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Mirror-field-atom interaction: Hamiltonian diagonalization
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We show that the interaction between a movable mirror with a quantized field that interacts with a two-level atom may be simplified via
a transformation that involves Susskind-Glogower operators (SGO). By using this transformation it is easy to show that we can cast the
Hamiltonian, after a series of small rotations, into an effective Hamiltonian that may be solved. We would like to stress that the transformation
in terms of SGO already simplifies enough the Hamiltonian in the sense that, in an exact way, it “eliminates” one of the three-subsystems,
namely the quantized field.
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Mostramos como la interacción entre un espejo ḿovil y un campo cuantizado el cual a su vez interactúa con uńatomo de dos niveles puede
ser simplificada v́ıa el uso de operadores de Susskind-Glogower (OSG). Usando una transformación formada con estos operadores, es fácil
de mostrar que el hamiltoniano se puede llevar, después de una serie de pequeñas rotaciones, a un hamiltoniano efectivo el cual es soluble.
Nos gustaŕıa enfatizar que el uso de la transformación en t́erminos de los OSG permite ya simplificar bastante el hamiltoniano en el sentido
de que, en forma exacta, “elimina” unos de los tres sub-sistemas, en este caso, el campo electromagnético.

Descriptores: Interaccioneśatomo-campo; campo-espejo móvil; estados no-clásicos.

PACS: 03.67.-a; 03.67.Lx; 32.10.Fn; 85.25.Dq

1. Introduction

Recently, special attention has been devoted to a system con-
sisting of a cavity field and a movable mirror [1, 2]. This
is due to the fact that for such a system we can produce
non-classical states [3], particularly the macroscopic super-
position of at least two coherent states,i.e. Schr̈odinger cat-
states. The concept of superposition of states plays a fun-
damental role in understanding the foundations of quantum
mechanics, this is why the generation of non-classical states,
such as squeezed states [4], and the particularly important
limit of extreme squeezing,i.e. Fock or number states [5],
has been widely studied in several systems. It is known that
a non-linear interaction can generate Schrödinger cat-states.
The non-linear interaction used to generate such states is the
one produced by a Kerr medium [6, 7] which corresponds to
a quadratic Hamiltonian in the number field operator [8, 9].
Our main motivation to make the field-mirror system interact
with an atom is to look for the possibility to extract infor-
mation about it by later measuring atomic properties. This,
because it is well known that several quasiprobability recon-
struction techniques [10] for the quantized field [11] or the
vibrational motion of an ion [12], rely on the measurement
of atomic states. Therefore, the passage of atoms through
such systems, could give us information, not only about the
states of the mirror or field, but about its dynamical interac-
tion. This is, the passage of a two-level atom through a cavity
containing a movable mirror may give us information about
the entanglement between mirror and field. The purpose of
this contribution is not to study this possibility, however, but

to show how the total system may be simplified, by several
rotations (some of them small rotations,i.e. approximations)
that diagonalize the Hamiltonian in such a way that a solu-
tion may be easily obtained. We will study the possibility of
reconstructing the mirror-field interaction elsewhere.

2. Interaction between the cavity and the mir-
ror

The interaction between an electromagnetic field and a mov-
able mirror (treated quantum mechanically) has a relevant
Hamiltonian given by [8] (we set~ = 1)

Hf−m = ωa†a + νb†b− ga†a(b† + b), (1)

wherea anda† are the annihilation and creation operators for
the cavity field, respectively. The field frequency isω. b and
b† are the annihilation and creation operators for the mirror
oscillating at a frequencyν and

g =
ω

L

√
~

2mν
, (2)

with L andm the length of the cavity and the mass of the
movable mirror.

3. Mirror-Field-Atom interaction

If we pass a two-level atom through a cavity with a movable
mirror as the one described by Eq. (1), we have have to add
the free Hamiltonian for the atom and the interaction with the
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quantized field, so we obtain [13]

Ha−f−m =
ω0

2
σz + λ

(
aσ+ + a†σ−

)
+ ωa†a + νb†b

− ga†a(b† + b), (3)

where λ is the atom-field interaction constant,ω0 is the
atomic transition frequency andσ− (σ+) is the lowering
(raising) operator for the atom, with[σ+, σ−] = 2σz.

We consider the on-resonant interaction between the field
an the atom,i.e. ω = ω0, and pass to an interaction picture,
taking advantage that the operatorω(a†a+2σz/2) commutes
with all the other operators involved in the Hamiltonian, to
obtain

Ĥ = νN̂ + χn̂
(
b + b†

)
+ λ

(
aσ+ + a†σ−

)
. (4)

The quantitieŝn = a†a andN̂ = b†b are the number oper-
ators for the field and mirror, respectively. We will use the
Susskind-Glogower operators [14]

V =
1√

n̂ + 1
a, V † = a†

1√
n̂ + 1

, (5)

that satisfy the commutation relation[V, V †] = |0〉〈0| to
transform the above Hamiltonian with the following matrix
operator [16]

M† =
(

1 0
0 V †

)
, M =

(
1 0
0 V

)
, (6)

such that we can rewrite the interaction Hamiltonian as

Ĥ = ĤV + ρ̂0
22 (7)

where

ĤV = M†

(
νN̂+χn̂

(
b+b†

)
λ
√

n̂+1
λ
√

n̂+1 νN̂+χ (n̂+1)
(
b+b†

)
)

M, (8)

and

ρ̂0
22 =

(
0 0
0 νN̂

)
. |0〉 〈0|

Note that [
ĤV , ρ0

22

]
= 0,

therefore we can write the evolution operator as

Û (t) = e−iĤt = e−iĤV te−iρ̂0
22t. (9)

In order to calculatee−iĤV t , we develop the exponential in
Taylor series take into account that

Ĥk
V = M†

(
νN̂+χn̂

(
b+b†

)
λ
√

n̂+1
λ
√

n̂+1 νN̂+χ (n̂+1)
(
b+b†

)
)k

M,

k ≥ 1, (10)

so we write the evolution operator as

Û (t) = M†e−i
̂̃
HtMe−iρ̂0

22t +
(

1− σZ

2

)
|0〉 〈0| e−iρ̂0

22t,

where

̂̃
H=

(
νN̂+χn̂

(
b+b†

)
λ
√

n̂+1
λ
√

n̂+1 νN̂+χ (n̂+1)
(
b+b†

)
)

. (11)

Up to here we have realized already a relevant simplification:
this Hamiltonian, unlike the one in equation (4), has field
operators in it that commute with each other, and, because
they commute with the other sub-systems operators, they
may be treated from now on as classical numbers. Therefore,
we have effectively and exactly eliminated one sub-system,
namely the field, from the initial problem.

Now we will take advantage of the difference in order
of magnitudes (the atom-field interaction constant is much
larger than the mirror-field interaction constant) of the dif-
ferent constants in this interaction to produce an effective
Hamiltonian which being diagonal, may be solved exactly.
For this we will use a small rotation approach proposed by
Klimov and Śanchez-Soto [15]. First, let us do an exact rota-
tion to the Hamiltonian and obtain

R =
1√
2

(
1 1
−1 1

)
,

with

HR = RH̃R†,

so that we have

ĤR = νN̂ + χ

(
n̂ +

1
2

) (
b + b†

)
+ λσz

√
n̂ + 1

+
χ

2
(σ+ + σ−)

(
b + b†

)
. (12)

Now we apply the following small rotations

Û1 = eξ1(b†σ+−bσ−),

Û2 = eξ2(bσ+−b†σ−),

we call the small because we will consider (see below)
ξ1, ξ2 ¿ 1, i.e. they will perform tiny rotations. Transform-
ing (12) with the above operators we obtain

H2 = U2U1HRU†
1U†

2 .

Due to the fact that theξ ’s are small we remain to first order
when we develop the exponentials in Taylor series so that we
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finally obtain

Ĥ2 ≈ νN̂ + λ
√

n̂ + 1σz + χ

(
n̂ +

1
2

) (
b + b†

)

+ (ξ1 + ξ2) χσz

(
b + b†

)2

+ (ξ2 − ξ1)
(

χ

2
(σ++σ−)2 +χ

(
n̂ +

1
2

)
(σ++σ−)

)

+
(χ

2
− ξ1

(
ν + λ

√
n̂ + 1

)) (
b†σ+ + bσ−

)

+
(χ

2
+ ξ2

(
ν − λ

√
n̂ + 1

)) (
bσ+ + b†σ−

)
.

We can choose

ξ1 (n̂) =
χ

2
(
ν + λ

√
n̂ + 1

) ,

ξ2 (n̂) = − χ

2
(
ν − λ

√
n̂ + 1

) ,

so that the last two terms of̂H2 become zero. For the other
terms we need to calculate

ξ1 + ξ2 =
λχ
√

n̂ + 1
λ2 (n̂ + 1)− ν2

, (13)

and using the fact that theξ’s are small we can also neglect
the term

ξ2 − ξ1 =
χν

(λ2 (n̂ + 1)− ν2)
∼ 1

λ2
∼ 0. (14)

Taking into account that

χ2

λ2 (n̂ + 1)− ν2
≈ χ2

λ2 (n̂ + 1)
(15)

we may finally write

Ĥ2 ≈ νN̂ + χ

(
n̂ +

1
2

) (
b + b†

)
+ λ

√
n̂ + 1σz

+
χ2

λ
√

n̂ + 1

(
b + b†

)2
. (16)

This is a Hamiltonian that is already diagonal and direct to
solve. The purpose of this contribution was to show that the
Hamiltonian of the total interaction could be simplified. We
have achieved this. A more complete study to look for the
evolution of observables and possibilities of reconstructing
the mirror-field interaction is still in preparation and will be
published elsewhere.

4. Conclusions

We have shown that the problem of a quantized field interact-
ing simultaneously with a two-level atom and a movable mir-
ror may be diagonalized via a set of transformations, the main
one, being a transformation that involves Susskind-Glogower
operators, equation (6). This transformation, besides the fact
that does not involve approximations, allows us to simplify
the problem by “eliminating” the field operators to leave an
effective interaction between atom and mirror. The Hamilto-
nian for this interaction then may be slightly rotated to ob-
tain a dispersive Hamiltonian that being diagonal is already
solvable such that the evolution operator may be eventually
found.
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