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Abstract: The superposition of multiple plane waves with appropriate 
propagation vectors generates a periodic or quasi-periodic non-diffractive 
optical field. We show that the Fourier spectrum of the phase modulation of 
this field is formed by two disjoint parts, one of which is proportional to the 
Fourier spectrum of the field itself. Based on this result we prove that the 
non-diffractive field can be generated, with remarkable high accuracy and 
efficiency, in a Fourier domain spatial filtering setup, using a synthetic 
phase hologram whose transmittance is the phase modulation of the field. In 
a couple of cases this result is presented analytically, and in other cases the 
proof is computational and experimental. 
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1. Introduction 

Generation of an arbitrary optical field is a significant and useful task in physical optics. It 
requires spatially variable independent modulation of both the amplitude and the phase of the 
field. Although a general solution to this problem is provided by synthetic holography, both 
the efficiency and the accuracy of the method are highly dependent on the hologram type and 
the field to be generated [1–7]. 

Non-diffractive optical fields (NDOFs) have drawn the attention of researchers over the 
last two decades. Besides the attractiveness of these fields from a theoretical point of view [8–
10], they have been investigated in applications such as atom and particle trapping [11–14] 
and generation of nonlinear wave guides [15,16]. A great variety of NDOFs can be obtained 
by superposing multiple plane waves whose propagation vectors have a common component 
respect to the propagation axis. In particular, if the transverse projections of the waves' 
propagation vectors have uniformly distributed azimuth angles we obtain a periodic or quasi-
periodic NDOF. Fields of this type are useful to generate photonic crystals and quasi-crystals 
in different optical media [17,18]. In the following sections we use the acronym NDOF to 
refer only to periodic or quasi-periodic fields. 

The multiple waves required to generate a NDOF can be obtained using beam splitters and 
mirrors. However, the implementation of this method is quite difficult, mainly if specific 
phase shifts need to be applied to the interfering waves [19]. Here we discuss a simple and 
robust technique to generate these fields, based on synthetic holography. We show that the 
Fourier spectrum of the phase modulation of a NDOF is formed by two disjoint parts, one of 
which is proportional to the Fourier spectrum of that field. This property is of the utmost 
importance in synthetic holography. Based on it we prove that a synthetic phase hologram 
(SPH) whose transmittance is the phase modulation of a NDOF can be employed to accurately 
generate this field with remarkable high efficiency, in a Fourier domain spatial filtering setup. 
For further reference this SPH is referred to as kinoform of the NDOF. The above mentioned 
result is proved analytically when the number of interfering waves is 2 and 4. In other cases, 
the result is proved numerically and experimentally. In addition, it is noted that the NDOF 
becomes a non-diffracting Bessel beam when the number of interfering waves tends to 
infinity. In this case, the result has been proved in Ref [7]. 

2. Theory 

A NDOF can be expressed by the superposition of Q plane waves of equal amplitude, whose 
propagation vectors have a common projection kz respect to the z-axis. The transverse 
component modulus of the propagation vectors, kt, is also a constant, given by the identity kt

2
 

= k
2
-kz

2
, where k = 2π/λ is the wave number. As a particular interesting case, we assume that 

the projection of the propagation vectors of interfering waves to the x-y plane form angles, 
respect to the x-axis, which are multiple of 2π/Q. These interfering plane waves can be 
modulated by different constant phase shifts. Thus, the NDOF formed by the superposition of 
the Q plane waves can be expressed as 
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where r and θ are the radius and angle of the cylindrical coordinates system, respectively, and 
ρ0 is a spatial frequency, given by kt/2π. Equation (1) represents the NDOF at the plane z = 0 
since we have omitted the propagation factor exp(ikz). Although the phase shift for the n-th 
plane wave can be arbitrary, we will consider only the linear phase shift θn = p(nΔθ), where 
Δθ = 2π/Q, and p is an integer number that represents topological charge. The normalization 
constant C makes the maximum of |f(r,θ)| equal to 1. In particular, it is found that C = 1/Q if 
the topological charge is p = 0. As illustration, amplitudes and phases of NDOFs with 
parameters (Q = 5, p = 0) and (Q = 6, p = 1) are displayed in Fig. 1. Every non diffracting 
field can be expressed in a base of non diffracting Bessel beams BBq(r,θ) = Jq(2πρ0r)exp(iqθ) 
[9]. In connection with this result, Arrizón et al pointed out that the NDOF in Eq. (1) is 
equivalent to the sum of all the Bessel beams BBq(r,θ) of orders q = NQ + p, where N is an 
arbitrary integer number [20]. 

 

Fig. 1. Partial view of (a) the modulus and (b) the phase of the NDOF with parameters (Q = 5, 
p = 0). The modulus and the phase of the NDOF with parameters (Q = 6, p = 1) are 
respectively shown at parts (c) and (d) of the figure. 

For convenience, in the following analysis we will express the NDOF in rectangular 
coordinates by the function h(x,y). If we were able to implement a transmission function with 
the mathematical form of the complex amplitude of the NDOF, it would generate this field 
with efficiency 

 

2
( , )

,f

h x y dxdy

dxdy










  (2) 

where the integration domain Ω is the support (or pupil) that physically limits the field. 

Expressing the NDOF in the polar form h(x,y) = |h(x,y)|exp[i(x,y)], its kinoform is given by 

  ( , ) exp ( , ) .Kh x y i x y   (3) 

It is possible to relate h(x,y) and hK(x,y) by the expression 

 ( , ) ( , ) ( , ),Kh x y h x y e x y    (4) 

where β is a positive constant, referred to as amplitude gain, and e(x,y) is the hologram 
modulation error. Denoting the Fourier transforms of h(x,y) and e(x,y) by H(u,v) and E(u,v), 
respectively, the Fourier transform of the kinoform is given by HK(u,v) = βH(u,v) + E(u,v). 
The condition required to obtain the complex function h(x,y) from its kinoform hK(x,y) is to 
have a null overlapping of functions H(u,v) and E(u,v). For further reference, this requirement 
is referred to as kinoform spectrum condition. If this condition is fulfilled, the complex field 
h(x,y) is obtained by conventional spatial filtering, applied to the Fourier spectrum HK(u,v), 
and an additional Fourier transform operation. In this case the field h(x,y) is generated from 
its kinoform with efficiency ηK = β

2
ηf. The efficiency gain of the kinoform, respect to the 

efficiency of the complex transmittance [Eq. (2)] is given by 

 
2/ .K K fG       (5) 

In conventional SPHs designed to generate arbitrary optical fields the best efficiency gain 
is equal to 1 [1–3,6]. However, SPHs designed for generation of special complex fields can 
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provide an efficiency gain larger than 1. An example is a SPH applied to the specific task of 
generating arbitrary high order Bessel beams [7]. An important result, that we will prove next, 
is that the efficiency gain GK is also larger than 1 when the NDOF defined in Eq. (1) is 
implemented using its kinoform. Moreover, we will prove that it is possible to obtain a perfect 
spatial isolation of the terms H(u,v) and E(u,v) in the kinoform Fourier spectrum, allowing an 
accurate generation of the field h(x,y), by spatial filtering. Although the NDOF is generated 
displaying only its phase modulation in a SLM, it must be recognized that the amplitude 
information of the NDOF is in someway provided by the structure of the binary spatial filter, 
which is designed to transmit only the information of the NDOF at the Fourier domain of the 
kinoform. 

2.1. Generation of NDOFs using their kinoforms 

A first illustrative case that we consider is the periodic NDOF with parameters (Q = 2, p = 0), 
whose modulation is h(x,y) = cos(2πρ0x). The kinoform of this real valued function is given 
by its sign, which is depicted in Fig. 2. It is straightforward to express the transmittance of this 
kinoform by the Fourier series 

 
0

1

( , ) cos[2 ( ) ]K m

m

h x y c m x 




   (6) 

with coefficients cm = 4/(mπ) for odd m and cm = 0 otherwise. The series in Eq. (6) is 
transformed into the expression in Eq. (4), with an amplitude gain β = c1 = 4/π, and an error 
e(x,y) formed by multiple harmonics of the NDOF cos(2πρ0x). This composition of the error 
allows the isolation of H(u,v) and E(u,v) in the Fourier domain of hK(x,y). The efficiency gain 
of this kinoform is GK = β

2
 = (4/π)

2
, which is clearly larger than 1. Although the efficiency 

gain, can be larger than 1 (as is the case in the above example) the efficiency of the hologram 
itself, given by ηK = β

2
ηf, is always smaller or equal than 1. The efficiency of the complex 

transmittance that generates the field h(x,y) = cos(2πρ0x) is [according to Eq. (2)] ηf = 1/2, 

and the efficiency of the kinoform is ηK = 8/π
2
0.81. 

 

Fig. 2. Modulation of the kinoform for the one dimensional NDOF cos(2πρ0x). 

The second example is the NDOF with parameters (Q = 4, p = 0). In this particular case, to 
simplify the analysis, we add a phase shift π/4 to the coordinate θ, and the NDOF can be 
expressed as 

   0 0

1 1
, cos[ 2 ( )] cos[ 2 ( )].

2 2
h x y x y x y       (7) 

The modulus and phase in the basic cell of this NDOF are displayed in Figs. 3(a) and 3(b). 
The normalized modulus of the Fourier spectrum H(u,v), displayed in Fig. 3(c), shows 4 
spots, which correspond to the 4 interfering plane waves. The size and form of these spots is 
determined by the finite pupil that limits the field h(x,y). In this and other numerical 

simulations we employ a circular pupil of radius R = 7.5ρ0
1

. Applying simple trigonometric 
relations, the NDOF can be expressed in separable form 

   0 0, cos[ 2 ] cos[ 2 ].h x y x y    (8) 
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Employing this expression it is possible to represent the kinoform hK(x,y) by the product of 
two one-dimensional kinoforms of cosine functions. Thus, considering the analytical Fourier 
series in Eq. (6), the kinoform of the field in Eq. (8) is given by the 2D Fourier series 

 
1 1

( . ) ( , )K mq

m q

h x y c h mx qy
 

 

   (9) 

with coefficients cmq = 16/(mqπ
2
), for odd m × q, and cmq = 0, otherwise. The series in Eq. (9) 

can be reduced to the relation in Eq. (4), with amplitude gain β = c11 = 16/π
2
, and error e(x,y) 

formed by harmonics of the NDOF h(x,y). Again, this composition of e(x,y) allows the 
perfect separation of the terms H(u,v) and E(u,v) in the Fourier domain of hK(x,y). The 
efficiency gain of this kinoform is GK = β

2
 = 256/π

4
, which is even larger than the gain 

obtained in the previous one-dimensional case. With this value of β we obtain the error 
function e(x,y) = hK(x,y)-βh(x,y) and its Fourier spectrum E(u,v). The modules of the Fourier 
spectra HK(u,v) and E(u,v) are displayed in Figs. 3(d) and 3(e). The values in the color-bars of 
these Fourier spectra images are normalized respect to the peak value in |H(u,v)| [Fig. 3(c)]. 
Similar normalization is applied to the Fourier spectra of functions in further examples. It is 
clearly noted in parts (c) and (e) of Fig. 3 that E(u,v) presents null overlapping with H(u,v). 

 

Fig. 3. (a) Modulus and (b) phase in the basic cell of the NDOF with parameters (Q = 4, p = 0) 
and a shift π/4 in θ. The Fourier spectra correspond respectively to (c) the NDOF h(x,y), (d) the 
kinoform hK(x,y), and (e) the error function e(x,y) = hK(x,y)-βh(x,y). 

In general, the NDOFs corresponding to numbers Q = 2, 3, 4 and 6 of interfering plane 
waves, with arbitrary values of p, can be treated analytically or numerically. The reason is that 
these fields are periodic functions with either rectangular or hexagonal structures, whose basic 
cells can be easily obtained, at least by numerical computation. Another example 
corresponding to a periodic case is the NDOF with indices (Q = 6, p = 1). The amplitude in 
the basic cell of this NDOF has been shown at the center of Fig. 1(c) and the phase 
modulation of the kinoform, at the same domain, is displayed in Fig. 1(d). The Fourier spectra 
modules for the NDOF and its kinoform are displayed in Figs. 4(a) and 4(b). The complex 
amplitudes of the 6 brightest spots in the kinoform spectrum, computed using the kinoform 
basic cell, are proportional to the complex amplitudes of the corresponding 6 spots in the 

Fourier domain of the NDOF. The proportionality constant is β1.31. Using this value of β we 
compute the error function e(x,y) = hK(x,y)-βh(x,y) and its Fourier spectrum E(u,v). The 
modulus of E(u,v), displayed in Fig. 4(c), shows null values in the space that corresponds to 
the spots of H(u,v), fulfilling the kinoform spectrum condition. 

For the numbers of interfering waves Q = 5 and Q>6 the NDOF is quasi-periodic and it is 
not possible to obtain a basic cell to compute Fourier coefficients. However, it is still found, 
by numeric computation, that the kinoform Fourier spectrum contains spots that correspond to 
the Fourier spectrum spots of the NDOF. As an example, Figs. 5(a) and 5(b) show the Fourier 
spectrum modules of the NDOF with parameters (Q = 5, p = 0) and its kinoform. The 
amplitude gain that corresponds to the peak value of the spectrum modulus in Fig. 5(b), 

normalized to the peak value of the spectrum in Fig. 5(a), is β2.01. The phases in the bright 
kinoform Fourier spectrum spots are identical to those in the NDOF spectrum spots. Such 
numerically computed phases are shown in Figs. 5(c) and 5(d). Of course, the phase values in 
the kinoform spectrum only coincide with those of the NDOF spectrum at the positions of the 
bright spots. Similar results obtained for the NDOF with parameters (Q = 8, p = 0) and for its 
kinoform, are represented in Fig. 6. 
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Fig. 4. Fourier spectra of (a) the NDOF h(x,y) with parameters (Q = 6, p = 1), (b) the 
corresponding kinoform hK(x,y), and (c) the error function e(x,y) = hK(x,y)-βh(x,y). 

 

Fig. 5. Modules in the Fourier spectra of (a) the NDOF h(x,y) with parameters (Q = 5, p = 0), 
and (b) its kinoform hK(x,y). The phases of these Fourier spectra are respectively shown at 
parts (c) and (d) of the figure. 

 

Fig. 6. Modules in the Fourier spectra of (a) the NDOF h(x,y) with parameters (Q = 8, p = 0), 
and (b) its kinoform hK(x,y). The phases of these Fourier spectra are respectively shown at 
parts (c) and (d) of the figure. 

For the previously considered kinoforms we have shown the fulfillment of the kinoform 
spectrum condition. This result was proved analytically in the cases Q = 2 and Q = 4. 
Moreover we have computed amplitude and efficiency gains that are larger than 1. The 
computed gains for several cases, including the already discussed ones, are presented in Table 
1. 

We obtained similar results for cases Q>10. We proved numerically that it was still 
possible to fulfill the kinoform spectrum condition and therefore to generate the NDOF by 
means of its kinoform. The modules and phases of the Fourier spectra corresponding to the 
NDOF with parameters (Q = 25, p = 0) and for its kinoform, are displayed in Fig. 7. It is 
observed again that the phase values in the kinoform spectrum coincide with those of the 
NDOF spectrum at the positions of the bright spots. This fact enables the generation of the 
NDOF from the kinoform, by applying an appropriate binary filter in the Fourier domain of 
this phase element. 

It is interesting to note that when the number of plane waves Q forming the NDOF is 
much larger than 10, the NDOF approximates to a non-diffracting Bessel beam whose order is 
equal to the parameter p [that determines the phase shifts θn in Eq. (1)]. An illustration of this 
result is presented in Fig. 8 that displays the modules of the NDOFs with topological charge p 
= 1, and numbers of waves Q equal to 15, 30, and 50, respectively. As noted in this figure, the 
NDOF acquires the structure of a non-diffracting Bessel beam of order 1 when the number of 
interfering waves increases. A remarkable result that we proved analytically in a previous 
article [7], is that the kinoform of a non-diffracting Bessel beam of arbitrary order p fulfills 
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the spectrum condition and this field can be generated from its kinoform, by means of spatial 
filtering. In this case the required spatial filter is an annular sector. Therefore, the fulfillment 
of the spectrum condition for the kinoform of the NDOF in Eq. (1), when the number Q of 
interfering plane waves tends to infinity, is analytically confirmed in base of [7]. 

Table 1. Amplitude and Efficiency Gains of Kinoforms for Several NDOFs 

NDOF Parameters 
(Q, p) 

Amplitude Gain 
β 

Efficiency Gain 
β2 

(2,0) 4/π 16/π2 

(3,0) 1.58 2.48 

(3,1) 1.58 2.48 

(4,0) 16/π2 256/π4 

(5,0) 2.01 4.03 

(6,0) 2.07 4.27 

(6,1) 1.31 1.71 

(7,0) 2.36 5.58 

(8,0) 2.28 5.23 

(9,0) 2.70 7.28 

(10,0) 2.56 6.55 

 

Fig. 7. Modules in the Fourier spectra of (a) the NDOF h(x,y) with parameters (Q = 25, p = 0), 
and (b) its kinoform hK(x,y). The phases of these Fourier spectra are respectively shown at 
parts (c) and (d) of the figure. 

We simulated numerically the generation of the NDOFs with indices (Q = 5, p = 0) and 
(Q = 6, p = 1) using their kinoforms. The process consisted in generating the Fourier spectra 
of the kinoforms and performing a spatial filtering on these Fourier spectra. The spatial filter 
is a binary mask that only transmits the Fourier spots corresponding to the term βH(u,v) and 
blocks out the spots corresponding to E(u,v). The final step after the spatial filtering is an 
inverse Fourier transform. The modules and phases of the NDOFs generated with the 
described process are displayed in Fig. 9. These fields are quite similar to the exact NDOFs 

 

Fig. 8. Modules of the NDOFs with topological charge p = 1 and number of interfering waves 
(a) Q = 15, (b) Q = 30, and (c) Q = 50. Note that the NDOF acquires the structure of a Bessel 
beam of order 1 when Q increases. 

displayed in Fig. 1. Some minor field amplitude errors, appreciated e.g. at the borders of the 
fields in Figs. 9(a) and 9(c), are due to the finite size of both the pupil limiting the field and 
the small apertures that form the binary spatial filter employed in the simulations. Indeed, the 
finite pupil of the NDOF and its kinoform corresponds to a point spread function (PSF) in the 
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Fourier domain of these functions, which in practice allows only an approximate fulfillment 
of the kinoform spectrum condition. The influence of this finite PSF can be reduced by 
increasing the spatial frequency of the NDOF, which increases the distance between the spots 
in the Fourier domain, and reduces the mutual interference among these spots. 

 

Fig. 9. (a) Modulus and (b) phase of a NDOF with parameters (Q = 5, p = 0), obtained by 
numerical simulation of the kinoform in a spatial filtering setup. The modulus and phase 
numerically obtained for the NDOF with parameters (Q = 6, p = 1), are respectively shown at 
parts (c) and (d) of the figure. 

3. Experimental generation of a NDOF using its kinoform 

We generated different NDOFs implementing their kinoforms with a pixelated phase SLM 
[21]. In the experimental setup, depicted in Fig. 10, the SLM is used in an oblique 
configuration. The laser beam (He-Ne, λ = 633 nm) is conditioned by a beam expander (BE). 
Lenses (L1, L2) are employed to implement a double Fourier transform setup. The spatial filter 
(SF) blocks out the spots corresponding to E(u,v) in the Fourier spectrum of the kinoform. 
The implemented holograms are limited by a circular pupil whose diameter covers 512 pixels 
of the SLM. Since the SLM pixel pitch is 8 microns the pupil radius was R = 2048 μm. On the 
other hand, the multiple plane waves used in the specification of the NDOFs had a spatial 

frequency ρ0 = 7.5 R
1

. Considering that the focal length of the Fourier transforming lens L1 
was f1 = 75 cm, the spots in the Fourier domain corresponding to the encoded plane waves 

should appear at the distance r0 = λf1ρ01738 μm, from the optical axis. Thus, the spatial 
filters were made of small circular holes with a common distance r0 to the axis. The diameter 

of the holes in the spatial filters was approximately r0/2 (870 μm). The modules of the 
kinoforms Fourier spectra obtained experimentally and the generated NDOFs were computed 
from the intensities of these fields, recorded with a CCD. The modules of the experimental 
Fourier spectra of the kinoforms, for the NDOFs with indices (Q = 5, p = 0) and (Q = 6, p = 
1), are displayed in Figs. 11(a) and 11(b). The modules of the NDOFs, obtained by 
performing the spatial filtering on the Fourier spectra of the kinoforms, are displayed in Figs. 
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11(c) and 11(d). These experimental results provide a confirmation of the theoretical and 
numerical results. 

 

Fig. 10. Scheme of the experimental optical setup employed to generate a NDOF using its 
kinoform in a spatial filtering setup. The input laser beam, conditioned by the beam expander 
(BE) arrives to the phase SLM in an oblique direction. 

4. Conclusions and final remarks 

We have discussed the generation of either periodic or quasi-periodic NDOFs, employing 
phase holograms, formed by the kinoforms of such fields. For the generation of the NDOFs, 
the phase holograms are employed in a double Fourier transforming setup with spatial 
filtering. This method allows the generation of the NDOFs with high accuracy and a 
remarkably high efficiency. The high performance of these holograms is due to the fact that 
the Fourier spectrum of the kinoform of a NDOF is formed by two disjoint parts, one of which 
is proportional to the Fourier spectrum of the NDOF itself. In fact, we have proved that the 
proportionality constant in this context is larger than unity, which is related to the high 
efficiency of the holograms. From a theoretical point of view, this is an interesting and 
unexpected result, since in general it is unlikely that the amplitude modulation a(x,y) of the 

complex NDOF f(x,y) = a(x,y)exp[i (x,y)] can be recovered by appropriate filtering using 

only the phase information (x,y). A comparison of the experimental results with the 
theoretical and numerical results provides a satisfactory verification of the described method. 
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Fig. 11. Modules of the experimentally recorded Fourier spectra of the kinoforms for the 
NDOFs with indices (a) (Q = 5, p = 0) and (b) (Q = 6, p = 1). The modules of the respective 
experimentally generated NDOFs are displayed in the parts (c) and (d) of the figure. 
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