance than
the first ones [17, 22].

One of the major problems in all pattern
growth based algorithms is the emergence of
duplicate candidates during the enumeration
process. A duplicate candidate is one that has
already been considered in a previous step and
appears again during the search. In pattern
growth based algorithms, duplicate candidates
are treated using unique sequential graph
representations called canonical forms or unique
codes. The candidate enumeration strategies are
always defined by means of these codes trying to
avoid non-canonical forms. A non-canonical form
represents a duplicate candidate since its
corresponding canonical form should be already
considered in a previous step.

None of the existing candidate enumeration
strategies remove all non-canonical forms.
Therefore, a canonical form test in each
candidate is required. Unfortunately, a canonical
form test is equivalent to the isomorphism
problem (that is a NP-Complete problem);
therefore, its computational complexity is very
high [2].

3.1 Brief of Pattern Growth Based
Algorithms

The most commonly cited pattern growth based
algorithms for FCS mining are gSpan [24],[25],
MoFa [3], FFSM [11], and Gaston [16]. In
addition, there are other works on this paradigm
but all of them are based on at least one of the
aforementioned four algorithms.

The gSpan algorithm was the first pattern
growth based algorithm for FCS mining [24]. It
introduced a promising canonical form for labeled
graph representation called DFS code. A DFS
code is built during a depth first search traversal
of a graph.

The gSpan scheme has been used as a
starting point for designing more efficient and
better adapted algorithms. For example, a data
structure called ADI was used for processing big
collections of graphs [20]. An algorithm called
Edgar improved the gSpan implementation
introducing code optimization techniques and a
data structure for storing the candidate
embeddings [21]. In the FSP algorithm, novel

254 Andrés Gago Alonso, Jesús A. Carrasco Ochoa, José E. Medina Pagola…

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

properties of the search space are used to
improve the graph and subgraph isomorphism
tests [8].

MoFa uses canonical forms based on breadth
first search graph traversals [2, 3]. This algorithm
provides several functionalities for applications in
molecular data collections; nonetheless, it has
shown a poor behavior in previous comparative
studies [22].

FFSM is a hybrid algorithm combining ideas of
Apriori and pattern growth based algorithms [11].
A special kind of canonical forms based on
adjacency matrices is used for representing graph
candidates. Recently, a new algorithm based on
FFSM, called FSMA, was presented [23]. FSMA
uses incidence matrices instead adjacency
matrices; thus, it reaches some improvements in
the canonical form tests.

Gaston is one of the most efficient algorithms
for FCS mining [16]. Several previous results,
obtained for sequence and tree mining, were
exploited to improve the search of paths and trees
in Gaston. Next, frequent paths and trees are
used to generate graphs with cycles.
Nevertheless, generating graph with cycles does
not reach the efficiency of generating paths and
trees.

In conclusion, pattern growth based algorithms
have shown great advances in the last years.
However, almost all algorithms require exhaustive
canonical form tests to detect duplicates in each
candidate; only Gaston improves duplicate
detection for path and tree mining. Therefore,
duplicate detection is still a challenging problem.
In this paper, we propose novel properties of the
DFS code to reduce the number of canonical form
tests in FCS mining.

3.2 DFS Codes

A labeled graph can be represented by a unique
sequence of edges called minimum DFS code.
This kind of canonical representation is based on
DFS graph traversals and it was introduced in
gSpan [24]. This section includes some concepts
about DFS codes that are required for
understanding our work.

Let ⌌ ⌍ be a connected graph and
suppose that a DFS traversal in is performed. A

DFS tree ⌌ ⌍ of is the rooted

tree built as follow: the starting vertex in the
traversal is the root of , is a spanning tree of

() and contains the edges of that were
used for the DFS traversal ().

A connected graph ⌌ ⌍ can have
many different DFS trees because there is more
than one DFS traversal. Each DFS tree defines
a unique order among all the vertices in .
Therefore, each vertex could be numbered
according to this DFS order.

Assuming | |, the root of is numbered
with index and the last vertex in the DFS

traversal is numbered with index . The last

vertex is also called rightmost vertex of . The
rightmost path of is defined as the straight path
from the root to the rightmost vertex.

Each edge * + is coded as a tuple

according to the DFS tree . Suppose that the
vertices and have indices and ,
respectively, according to the DFS order. Let

 (), () and () () () be the

labels of , and , respectively. Without loss of

generality, assume that . The tuple of e
regarding is calculated as in (1).

 () {
(())

(())
 (1)

Thus, each edge can be coded as a

tuple, ()
 , where *

 + and is the set of labels of .A linear order
among the tuples of the set

 could be
defined as follows. If () and
 (), if and only if one of
the following statements is true:

- (()),
- (()),
- ,
- ,

- .

The lexicographic order is used to compare

the tuples and regarding the last three
components in each tuple. This order is
determined comparing the third component as
first priority, next the fourth component, and finally
the fifth one.

Reducing the Number of Canonical Form Tests for Frequent Subgraph Mining 255

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

The DFS code of the graph ⌌ ⌍
regarding the DFS tree is a tuple sequence
constructed using . All the tuples obtained from

the edges in are sorted using to build this

sequence. Thus, a graph can be coded as a

sequence of tuples, denoted as (), using
one of its DFS trees.

A new order among tuple sequences can

be built using . Let () and
 () be two DFS codes (or two

tuple sequences), where
 for

 and ; if one of the
following conditions, (2) or (3), is true.

 and (2)

 and , . (3)

The order is called DFS lexicographic order
and it is used to define a unique DFS code for
representing each graph. The minimum DFS code
of a graph is defined as the minimum tuple

sequence according to among all DFS codes

of .

3.3 Summary of gSpan

Let () be a minimum DFS code

and let () be a DFS code,

where
 for and

 .
The code is a child of if the tuple connects

the rightmost vertex of with another vertex in the

rightmost path of (backward extension), or it
introduces a new vertex connected from a vertex
of the rightmost path of (forward extension). In

this case, is called the parent of and the tuple

 is called a rightmost path extension of s and it is
denoted as .

The search space in gSpan is then defined as
a rooted tree consisting of nodes representing
DFS codes and the relation between parent and
child node complies with the aforementioned
parent/child relationship. The root of the search
space is the degenerated DFS code having zero
tuples. The DFS traversal over the search space
follows the DFS lexicographic order among all
DFS codes.

In general, gSpan works as follows. First, all
frequent and minimum DFS codes with only one

edge are identified. Next, the search space is
traversed in a depth first search order, and for
each frequent and minimum DFS code found
during the traversal, all its occurrences in the
graph collection are located for computing the
support of its candidate extensions. Whenever an
extension turns out to be non-frequent or non-
minimum, it does not need to be considered for
further extension, therefore it can be pruned.

In gSpan, the duplicate candidates are the
non-minimum DFS codes. A canonical form test,
for a DFS code , verifies if is the minimum DFS
code of the corresponding graph. Instead of
calculating the minimum DFS code of from all
the possible DFS codes, picking up the smallest
one and comparing it against , gSpan follows a
heuristic search designed using the DFS
lexicographic order. Whenever a prefix of a DFS
code is generated and it is less than , then is
non-minimum and the test concludes.

Some canonical form tests are avoided in
gSpan using a pre-pruning stage: each backward
extension with destination vertex , of a minimum

DFS code , should be no smaller than any

forward edge from in [25]. This pruning is

performed during the candidate enumeration
(before the duplicate detection process).

In order to compute the support for each
candidate code, gSpan stores a TID list. A TID list
(Transaction ID list) contains the identifier of each
graph in the collection holding the corresponding
subgraph. TID lists are created during the
enumeration process and they are used for
determining all possible children of , through
subgraph isomorphism tests that allow to find all
the embeddings. The length of each TID list is the
support of its corresponding candidate.

4 Frequent Connected Subgraph
Mining

In this section, we introduce some novel
properties of the DFS code, which are useful for
reducing the number of duplicate candidates as
well as the number of canonical form tests in FCS
mining. This paper shows the results of a first
work that proposes reusing previous test results
for improving duplicate candidate detection.

256 Andrés Gago Alonso, Jesús A. Carrasco Ochoa, José E. Medina Pagola…

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

Moreover, we define boundaries between useful
and duplicate candidates, which can be efficiently
detected using the cut property. Finally, a new
FCS mining algorithm called gRed is proposed
showing the usefulness of these properties.

4.1 Novel Properties of DFS Codes

Suppose that () is a minimum
DFS code representing a labeled graph
 ⌌ ⌍, where | | and | | . Let ()
be the set of tuples representing the rightmost
path extensions of that emerge when gSpan
traverses a graph collection . This set can be
partitioned into several subsets

 () () ()

 () (),

where () contains the backward rightmost path

extensions of with destination at vertex (the

vertex with index), and () is the forward
extension set from vertex . For each vertex in

the rightmost path, , the tuple
represents the forward edge from to its
consecutive vertex in the rightmost path. The
notation is a tuple representing the reverse

edge of the tuple ; that is, if () then

 () for each
 .

For example, Fig. 1 (A) shows the DFS tree of the
code

 ()()()

()()()

();

the rightmost path of is (). The fourth
component of each tuple (that is the edge label) is
s t t “−” f r in i ating an un fin r i nti al
labels. In Fig. 1 (B), the backward extension sets

 () *()+,

 () *()+,

are shown; and in Fig. 1 (C), the forward
extension sets

 () *()+,
 () *() ()+,
 () *() ()+,

are shown.

(A) (B)

(C)

Fig. 1 Example of a DFS tree (A), its partitions of the

backward extensions (B) and forward extensions (C)

The following two theorems are called non-
minimality conditions for the children of . These
theorems allow knowing the result of some
canonical form tests without performing the
exhaustive procedure.

Theorem 1. Let s be a minimum DFS code, let
be a vertex in the rightmost path of and suppose

that . If () and , then

 is a non-minimum DFS code.

Proof. Let be an integer number such that

 . The tuples and start from and they

represent forward edges in . Therefore, we can

perform a DFS traversal visiting first and then
or vice versa. If is visited immediately before ,
the resulting DFS code has the following format

Reducing the Number of Canonical Form Tests for Frequent Subgraph Mining 257

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

 (),

where is with another subindices for each

 . The codes and have the same prefix

 and we are considering that
 ; therefore, by the condition (2) of the
DFS lexicographic order. Therefore, we conclude
that is a non-minimum DFS code.
A similar result for backward extensions is
showed in the following theorem.

Theorem 2. Let be a minimum DFS code, let
be a vertex in the rightmost path of . If ()
and , then is a non-minimum
DFS code.

Proof. As in the proof of Theorem 1, let be the

integer number such that . We can perform
a DFS traversal visiting first and then or

vice versa. If is visited immediately before ,
the resulting DFS code has the following format

 (
),

The codes and have the same prefix
 and we assume that ;
therefore, . Thus, we conclude that is a
non-minimum DFS code.

The statement of Theorem 2 is quite similar to
the pre-pruning stage of gSpan (see Section 3.3).
However, it is important to notice that Theorem 2
only proposes to compare regarding unlike

gSpan where each backward extension should

be compared against any forward edge from .
Let ̅̅ ̅̅ () be the set obtained from () by

removing the extensions whose generated DFS
codes, according to Theorems 1 and 2, are non-

minimum. In ̅̅ ̅̅ () could exist other extensions
whose generated DFS codes are non-minimum.
The following theorem provides a method to
reuse previous calculations for predicting the
results of other canonical form tests; therefore, it
is called reuse condition.

Theorem 3. Let be a minimum DFS code, let
be a vertex in the rightmost path of and let be

one of the sets () or (). If ; then, the
following statements are true

1. if is a minimum DFS code and ,

then is a minimum DFS code;
2. if is a non-minimum DFS code and

 , then is a non-minimum DFS code.

Proof. Let us prove each case separately.

In the first statement, we have that is a
minimum DFS code and . Suppose that
is a non-minimum DFS code, then there is at least
one code () such that
 . Using the definition of the DFS lexicographic
order , there is an integer , , such

that for all , and . As it can

be noticed, because is a minimum
DFS code. Thus, by the condition (2), .

Since and start from the same vertex, we

can replace the edge representing in by the
edge . Assume is the code obtained when

replacing by in ; this is a valid code for the

graph coded by and we have .
Using the condition (3), . Then,
 is a non-minimal child of , representing a
contradiction. Therefore, the initial assumption
(is a non-minimum DFS code) must be false.
Thus, we conclude the proof of the first statement.

In the second statement, we have that is

a non-minimum DFS code and . Then, there

is at least one code () such
that . Let be the integer such that

 , for all , and .
Thus, by the condition (2), we have (it

does not contradict the fact that is a minimum
DFS code since and represent different

graphs). Since and start from the same vertex,

we can replace the edge representing in by
the edge . The resulting code (assume it is) is

a valid DFS code for the graph coded by and

we have . Therefore, is a
non-minimum DFS code.

The tuples in the set ̅̅ ̅̅ () can be sorted

according to ; thus, the subsets in the
aforementioned partition can be placed in
ascending order as

 ̅ () ̅ () ̅ () ̅ (),

where each ̅ () (or ̅ ()) is obtained from
 ()(or ()) by removing the extensions whose
generated DFS codes, according to Theorems 1

258 Andrés Gago Alonso, Jesús A. Carrasco Ochoa, José E. Medina Pagola…

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

and 2, are non-minimum. The tuples inside ̅ ()
(or ̅ ()) are sorted in ascending order using the
order in labels . Henceforth, this arrangement in

 ̅̅ ̅̅ () is assumed.
Based on Theorem 3, the boundaries between

the extensions producing minimum and non-
minimum DFS codes can be located. The
following result called cut property shows such
allocation.

Theorem 4. Let be a minimum DFS code, let
be a vertex in the rightmost path of and let be

one of the sets () or (). Suppose that is

sorted in ascending order according to . If there

are extensions in that produce non-minimum
DFS codes then they are at the beginning of .
Besides, if there are extensions that produce
minimum DFS codes they are at the end of .

Proof. If all extensions in produce non-
minimum DFS codes or all of them produce
minimum DFS codes then the corollary is true.
Therefore, suppose that there are both kinds of
extensions in . Let ̂, ̌ be two extensions
such that ̂ produces a non-minimum code and ̌
produces a minimum code. It is easy to see that
 ̂ ̌, because in the opposite case ̌ should
be a non-minimum code (see Theorem 3),
contradicting the hypothesis. Therefore, we obtain
that any extension in producing a non-minimum
code is before any other one producing a
minimum code.

The cut property states that each set () can
be partitioned into two disjoint subsets, ()

 ̂ () ̌ (), where the extensions in ̂ ()
produce non-minimum codes, the extensions in

 ̌ () produce minimum codes and the tuples in

 ̂ () are before of the ones in ̌ () regarding .
In a similar way, each set () can be partitioned

as () ̂ () ̌ ().

Thus, the set () ̅̅ ̅̅ () of all extensions
producing minimum codes is represented by
means of the second subsets of these
partitions (4).

 () ̌ () ̌ ()

 ̌ () ̌ ().
(4)

These proposed properties are important for
FCS mining when candidates are represented by

DFS codes since the extensions producing non-
minimum codes are eliminated because they
represent duplicate candidates. The following

sections show how these results could be used in
FCS mining.

4.2 The gRed Algorithm

The properties introduced in Section 4.1 can be
used to improve the mining process of gSpan and
all algorithms based on it. In this section, a new
algorithm called gRed based on these properties
is introduced. The pattern growth strategy of
gRed is shown in Algorithm 1 and it is explained
in this section.

Procedure gRed-Growth(, , ,)

Input: - a minimum DFS code

(representing a frequent subgraph),

 - collection of graphs, -

support threshold.

Output: - mining results

1 * +;
2 ̅̅ ̅() The set of tuples e such

that the extension takes

place in and is not filtered
by non-minimality conditions

(pre-filtering);

3 Remove from ̅̅ ̅() the infrequent
extensions;

4 () The set of all extensions

producing minimum codes which is

calculated directly from ̅̅ ̅()
using the cut property and

binary searches (post-

filtering);

5 foreach extension () do

6 gRed-Growth(, , ,);
7 end

Algorithm 1. Pseudo-code of the gRed pattern growth

approach

Let be a minimum DFS code representing a

FCS in a graph collection . Suppose that
| ()| , then obtaining the set of all
extensions producing minimum DFS codes,
 (), through the procedure proposed by the

Reducing the Number of Canonical Form Tests for Frequent Subgraph Mining 259

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

gSpan scheme would require exhaustive
canonical form tests, since each candidate must
be checked. Henceforward, it will be shown that
the number of such tests could be reduced.

Taking into account that the non-minimality
conditions can be checked in constant time, they
could be executed inside the pattern growth
process. Thus, the candidates that need to be
tested are obtained directly from the extension set

 ̅̅ ̅̅ (). This process is called pre-filtering (see
line 2 of Algorithm 1). It is important to remember

that | ̅̅ ̅̅ ()| ̅ .

The cut property is used to obtain ()

directly from ̅̅ ̅̅ () having a procedure more
efficient than the one used in the gSpan scheme.
This procedure called post-filtering (see line 4 of
Algorithm 1) will be described as follow.

Suppose that | ̅ ()| , , | ̅ ()| ,

| ̅ ()| , , | ̅ ()| , then

∑ ∑ ̅ , (5)

where ∑ sums over the vertices in the rightmost
path of s.

The gSpan scheme sorts the extensions in
 () according to . This sorting is maintained
during the pattern growth process in line 2 of
Algorithm 1. This fact is not exploited in the
gSpan scheme. Theorem 5 shows a novel
approach to reduce the number of canonical form
tests (see the proof of this theorem).

Theorem 5. Let be a minimum DFS code, let
be a vertex in the rightmost path of and let be

one of the sets ̅ () or ̅ () and suppose that
| | . Then, the number of exhaustive

canonical form tests required to separate into

 ̂ ̌ (notations clarified in Section 4.1) is at most
 (| |) .

Proof. If | | , only one test is required and the
theorem is true.

Let () be the number of tests required for

separating a set with elements (| |).

Let be the median of regarding the order
 and let * | + and *
 | + be two sets containing the other

elements in . A canonical form test is performed

for .
First case: Suppose that is a minimum

DFS code. Then, the first statement of Theorem 3

ensures that the DFS codes obtained from the
extensions of .

Second case: Suppose that is a non-
minimum DFS code. Then, the second statement
of Theorem 3 guarantees that the DFS codes
obtained from the extensions of are also non-
minimum codes.

In both cases, more tests to separate the
remaining sets or respectively are required.
The cardinality of each remaining sets is always
less or equal than ⌊ ⌋.

In brief, a problem with size is reduced to the
same problem but with size less or equal than
⌊ ⌋. It is important to notice that for this
reduction only one test is performed. Therefore,
the inequality () (⌊ ⌋) is true and
 () . This recurrent inequality can be easily
solved using the known algorithm analysis tools
[4]. Thus, the proof is concluded.

Let be the number of exhaustive canonical

form tests to obtain () from ̅̅ ̅̅ (). Using
Theorem 5, we conclude that

 ∑ (()) ∑ (()) , (6)

where ∑ sums over the vertices in the rightmost

path of . Let be the number of vertices in the

rightmost path of . Since () is a convex
function [18] in the interval ,), the inequality
(6) is transformed in

 (
∑ ∑

) , (7)

The argument of () in (7) can be simplified
using (5); Finally, we obtain

 (
 ̅

) , (8)

The theoretical result showed in (8) states an
upper bound of the number of canonical form
tests required to obtain useful extensions of .
This bound depends on two parameters the

number of extensions ̅ (this number depends on
the graph collection features such as density of
edges, number of labels, etc.) and the length of
the rightmost path of . As it can be noticed, the

parameter ̅ is affected by a () function;
therefore, the proposed strategy reduces the

260 Andrés Gago Alonso, Jesús A. Carrasco Ochoa, José E. Medina Pagola…

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

dependence of the graph collection features
regarding the gSpan scheme.

The procedure gRed-Growth of Algorithm 1
recursively generates all candidate codes
(graphs) starting from a DFS code representing
a FCS. The pre-filtering and post-filtering
processes are used to reduce the number of
canonical form tests. In the proof of Theorem 5,
we can appreciate the process for performing a

binary search. For each partition subset ̅ () (or

 ̅ ()) of ̅̅ ̅̅ (), a binary search is performed for
filtering duplicate candidates (post-filtering). The
post-filtering stage is the main difference of gRed
and the previously published version gRed-v1 [6],
since gRed-v1 does not use binary search for
removing duplicates.

Procedure gRed(, ,)

Input: - collection of graphs, -
support threshold.

Output: - mining results

1 Remove infrequent vertices and

edges from ;
2 the set of all frequent

vertices in ;
3 the set of all frequent edges

in (DFS codes with only one

edge);

4 foreach DFS code do
5 Initialize the TID list s.L by

the graphs which contains the

edge of s;

6 gRed-Growth(, , ,);
7 ;
8 if | | then break;
9 End

Algorithm 2. Pseudo-code of gRed

Completing the description of gRed, the
procedure gRed-Growth is invoked from the main
procedure (see Algorithm 2). This main procedure
starts by removing all infrequent vertices and
edges. Next, the procedure gRed-Growth is
invoked for each frequent edge (DFS code with
size) for traversing the search space in a depth-
first way. After a frequent edge has been
processed, the edge is dropped from the graphs

in the collection ; thus, it will not be used as
possible extension in the next iterations.

It is important to highlight that the pre-filtering
and post-filtering processes introduced by gRed
over the gSpan scheme can be also introduced in
any other algorithm or implementation for FCS
mining using DFS codes.

5 Experimental Results

In order to evaluate the usefulness of the
proposed properties to reduce the number of
canonical form tests, we compared gRed against
gSpan and the already published version of gRed
called gRed-v1 [6]. The algorithms considered as
improvements of the gSpan scheme (for example
ADI [20], Edgar [21], and FSP [8]) are not
included in the comparison, because they use
DFS codes; therefore, the pre-filtering and post-
filtering processes introduced in gRed could be
also adapted in such algorithms to reduce the
number of canonical form tests. The usefulness of
the novel properties introduced in this paper could
be illustrated without including these algorithms in
the comparison.

Additionally, we include a comparison of gRed
against gSpan, MoFa, FFSM, and Gaston
regarding their runtimes and memory
requirements. These algorithms are the most
commonly referenced and the most successful in
previous comparative studies [16,22]. They were
implemented in the common Java framework
which is distributed under GNU license [22]. The
implementation of gRed was developed in this
framework.

All the experiments were done using an Intel
Core 2 Duo PC at 2.2 GHz with 2 GB of RAM.
The SUN Java Virtual Machine (JVM) 1.5.0 was
used to run the algorithms.

5.1 Collections of Graphs

The biochemical data collections, specifically the
molecular datasets, constitute one of the main
application fields for graph mining. Therefore, this
kind of collections has been commonly us d to
evaluate the performance of FCS mining
algorithms.

Reducing the Number of Canonical Form Tests for Frequent Subgraph Mining 261

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

The PTE collection is the smallest dataset
(according with the number of graphs) considered
in this work; it contains only graphs
representing molecules used in the predictive
toxicological evaluation challenge [19]. In spite of
its small size, PTE has a big amount of FCSs; for
example, it has FCSs using of the
collection size as support threshold.

In this work, we use two medium size
collections CAN2DA99
(http://dtp.nci.nih.gov/docs/cancer/cancer
_data.html) and HIV
(http://dtp.nci.nih.gov/docs/aids/ aids_data.html).
CAN2DA99 contains the graph representation of
 molecules discovered in carcinogenic

tumors and HIV includes the description of
molecular structures of the human
immunodeficiency virus. NCI
(http://cactus.nci.nih.gov/ncidb2/download. html)
is the biggest dataset (graphs) used in
our experiments. This dataset contains molecules
from several sources.

5.2 Experiments

In our experiments we used low support
thresholds to evaluate the performance of the
algorithms, because these thresholds are very
important in data mining applications [7].
Moreover, there are some applications like
classification and clustering where frequent
complex graph structures are important, and
these complex structures can only be found with
low support thresholds [10]. Additionally, high
thresholds are commonly fulfilled by connected
subgraphs with small size regarding the number
of vertices, edges, or cycles. Moreover, almost all
recent algorithms achieve good execution times
for high support thresholds; and the differences
among algorithm performances are more
distinguishable for low support thresholds.

The experiments in this paper are conceived
for evaluating the usefulness of the pre-filtering
and post-filtering stages. However, the usefulness
of non-minimality was presented in the previously
published version of gRed-v1 [6]. In this sense,
the number of duplicates in all cases was
significantly reduced by the pre-filtering stage; for
example, in PTE using of the collection size

as support threshold, this stage reduced almost
 of the duplicates regarding gSpan.

Fig. 2 The number of canonical form tests

performed by gRed and gSpan in datasets PTE,
CAN2DA99, HIV, and NCI varying the support
threshold

The first experiment of this paper is conceived
for evaluating the usefulness the cut property in
the post-filtering stage of gRed. The algorithms
gSpan, gRed-v1, and gRed use DFS codes to
represent graph candidates during the mining
process, unlike MoFa, FFSM and Gaston which

262 Andrés Gago Alonso, Jesús A. Carrasco Ochoa, José E. Medina Pagola…

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

use different approaches. Therefore, in this
experiment, the algorithms gRed, gSpan, and
gRed-v1 were compared regarding the number of
exhaustive canonical form tests (see Fig. 2). As it
can be seen, the number of such expensive tests
was reduced by gRed in all cases.

Additionally, we included a performance
comparison involving gRed, gRed-v1, gSpan,
MoFa, FFSM and Gaston. This comparison
includes the evaluation of runtimes. The runtime
for the algorithms was recorded varying the
support threshold in the four datasets (see Fig. 3).
In these experiments, Gaston was unable to
complete the execution for some low supports
threshold in CAN2DA99, HIV, and NCI due to
memory requirements. For the same reason,
FFSM and MoFa were unable to process NCI for
the evaluated support thresholds. Moreover, the
runtime of MoFa was truncated in several times
for highlighting the scores of the others
algorithms.

As we can see, gRed beats gSpan and gRed-
v1 in all tests. It is known that much of runtime of
gSpan and gRed-v1 is spent by subgraph
isomorphism tests during the candidate
enumeration process [6]. Since gRed also uses
this kind of tests, they had similar behavior.
However, gRed showed better performance in
PTE, since the number of canonical form tests
was reduced considerably, through the use of the
properties introduced in Section 4.1 (see Fig. 2).

Gaston was unable to complete the execution
for low support thresholds (less than in

CAN2DA99, less than in HIV, and less than

 in NCI) due to its high memory requirements.
However, in the smallest collection (PTE), the
best runtimes were achieved by Gaston. The
worst runtimes were achieved by FFSM and
MoFa while the best runtimes on the large
collections were obtained by gRed and gSpan for
the evaluated support thresholds.

6 Conclusions

In this paper, two non-minimality conditions, a
reuse condition and a cut property of DFS codes,
which are useful for graph mining, were
introduced. The non-minimality conditions allow
the reduction of the number of candidates. The

Fig. 3. Runtime with datasets PTE, CAN2DA99, HIV, and
NCI varying the support threshold

Reducing the Number of Canonical Form Tests for Frequent Subgraph Mining 263

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

reuse condition enables to reduce the number of
canonical form tests by reusing previous test
results. Besides, the reuse condition allows
defining boundaries between canonical and non-
canonical forms in the candidate space by means
of the cut property.

Additionally, a new algorithm (gRed) for FCS
mining using the proposed properties was
introduced. Theoretical analysis and experimental
results show the good performance of our
proposal.

We compared gRed against gSpan and other
commonly referenced algorithms. The
experimentation showed that our proposal
overcomes gSpan in all tests reducing
significantly the number of canonical form tests.
Moreover, gRed achieved better runtimes than
the other tested algorithms when graph
collections were large. The usefulness of the
novel DFS code properties for graph mining was
corroborated, showing that these properties allow
reducing the number of duplicate candidates, as
well as the number of canonical form tests.

It is important to highlight that this paper
shows the results of a first work that proposes
reuse conditions to improve duplicate candidate
detection in graph mining.

In this research, we have shown that DFS
codes have not been sufficiently studied and new
properties can be found to improve the mining
process. Our proposal showed that the time spent
in duplicate candidate detection can be reduced
during the mining process.

As future work, we are going to develop hybrid
approaches combining gRed with fast evaluation
strategies for reducing the cost of isomorphism
tests during the mining process in order to reach
better runtimes.

References

1. Agrawal, R. & Srikant, R. (1994). Fast Algorithms

for Mining Association Rules. In J.B. Bocca, M.
Jarke & C. Zaniolo (Eds.), 20

th
 International

Conference on Very Large Data Bases, Santiago
de Chile, Chile, 487–499.

2. Borgelt, C. (2006). Canonical Forms for Frequent

Graph Mining. In R. Decker & H.J. Lenz (Eds.),
30th Annual Conference of the Gesellschaft für
Klassifikation, Berlin, Germany, 337–349.

3. Borgelt, C. & Berthold, M.R. (2002). Mining

Molecular Fragments: Finding Relevant
Substructures of Molecules. IEEE International
Conference on Data Mining, Maebashi, Japan, 51-
58.

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L. &
Stein, C. (2001). Introduction to Algorithm (Second

edition). Cambridge, Mass.: MIT Press.

5. Diestel, R. (2005). Graph Theory (Third edition).

Berlin: Springer.

6. Gago, A., Medina, J. E., Carrasco-Ochoa, J. A.
& Martínez-Trinidad, J.F. (2008). Mining Frequent

Connected Subgraphs Reducing the Number of
Candidates. Machine Learning and Principles and
Knowledge Discovery in Databases. Lecture Notes
in Computer Science, 5211, 365–376.

7. Han, J., Cheng, H., Xin, D. & Yan, X. (2007).

Frequent Pattern Mining: Current Status and
Future Directions. Data Mining and Knowledge
Discovery, 15(1), 55–86.

8. Han, S., Wee, K.N. & Yu, Y. (2007). FSP:

Frequent Substructure Pattern Mining. 6th
International Conference on Information,
Communications and Signal Processing,
Singapore, 1–5.

9. Hernández, J.I. (2009). Reactive Scheduling of

DAG Applications on Heterogeneous and Dynamic
Distributed Computing Systems, Abstract of PhD
Thesis. Computacion y Sistemas, 13(2), 221–237.

10. Hossain, M.S. & Angryk, R A. (2007). GDClust: A

Graph-based Document Clustering Technique. 7th
IEEE International Conference on Data Mining
Workshops, Nebraska, USA, 417–422.

11. Huan, J., Wang, W. & Prins, J. (2003). Efficient

Mining of Frequent Subgraph in the Presence of
Isomorphism. Third IEEE International Conference
on Data Mining, Florida, USA, 549–552.

12. Inokuchi, A., Washio, T. & Motoda, H. (2000). An

Apriori based Algorithm for Mining Frequent
Substructures from Graph Data. 4

th
 European

Conference on Principles of Data Mining and
Knowledge Discovery, Lyon, France, 13–23.

13. Inokuchi, A., Washio, T., Nishimura, K. &
Motoda, H (2002). A Fast Algorithm for Mining
Frequent Connected Subgraphs (RT0448). Japan:

IBM Research.

14. Koyuturk, M., Grama, A. & Szpankowski, W.
(2004). An Efficient Algorithm for Detecting

Frequent Subgraphs in Biological Networks.
Bioinformatics, 20(1), 200-207.

15. Kuramochi, M. & Karypis, G. (2001). Frequent
Subgraph Discovery. IEEE International

264 Andrés Gago Alonso, Jesús A. Carrasco Ochoa, José E. Medina Pagola…

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

Conference on Data Mining, California, USA, 313–
320.

16. Nijssen, S. & Kok, J.N. (2004). A Quickstart in

Frequent Structure Mining can Make a Difference.
Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining,
Washington, USA, 647–652.

17. Nijssen, S. & Kok, J. (2006). Frequent Subgraph

Miners: Runtimes Don't Say Everything. In T.
Gartner, G. C. Garriga & T. Meinl, (Eds.), Fourth
Workshop on Mining and Learning with Graphs,
Berlin, Germany, 173–180.

18. Rudin, W. (1976). Principles of Mathematical

Analysis (3
rd

 edition). New York: McGraw-Hill.

19. Srinivasan, A., King, R.D., Muggleton, S.H. &
Sternberg, M.J.E. (1997). The Predictive

Toxicology Evaluation Challenge. 15
th

 International
Joint Conference on Artificial Intelligence, Nagoya,
Japan, 1, 4–9.

20. Wang, C., Wang, W., Pei, J., Zhu, Y. & Shi, B.
(2004). Scalable Mining of Large Disk-based

Graph Databases. Tenth ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, Washington, USA, 316–325.

21. Worlein, M., Dreweke, A., Meinl, T., Fischer, I. &
Philippsen, M. (2006). Edgar: the Embedding-

based Graph Miner. T. Gartner, G. C. Garriga & T.
Meinl, (Eds.), 4

th
 International Workshop on Mining

and Learning with Graphs, Berlin, Germany, 221–
228.

22. Worlein, M., Meinl, T., Fischer, I. & Philippsen,
M. (2005). A Quantitative Comparison of the

Subgraph Miners Mofa, gSpan, FFSM, and
Gaston. Knowledge Discovery in Databases:
PKDD 2005. Lecture Notes in Computer Science,
3721, 392–403.

23. Wu, J. & Chen, L. (2008). Mining Frequent

Subgraph by Incidence Matrix Normalization.
Journal of Computers, 3(10), 109–115.

24. Yan, X. & Han, J. (2002). gSpan: Graph-Based

Substructure Pattern Mining. IEEE International
Conference on Data Mining (ICDM 2002),
Maebashi, Japan, 721–724.

25. Yan, X. & Han, J. (2002). gSpan: Graph-Based
Substructure Pattern Mining (UIUCDCS-R-2002-
2296). Illinois, USA: University of Illinois at Urbana-
Champaign.

Andrés Gago Alonso received

his B.S. degree in Computer
Science from the Havana
University in 2004. He holds a
M.Sc. degree in Mathematics
from the same university in
2007. He completed his Ph.D.
Degree in Computational
Sciences at the National Institute

of Astrophysics, Optics and Electronics (INAOE) in
January 2010. His research interests include but are
not restricted to knowledge discovery and data mining
in graph-based content. Currently, he works as a
fulltime researcher in the Advanced Technologies
Application Centre (CENATAV), Cuba.

Jesús Ariel Carrasco Ochoa

received his Ph.D. in Computer
Science from the Center for
Computing Research of the
National Polytechnic Institute (CIC-
IPN), Mexico, in 2001. He works as
a fulltime researcher at Computer
Science Department of the National
Institute for Astrophysics, Optics
and Electronics (INAOE) of Mexico.

His current research interests include Logical
Combinatorial Patter Recognition, Data Mining, Feature
and Prototype Selection, Document Analysis, Fast
Nearest Neighbor Classifiers and Clustering.

José Eladio Medina Pagola

received his B.S. in Cybernetic
Mathematics from the Havana
University in 1977 and his
Ph.D. from the Higher
P lyt hni Institut “J sé A.
 h v rría” (ISPJA) in 1996.
His research interests include
but not restricted to knowledge
discovery and data mining,
association rules, clustering,

computational linguistic, information retrieval and text
mining. He is currently a Senior Researcher and
Research Deputy Director of the Advanced
Technologies Application Centre (CENATAV), Cuba.

http://www.springerlink.com/content/978-3-540-29244-9/
http://www.springerlink.com/content/978-3-540-29244-9/

Reducing the Number of Canonical Form Tests for Frequent Subgraph Mining 265

Computación y Sistemas Vol. 15 No. 2, 2011 pp 251-265
ISSN 1405-5546

José Francisco Martinez
Trinidad received his B.S. degree

in Computer Science from Physics
and Mathematics School of the
Autonomous University of Puebla
(BUAP), Mexico in 1995, his M.Sc.
degree in Computer Science from
the faculty of Computers Science
of the Autonomous University of
Puebla, Mexico in 1997 and his

Ph.D. degree in the Center for Computing Research of
the National Polytechnic Institute (CIC, IPN), Mexico in
2000. Professor Martinez-Trinidad edited/authored six
books and over one hundred journal and conference
papers, on subjects related to Pattern Recognition.

Article received on 12/03/2010; accepted 05/04/2011.

