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 I 

ABSTRACT 

Overall, this work introduces experimental and theoretical work that offers the 

reader an alternative perspective of looking at 28 nm MOSFET electrical 

performance and modeling.  

Chapter 1 introduces an alternative way to produce a negative differential 

resistance (NDR) effect that is achieved by the non-conventional biasing of a regular 

28-nm n-type Metal-Oxide-Semiconductor Field-Effect Transistor (n-MOSFET). It 

has a controllable peak-to-valley current ratio (PVCR) that goes from about 3.0 up to 

a room-temperature value of 5.5, which is above the record of 5.3 previously 

reported on silicon heterostructures [1]. Two bipolar mechanisms working in parallel 

are demonstrated to occur inside the n-MOSFET, one at the surface and other in the 

bulk. Thermally activated electrons are injected into the gate contact through the 

drain-gate overlap, a situation that leads the transistor to the flat-band condition, 

blocking the surface conduction channel and triggering the NDR effect. I proposed a 

simple analytical model that correlates very well with experimental data. 

Chapter 2 provides a general perspective of the theoretical approaches that 

can lead to the determination of the charge current through a nano-scaled system 

from a full quantum mechanical perspective. It exposes the amount of information 

that, in principle, can be obtained from any physical system and the complications 

that arise in the determination of the current. The more realistic but still very difficult 

statistical quantum mechanical approach is briefly presented afterwards. Finally, the 

Landauer formalism is established as a series of assumptions that render a close-

form expression for the current in terms of the probability of transmission.   

An analogy between the time-independent Maxwell and Schrödinger 

equations is developed in Chapter 3. It is applicable to two-dimensional systems with 

wave-guide (lead) boundary conditions. On the lead boundaries, the third-order 

boundary conditions for the electric field reduce to the normal derivative of its z-

component, adopting the same form of the equivalent boundary conditions for the 

Schrödinger equation. The total energy and position-dependent potential energy are 

included in the set of quantities that have an equivalent electromagnetic parameter. 
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Standard electromagnetic analysis methods were applied to determine the wave 

function and transmission probability of phase-coherent quantum electron devices 

including a tunneling structure. The Schrödinger equation was solved via the 

Quantum Transmitting Boundary method for comparison with the electromagnetic 

simulations. 

The Non-Equilibrium Green’s Function (NEGF) formalism is the most 

prominent theoretical approach when it comes to quantum transport analysis, 

modeling and characterization of nano-scaled systems. In fact, the NEGF formalism 

is considered the quantum version of the Boltzmann transport theory. Based on 

NEGF formalism, a systematic analysis of different multiport nanostructures 

modulated by the action of a magnetic field is introduced in chapter 4.  
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RESUMEN 

En este trabajo se presenta una visión alternativa sobre el comportamiento 

eléctrico experimental y el modelado de transistores MOS de la tecnología de 28 

nanómetros.  

En el capitulo 1 se presenta una forma alternativa para producir un efecto de 

resistencia negativa el cual se logra a través de la polarización no convencional de 

un transistor de efecto de campo convencional tipo (n-MOSFET). Este efecto tiene 

una relación de corriente pico que va de 3 a un valor a temperatura ambiente de 5.5, 

aproximadamente, el cuál está por arriba del valor record reportado para 

dispositivos de resistencia negativa basados en hetero-estructuras [1]. Se 

demuestra la presencia de dos mecanismos bipolares trabajando en paralelo dentro 

del n-MOSFET, uno en la superficie y otro en el cuerpo del transistor. Los electrones 

activados térmicamente son inyectados al contacto de compuerta a través de la 

región de traslape entre drenaje y compuerta, una situación que lleva al transistor a 

la condición de banda plana, bloqueando así el canal de conducción superficial y 

produciendo el efecto de resistencia negativa. Se propone entonces un modelo 

analítico que correlaciona bastante bien con los datos experimentales.  

En el capítulo 2 pretendo proveer al lector de una perspectiva general de las 

diferentes metodologías que pueden llevar a la determinación de la corriente de 

cargas a través de un sistema nanométrico desde una perspectiva puramente de la 

mecánica cuántica. Comienzo con la información que, en principio, la mecánica 

cuántica no relativista puede proveer sobre cualquier sistema físico. Expongo las 

dificultades que surgen al querer aplicar la mecánica cuántica a la determinación de 

la corriente en un sistema nanométrico para posteriormente presentar una 

metodología más realista pero aún complicada representada por la mecánica 

estadística cuántica. Finalmente, se presenta una serie de suposiciones conocidas 

como el formalismo de Landauer, las cuales permiten la determinación de una 

expresión cerrada para la corriente en términos de la probabilidad de transmisión.  

En el capítulo 3 se desarrolla una analogía entre las ecuaciones de Maxwell 

y Schrödinger independientes del tiempo aplicable a sistemas bidimensionales con 
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puertos de guía de onda. En los limites del sistema que colindan con las guías de 

onda, las condiciones de frontera de tercer orden para el campo eléctrico se 

reducen a la derivada normal de su componente en la dirección z, adoptando la 

misma forma de las condiciones de frontera equivalentes para la ecuación de 

Schrödinger. La energía total y la energía potencial dependiente de la posición son 

incluidas en el conjunto de cantidades que tienen un parámetro electromagnético 

equivalente. Los métodos electromagnéticos estándar fueron aplicados en la 

determinación de la función de onda y la probabilidad de transmisión de dispositivos 

electrónicos cuánticos coherentes incluyendo una estructura que permite tuneleo. La 

ecuación de Schrödinger fue resuelta con ayuda del "Quantum Transmitting 

Boundary Method" para una comparación directa con las simulaciones 

electromagnéticas. 

Cuando se requiere de la caracterización y modelado del transporte de 

cargas en dispositivos semiconductores a escala nanométrica, el Formalismo de 

Funciones de Green Fuera de Equilibrio representa la metodología más prominente 

actualmente. De hecho, este formalismo puede ser considerado como el equivalente 

cuántico de la teoría de transporte de Boltzmann. En el capitulo 4 se presenta un 

análisis sistemático de varias nanoestructuras multipuerto bajo la influencia de un 

campo magnético., lo cuál representa una visión alternativa para la caracterización y 

modelado de dispositivos semiconductores a futuro. 
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CHAPTER 1:  
Tunable Negative Differential Resistance Effect with a Single 
MOSFET 
 

This chapter introduces an alternative way to produce a negative differential 

resistance (NDR) effect that is achieved by the non-conventional biasing of a regular 

28-nm n-type Metal-Oxide-Semiconductor Field-Effect Transistor (n-MOSFET). It 

has a controllable peak-to-valley current ratio (PVCR) that goes from about 3.0 up to 

a room-temperature value of 5.5. Two bipolar mechanisms working in parallel are 

demonstrated to occur inside the n-MOSFET, one at the surface and other in the 

bulk. Thermally activated electrons are injected into the gate contact through the 

drain-gate overlap, a situation that leads the transistor to the flat-band condition, 

blocking the surface conduction channel and triggering the NDR effect. I proposed a 

simple analytical model that correlates very well with experimental data. 

 

I. Negative Differential Resistance (NDR) Devices and Circuits 
 

In this section a brief summary of the most relevant NDR devices and circuits, is 

introduced. For each case, the main differences with the proposed NDR effect are 

discussed.  

 

A. NDR devices 
 
Quantum tunneling devices. They work under quantum mechanical principles 

where a particle can tunnel through an energy potential barrier. The most prominent 

are the band-to-band tunneling (BBT) diode and the resonant tunneling (RT) diode 

[2,3]. A BBT diode consists of a p-n junction in which both regions are degenerately 

doped (>1019 cm-3), see left column in Fig. 1.1. Initially, a small forward bias voltage 

(V) produces a low current (I). This is because the high electron concentration 



 2 

between EC and EF(n
++) in the n-type semiconductor is not aligned with the high 

concentration of empty states or holes between EV and EF(p
++) in the p-type 

semiconductor (top diagram). A larger V aligns these two regions of high 

concentration and if the depletion region is narrow enough (<10 nm), electrons can 

easily tunnel through, creating a current increment (middle diagram). A further 

increment of V produces a new misalignment between these two regions decreasing 

the current and producing the NDR effect (bottom diagram).  

 

  

Band-to-Band Tunneling Resonant Tunneling 

 

Fig. 1.1 Left column: Band-to-band tunneling operation. Right column: 

Resonant tunneling operation.  

 

A RT diode is composed of two barrier layers (1.5-5 nm) enclosing a quantum well 

(~5 nm) that in turn are located in the middle of two highly doped contacts (see right 

column in Fig. 1.1). The RT diode is similar to the BBT diode in that the high electron 

concentration sub-band above EC, in the left contact, must be aligned with the high 
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transmission probability level (dashed thick line) originated by the resonant wave 

states between the two potential barriers. The BBT and RT mechanisms cannot be 

achieved with the 28-nm MOSFETs analyzed in this document since they do not 

match the required doping profiles. The maximum acceptor concentration in the bulk 

is       . 

 

 

 

 

Fig. 1.2 Top: current diagram for the BGB device. Bottom: device 

diagram for each of the three operational regions.  

 

Bistable Gated Bipolar (BGB) device or reverse base current in a  

bipolar transistor [4,5]. A BGB device exhibits a NDR effect at the bulk terminal 

(  ) of a MOSFET structure biased in the sub-threshold regime (see Fig. 1.2). The 

current voltage characteristics        is divided in three regions (I, II, and III) by the 

bulk voltages    and    corresponding to the peak and valley bulk currents       

    and          , respectively. In Region I,    is negative and low in magnitude 

because the drain- and source-bulk junctions are backward-biased. The sweep of    

towards positive values causes, in region II, a reduction of the threshold voltage    , 

which in turn raises the surface current. This increment stimulates impact ionization 

at the drain depletion region, raising    negatively and triggering the NDR 

phenomenon. In Region III, the source-bulk junction is forward-biased, increasing the 
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bulk-to-source current exponentially; a situation that eventually inverts   . The NDR 

effect of our n-MOSFETs is observed at the drain and source terminals, not at the 

bulk terminal. Besides, the drain-bulk junction is forward-biased below the high-

impact ionization regime in our case.  

Negative transconductance in double-gate FETs [6]. The authors 

attribute the observed negative subthreshold front gate transconductance     and 

back gate transconductance     to the charge coupling between the two inversion 

channels in a double-gate FET. When the front gate voltage raises, the carrier 

density in the front and back channels increase. As a result, the total current 

increases initially. However, due to a step-like mobility which drops substantially for 

increments of the charge density, the total current drops too, causing the negative 

transconductance effect (see Fig. 1.3). There is no evidence to believe that the n-

MOSFETs of this document have a step-like mobility. 

 

 

 

Fig. 1.3 Left: front-gate voltage (VFG) vs. drain current (ID). Right: step-

like mobility   and back-channel electron density       against 

VFG.  

 

NDR in SOI-MOSFETs [7]. This NDR effect has been observed for both p- 

and n-channel SOI-MOSFETs, with short and long channels, and is attributed to a 

mobility reduction caused by local heating in the channel region. In this sense, this 

effect is similar to the previous case, but this time, the mobility reduction results from 

relatively poor thermal properties of the buried insulators compared with silicon bulk 

substrates. This behavior has been also observed in power devices. On the other 

hand, the n-MOSFETs I worked with do not have any kind of isolation between the 

bulk contact and the channel region. 
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Bulk NDR devices [8]. Bulk-effect semiconductor devices are structures 

only composed of a bulk semiconductor with ohmic contacts (e.g. no p-n junctions). 

They show interesting phenomena working under various external influences such 

as electric and magnetic fields. The bulk NDR devices can be classified into two 

groups: voltage-controlled and current-controlled (see Fig. 1.4). For this devices, the 

negative resistivity is associated with microscopic bulk semiconductor properties, 

such as 1) field enhanced trapping, 2) impact ionization of shallow impurity levels in 

compensated semiconductors, or 3) electron transfer from a lower valley to higher 

valleys in the conduction band.  

 

  

Bulk voltage-controlled NDR Bulk current-controlled NDR 

 

Fig. 1.4 Bulk voltage- and current-controlled negative differential 

resistivity. 

 

The Cryosar is a bulk current-controlled NDR device. It has the potential to be 

used in high-speed switching and memory applications. At low temperatures (e.g., 

liquid helium temperature of 4.2 K) with low applied voltages, the bulk semiconductor 

may have a very high resistivity, since almost all the carriers are attached to the 

impurity centers. As the applied voltage increases, it becomes possible for the free 

carriers to gain sufficient energy in the electric field to ionize the impurities upon 

impact. At some critical electric field, the impact ionization rate exceeds the 

recombination rate and when almost all the impurities are ionized the resistivity 

reduces by many orders of magnitude. Therefore, the right plot in Fig. 1.4 shows that 

for the same magnitude of the electric field ENDR, there can be two different values 
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for the current density: a lower current j0 for a large resistivity stage prior to impact 

ionization and a higher current jNDR for the low resistivity stage afterwards. On the 

other hand, the NDR effect introduced in this document can be observed at room 

temperature and, as stated before, do not occur under the high-impact ionization 

regime.  

 

 

   

E<E1 E1<E<E2 E>E2 

 

Fig. 1.5 Top: j-V characteristics of a transferred-electron NDR device. 

Bottom: Electron distributions under various conditions of electric 

fields. 

 

The transferred-electron or Gunn effect [8] is a bulk voltage-controlled NDR 

effect that occurs in n-type GaAs and, under uniaxial pressure, in InP, CdTe, ZnSe, 

and InAs. In this materials conduction-band electrons can be field-induced 

transferred from a low-energy high-mobility valley to higher-energy low-mobility 

satellite valleys as shown in Fig. 1.5. It can be seen that in Region I (low applied 

voltages), electrons travel mainly through high-mobility    current carrying states. In 

Region III (high applied voltages), electros travel mainly through low-mobility       

current carrying states. The NDR effect can be observed in Region II as a transition 
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from Region I to Region III. However, the NDR effect studied in the next section is 

observed in silicon MOSFETs that are composed of different p-n junctions. 

 

 

Fig. 1.6 I-V characteristics of a thermistor. 

 

A thermistor or thermally sensitive resistor is a bulk current-control NDR 

device that has an ohmic behavior for small currents. However, as the current 

increases, the power dissipation also increases and the resistivity of the material 

            
  

decreases because the majority carrier concentration in a 

semiconductor varies approximately as exp(-A/T) where T is the temperature and A 

is a constant depending on the band gap and impurity concentrations (see Fig. 1.6). 

The mobility of the majority carriers reduces at a lower rate compared to the majority 

carrier concentration. 

Dynatron [9]. This is an active two-port vacuum device that reproduces a 

NDR effect operating under impact ionization (see the circuit diagram and the I-V 

characteristics in Fig. 1.7). Initially, electrons are set in motion by the electric field 

between the filament and the anode. Some of them go thru the anode holes and 

reach the plate, which is at a low potential with respect to the filament. Although 

catching some electrons, the plate is actually repelling them due to its lower 

potential. The number of “arriving” electrons depends on the filament temperature 

and is practically independent of the voltage of the plate. These arriving electrons 

generate a current in the external circuit. Besides, if the potential of the plate is 

raised, the velocity with which the electrons strike it will increase, generating 

electrons that leave the plate by impact ionization. These “leaving” electrons will be 
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collected by the more positive anode contact generating a current in the opposite 

direction and setting up two competing mechanism. Since the number of leaving 

electrons increases rapidly with the increments of the voltage plate, the total current 

starts to decrease at point A. When the number of arriving and leaving electrons is 

the same, the total current is zero (point B). Eventually, the total current inverts when 

the number of leaving electrons is larger than the number of arriving electrons (point 

C). Ultimately, the total current again inverts at point D when the plate reaches the 

anode potential. At this point, the anode does not collect the leaving electrons 

anymore; the plate recollects them.  

 

 

 

 

Fig. 1.7 Left: Dynatron circuit diagram. Right: total current vs. plate 

voltage [9]. 

 

B. NDR circuits 
 

Cross-Coupled Feedback Structure (CCFS)  [10]. The authors of this work (Leon 

O. Chua et al.) stated that hundreds of NDR circuits, made of two transistors and 

linear positive resistors only, can be generated by using a systematic method. The 

two transistors may be bipolar (n-p-n or p-n-p), JFET (n-channel or p-channel), 

MOSFET (n-channel or p-channel), or their combinations. The authors to not provide 

a demonstration but instead they present an algorithm that render candidates for 

voltage-controlled and current-controlled NDR circuits (i.e. not all candidates will 

exhibit a NDR characteristic). The following three-step algorithm is for voltage-

controlled NDR circuits (I refer the reader to the source for the equivalent current-
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controlled NDR algorithm). 1) Start with the two-transistor feedback structure shown 

in Fig. 1.8, where T1 and T2 represent any pair of transistors from the list just 

mentioned. The starred terminals represent ether the gate or base of the chosen 

transistors. 2) Connect a source current across any pair of nodes of the resulting 

feedback circuit. 3) Connect any number of linear positive resistors across any pair 

of nodes or across two points of the same branch. It is not needed to connect a 

resistor in series or in parallel with the current source. Finally, there is only need to 

verity if the resulting circuit exhibits a NDR effect. An example of a cross couple 

feedback structure is the Ultra-Low Power (ULP) diode [11]. On the other hand, the 

two BJT mechanisms within a single MOSFET that will be discussed later in this 

document are not interconnected in a cross-coupled feedback structure but in 

parallel.  

 

 

 

Fig. 1.8 Two-transistor ¨cross-cooupled¨ feedback structure. 

 

Polysilicon Gated-Nano-Wires (polySiNW) [12]. A hybrid NDR circuit 

made by a particular connection of one n-MOSFET and one polySiNW that uses 

positive feedback has been reported. When operated at constant current, the 

polySiNW transfers its negative slope output characteristic (see Fig. 1.9a) to the I-V 

characteristics of the MOS transistor that is driving a much higher output current to 

produce the NDR effect (see Fig. 1.9b). In our proposal, the gate potential drop is not 

assisted by an external device, but it is self-induced as will be shown later.  
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a) 

  

b) 

 

Fig. 1.9 a) Diagram of the polysilicon Gated-Nano-Wire (polySiNW) in 

series with a constant current source ID and the VDS-VGS 

characteristics. b) Diagram and resulting IDMOS-VDMOS 

characteristics of the NDR circuit composed of the polySiNW 

and a MOS transistor. 

 

Series-Connected NDR Devices [13]. Numerous circuits using two or 

more NDR devices in the series integration can be applied to create a multiple-peak 

curve in the combined I-V characteristics.  
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II. Analysis and Characterization 
 

This work proposes a novel CMOS-compatible NDR structure. This device does not 

use any of the principles of operation of the NDR devices and circuits mentioned 

before, but two self-contained bipolar junction mechanisms working in parallel within 

a single floating-gate MOSFET. 

The devices used in the experiments are n-MOSFETs of a 28-nm CMOS 

technology fabricated with Hafnium Oxide (HfO2) dielectrics and metallic gates. 

These devices have a HfO2 thickness of 4 nm, a 1.5-nm thick interfacial layer, a 

channel width W of 1 µm, and channel lengths L of 34, 38, 42, 60 and 500 nm. Fig. 

1.10 depicts the negative resistance effect for these transistors. The key fact is to 

leave the gate floating (        ) while the drain voltage    is swept from zero to 

negative values. In this case the source voltage    and the bulk voltage    are 

grounded. Note that the 34-nm transistor is the one that has the largest peak-to-

valley current ratio (PVCR) and the 500-nm transistor has the smallest one. Herein, 

an explanation of the mechanisms behind the three regions marked in Fig. 1.10 is 

introduced. 

 

Fig. 1.10 Measured   -   characteristics with the gate contact floating, 

         and         . (W/L)=(1 µm/34, 38, 42, 60, 500 nm) 

n-MOSFETs at T=300 K.  

 

In general, any charge accumulation near the transistor channel leads to 

threshold voltage shifts [14]. When the density of trapped charge changes during a 

measurement, a hysteresis effect is visible. Moreover, if enough charge gets trapped 

in a short period of time, it is possible to observe a NDR effect. For example, an 
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abrupt current decrease in a nanowire has been reported to occur when a floating 

quantum point is charged with the help of a control gate similarly to a flash memory 

[15]. The remarkable difference is the number of trapped electrons needed to block 

the conduction channel. 

 

 

Fig. 1.11 Continuous    curve, floating-gate condition; dotted and dashed 

curves, flat-band condition (         ) and band bending 

condition (        ), respectively. In all cases          and 

        . (W/L)=(1 µm/60 nm) n-MOSFET at T=300 K. The 

inset shows simulations of the electron current density inside a 

60-nm n-MOSFET under band bending conditions in region I 

(Sup-BJT) and under flat band conditions in region III (Vol-BJT). 

 

The present approach consists in treating the drain, source and bulk contacts 

of an n-MOSFET as the emitter, collector and base of a Bipolar Junction Transistor 

(BJT), respectively. The dashed curve in Fig. 1.11 shows the measured    when    

is swept from zero to negative values with all the other terminals grounded. In this 

case, current starts to flow at the surface (region I) and later in the bulk (region III) 

since the potential barrier is lower at the substrate-oxide interface due to undesired 

trapped charges and the built-in potential between gate and bulk. The dotted curve 

was measured under flat-band conditions so that only the volumetric current flows 

(region III). Two BJT mechanisms working in parallel can be identified, one at the 

surface (sup-BJT) and other in the bulk (vol-BJT). The inset illustrates the simulated 

current density that corresponds to these two mechanisms. Therefore, when the gate 

is floating (continuous    curve), the transistor switches from the sup-BJT (region I) 

to the vol-BJT (region III) triggering the NDR effect (region II). The measured gate 
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voltage (  ) reflects theses facts. In region I, the bands remain bent (        ), 

while in region II,    drops abruptly, indicating a surface-band straightening process 

which continue until the flat-band condition is reached.  

 

 

Fig. 1.12 Continuous curves: Measured   -   with    as a parameter.    

is swept in two directions, from 0.0 to -1.0 V and from -1.0 to 0.0 

V.          and the gate is floating. (W/L)=(1 µm/60 nm) n-

MOSFET at T=300 K. Dotted curve: Measured   -    

characteristics with         ,         , and the gate floating. 

(W/L)=(1 µm/34 nm) n-MOSFET at T=300K. 

 

As shown in Fig. 1.12,    controls the PVCR. The higher the source voltage 

is, the larger the drain current is, in agreement with the bipolar mechanism 

hypothesis. Fig. 1.12 also shows a hysteresis effect. If    is swept from 0.0 V to -1.0 

V the sup-BJT turns on, otherwise it does not. The dashed curve, which corresponds 

to a 34-nm n-MOSFET, presents the maximum PVCR=5.5 measured at room 

temperature. 

 

III. Qualitative and Quantitative Modeling 
 

I begin the explanation by assuming that the system has reached equilibrium before 

carrying out the measurements. This means that if all contacts are grounded, the 

floating gate voltage must be also zero after some time. To accelerate the relaxing 
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process, the gate can be grounded and disconnected to release it from any charge 

excess.  

 

 

Fig. 1.13 a) Circuit diagram of a floating port   . b) Band diagrams of the 

floating port with quasi-Fermi level    separated by a potential 

barrier from the input port with quasi-Fermi level    for each of 

the three operational regions. 

 

Fig. 1.13a shows the circuit representation of a floating port with voltage   . 

When the switch is closed at        , charges start to flow across the resistance 

and start to build up on the other side, reducing the electric field inside the circuit to 

its minimum value according to Gauss law. This happens almost instantaneously 

and very quickly      . In contrast, the charging process is much slower if a 

potential barrier separates the input reservoir from the floating port, both with quasi-

Fermi levels    and   , respectively (see Fig. 1.13b). Initially, when    starts to be 

raised as a result of a negative potential applied to that contact, very few electrons 

can be thermally activated to get over the barrier. As a consequence,    remains 

unchanged and a potential drop between input and floating port is established. This 

situation corresponds to region I in Fig. 1.11. As    is further raised, electrons gain 

enough energy to surpass the barrier at a larger rate and the charging process of the 

floating port is now evident, which corresponds to region II. This happens until 

     , a moment when the floating port is considered to be full (region III). 

This qualitative model describes very well the measurements of    when the 

source is floating,    is used as a parameter,    is swept from 0 to -1 V, and 

         (see Fig. 1.14). Decrements of    increase the potential barrier height at 
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the substrate surface between drain and source, shifting the onset of regions II and 

III towards negative    values. Notice that       in region III as predicted. This 

figure also shows the measured    of Fig. 1.11. The main difference with the 

previous case is that       in region III. This is attributed to the   -dependent 

leakage current through the oxide between gate and substrate that acts as a voltage 

divider. Electron thermal emission from drain to gate is possible due to the relatively 

small potential barrier between Si and HfO2 whose height was reported to be 1.13 ± 

0.13 eV [16]. A barrier height of 0.95 eV was experimentally obtained from a 

Richardson plot (inset of Fig. 1.15). This model also explains the hysteresis effect of 

Fig. 1.12 since reversing the direction of   , leaves the gate charged.  

 

 

Fig. 1.14 Measured   -   for different    values and         . 

Comparison between the measured    of Fig. 1.11 and the 

proposed model for regions I-II and for region III. 

 

The floating gate voltage    is determined from its quasi-Fermi level   , 

which in turn is related to the charge concentration in this contact. Due to its large 

dimensions, a three-dimensional density of states can be assumed. The 

corresponding expression is 

 

 

   
  

   
 
    

 
 

   

  
(1.1) 
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where    is the effective mass,   is the Plank constant,   is the volume, and 

  
 

 
    

 

 
 is the number of injected electrons provided by the drain across the gate-

drain overlap. The electron charge is   and the gate-drain current   is approximated 

by the Schottky junction expression 

 

      
      
            

      
     

(1.2) 

 

such that    is the saturation current,   the ideality factor, and    the thermal voltage. 

The drain voltage is a ramp (         ). Therefore, the expression for the number 

of injected charges is 

 

  
     

  
  

      
      

     

   
   

(1.3) 

 

Neglecting the non-exponential terms inside the parenthesis of equation 

(1.3), substituting the result in (1.1) and dividing by the electron charge, the final 

expression for the gate voltage in region II is 

 

    
  

    
 
 

 
        

  
 

 
 

 
 
      
      

(1.4) 

 

Since the experiments were performed under quasi-DC conditions, the non-

zero total current,           , can be attributed entirely to the charging process 

(see Fig. 1.15). By fitting the Schottky expression (1.2) to the experimental total 

current  , the parameters   and    were determined. In these measurements 

           and for the current analysis           . The aluminium 

interconnection pad is the biggest segment of the gate electrode, then       

         and             . Finally, Fig. 1.14 and Fig. 1.15 show the good 

correlation between the measured Vg and the model of eq. (1.4), within region I, and 

region II.  
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Fig. 1.15 Total current ( ) and gate voltage with their corresponding curve 

fitting and model, respectively. The inset shows the Richardson 

plot with data at T = 325, 350 and 375 K. 

 

IV. Conclusions 
 

Two BJT mechanisms where demonstrated to occur in a single n-MOSFET. By non-

conventionally biasing the n-MOSFETs, the floating gate gets charged, turning off 

the superficial conduction channel and triggering the NDR effect. In a way that 

resembles a flash memory, the drain itself works as the control gate, and the main 

charging mechanism is not quantum tunneling but thermal emission. A simple 

analytical model for the floating ports that correlates very well with experimental data 

was implemented. 
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CHAPTER 2:  
Quantum Transport: Landauer Formalism 
 

This chapter provides a general perspective of the theoretical approaches 

that can lead to the determination of the charge current through a nano-scaled 

system from a full quantum mechanical perspective. It exposes the amount of 

information that, in principle, can be obtained from any physical system and the 

complications that arise in the determination of the current. The more realistic but still 

very difficult statistical quantum mechanical approach is briefly presented afterwards. 

Finally, the Landauer formalism is established as a series of assumptions that render 

a close-form expression for the current in terms of the probability of transmission.   

 

I. Quantum Mechanics: General Case 

 

The five postulates, axioms or principles of quantum mechanics are the basic rules 

in the determination of the dynamics of any physical system. By basic rules I mean 

the mathematical background and the connection between theory and experiment. In 

other words, these postulates answer the following questions: 1) How is the state of 

a quantum system at a given time described mathematically? 2) Given this state, 

how is it possible to predict the results of the measurement of different physical 

quantities? 3) How can the state of the system at time   be found when the state at 

time    is known? 

 

A. Postulate 1: System State 
 

The state of any physical system is completely determined at time    by a state 

vector,          , that belongs to a Hilbert space (i.e. a vector space with an inner 

product). 
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B. Postulate 2: Observables  
 
To every physically measurable quantity   called dynamical variable or observable, it 

can be assigned a linear Hermitian operator    whose eigenvectors form a complete 

basis of the Hilbert space that contains         . This operator has, in general, a 

spectrum of eigensolutions with discrete components, 

 

                     (2.1) 

 

but mainly a continuum spectrum, 

 

       
        

    (2.2) 

 

The result of a measurement is either a discrete eigenvalue    or a value in 

the interval of continuous eigenvalues          depending on the equipment 

resolution   . Therefore, the state of the system can be written as a linear 

superposition of the eigenvectors, discrete and continuous, of the operator   : 

 

                     

 

                 
(2.3) 

 

where the coefficients       and       are complex numbers.  

 

C. Postulate 3: Measurements 
 

A measurement of the quantity   may be represented by the application of the 

operator    on the state vector         . If the state of the system is given by (2.3) 

before the measurement of  , and a discrete eigenvalue    is observed by 

measuring it at time  , the system is in the state 
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                    (2.4) 

 

immediately after the measurement. For a measurement in the continuum instead, if 

a value in the interval          is measured, the system is in the state 

 

                     
   

    

 

 

    

       
    

   
    

 

  
(2.5) 

 

where again,    is the precision of the measuring apparatus.  

 

D. Postulate 4: Probabilistic outcome of Measurements 
 
Discrete spectra  
If the state vector is normalized (i.e.                 ), the probability of obtaining 

one of the non-degenerated eigenvalues    of the corresponding operator    when 

measuring an observable   of a system in a state       is: 

 

          
                   

    (2.6) 

 

If the eigenvalue    is m-degenerate, the probability becomes 

 

           
           

  

   
     

 
    

  

   
  

(2.7) 

 

Continuous non-degenerate spectra 
The probability density that a measurement of    yields a value between   and      

on a system which is initially in state       is  

 

      

  
     

                   
   

(2.8) 
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E. Postulate 5: Time evolution 
 

The time evolution of the state vector      of a system is determined by the 

Schrödinger equation 

 

  
 

  
                             

(2.9) 

 

where       is the Hamiltonian operator corresponding to the total energy of the 

system. In general,    is the many-body Hamiltonian, sum of the kinetic energy of all 

particles, all interaction energies between them, and any other interaction energy 

(e.g. the one due to external fields). There is no indeterminacy in the time evolution 

of a quantum system. Indeterminacy appears only when a physical quantity is 

measured. However, between two measurements, the state vector evolves in a 

perfectly deterministic way, in accordance with equation (2.9). 

 

II. Quantum Mechanics: Carrier transport 

 

Since in this work the interest is focused on the quantum transport of charge 

carriers through nanostructures, the corresponding Hamiltonian    and current 

operator    must be specified. The former represents the system under study and the 

later the measuring apparatus. As stated, the act of measuring is the application of 

the operator    on the state vector         , which is a solution of the Schrödinger 

equation. Then, for a system under the influence of a time-dependent 

electromagnetic field, the current density operator can be stated as 

 

         
 

 
               

 

  
(2.10) 

 

where the sum extends to all particles with position operator     and velocity operator 

                     . Here,     is the momentum operator,        is the vector 

potential,   is the electron charge and   its mass. Besides, for any two operators    
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and   , the anticommutation relation is defined by                    . Integrating the 

current density operator over a surface  , the current operator can be determined, 

 

                
(2.11) 

 

Since a measurement provides, at most, a probabilistic outcome, it is of 

practical interest to calculate the average or expectation value among all possible 

outcomes or results of measuring    when the system state is         . In formal terms, 

the expectation value of an observable can be determined as follows: prepare a very 

large number of identical systems each in the same state         . The observable    is 

then measured on each of these identical systems. Then, the average value of all 

these repeated measurements is called the expectation value of    with respect to the 

normalized state          and can be expressed as:  

 

                       (2.12) 

 

III. Statistical Quantum Mechanics 
 

Modeling a transistor-like device (i.e. considering the conduction channel and 

contacts) using the Schrödinger equation is extremely difficult, since it is composed 

of millions of atoms (e.g. the density of atoms of a silicon crystal is about 5 x 1010 

atoms/um3). The state vector          of such a system would have 3N degrees of 

freedom, where N is the number of particles that compose the system. The needed 

initial condition           to solve the Schrödinger equation at time   cannot be 

provided by an average quantity like a current measurement. To determine the state 

vector at a specific moment    means that the maximum amount of information has 

to be known at that instant, according to the uncertainty principle. This means that in 

order to find          , a complete set of commuting observables has to be measured. 

In simple words, a series of measurements must be performed before           is 

determined and each measurement must be independent of the others. For example 

position and momentum observables do not commute since a measurement of one 
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disturbs the other. It is clear that if a quantum mechanical approach to the carrier 

transport in nanostructures is desired, a set of simplifications is needed.  

 

 

 

Fig. 2.1 An ensemble of identical copies of a system, each described by 

a state vector           occurring with probability   .  

 

A. Statistical Quantum Mechanics: Closed Systems 
 

If the quantum-mechanical state of the system is not known exactly, it can only be 

discussed what is the probability    that the system is in the state           at any given 

time  . It is thus convenient to envision an ensemble of identical copies of the 

system, all prepared with similar, but not necessarily identical, initial conditions (see 

Fig. 2.1). Then, the set      
       

   of all possible micro-states         
  and their 

probability    of occurring in the ensemble is called a macro-state of the system, or a 

mixed state. In order to represent a probability, the classical probabilities      have to 

add to unity (      ). 

The density operator or statistical operator is a useful way to describe a 

quantum system in a mixed state (i.e. a statistical ensemble of several quantum 

states). By definition the density operator is 

 

                           

 

   (2.13) 

 

The equation of motion for the density operator known as the Liouville−von 

Neumann equation can be easily obtained from the time-dependent Schrödinger 

equation (2.9) and turns out to be 
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(2.14) 

 

where                     is the commutator of any two operators    and   . By 

performing both a quantum-mechanical average over the normalized states of the 

system, and a classical average over the ensemble, the expectation value of the 

current operator is 

 

                        

 

              (2.15) 

 

The above results can also be extended to the case in which the Hamiltonian 

itself is not known exactly (i.e., when the Hamiltonian    contains some unknown 

components, or components that may vary randomly). Let us call     each 

Hamiltonian in this ensemble of random or stochastic Hamiltonians, and     the 

probability that this Hamiltonian appears in the ensemble. Then, it can be defined a 

density operator   

 

                

 

   (2.16) 

 

where each        is of the kind of equation (2.13) that satisfies expression (2.14) for a 

given Hamiltonian    . The time evolution of       is not known in a closed form, and in 

order to find it, one needs to evaluate the average (2.16), at every time step, over all 

stochastic evolutions of each element of the ensemble of Hamiltonians. Despite of it, 

the expectation value can be expressed as 

 

                      

 

 (2.17) 
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B. Statistical Quantum Mechanics: Open Systems 
 

Consider now the case in which the system can be separated into two subsystems, 

the nano-system under study and everything external to it (e.g. the measuring 

equipment or battery). In this case, it would be necessary to solve for the total 

Hamiltonian       that describes de dynamics of the particles (e.g. electrons and 

ions) conforming the nano-system of interest (   ), plus those particles corresponding 

to the external circuit (   ), and the interactions between these two systems      , 

 

                             (2.18) 

 

where     and     are the identity operators in the Hilbert space of the nano-system 

and the external circuit, respectively. The tensor product is represented by the 

symbol  . 

If the interest is focused in the dynamics of the electrons alone in the nano-

system, the density operator can be calculated by tracing out all degrees of freedom 

associated with the external circuit from the statistical operator          of the total 

system (i.e. one of the type of (2.13)), and maintaining only the degrees of freedom 

associated with the nanoscale system  

 

                       (2.19) 

 

In general, this does not lead to a closed equation of motion for the reduced 

statistical operator       . Nonetheless, if it is assumed that the battery degrees of 

freedom are dense in energy, and all their correlation times are very short compared 

to the electron dynamics –namely, the degrees of freedom of the battery are much 

faster than the degrees of freedom of the system– an equation of motion of the form 

known as Linbland or master equation can be written as 

 

       

  
          

(2.20) 
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for some super-operator  . The expectation value in this case is 

 

                   (2.21) 

 

IV. Landauer Formalism 
 

The Landauer formalism consists of a series of simplifications that lead to a closed-

form expression of the current. I will expose these approximations in the rest of this 

chapter starting from the assumption of having an open nano-scaled system (one 

exposed to external contacts) whose dynamics can be described by an equation of 

the type (2.20).  

 

A. Approximation I: Ideal Steady State 
 

For an arbitrary operator  , equation (2.20) may or may not have a steady state 

solution in the long-time limit. In other words, a density operator     such that 

                   may or may not exist. If it does, this solution may not be 

unique. To assume that (2.20) does admit a unique stationary solution is the first 

simplification in the Landauer formalism. Then, the expectation value simplifies to: 

 

                         (2.22) 

 

B. Approximation II: Mean-Field Approximation  
 

An arbitrary partitioning of the system’s Hamiltonian     must be performed. Without 

this approximation, no closed form for the electrical current can be obtained. Let us 

assume that     can be separated into two terms: 

 

              (2.23) 
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Here,      is a single electron Hamiltonian at most experiencing the mean 

field of other electrons in the presence of the ions that do not belong to the nano-

scale junction.     represents the interaction energy between electrons beyond the 

mean field in the nanojunction, and the interaction energy of these electrons with the 

ions of the junction. 

So far, all of the operators have been defined independent of the basis. 

However, it is desirable to calculate every quantity in terms of position (e.g. the 

current is derived from a surface integration of the current density). Therefore, the 

position representation of the operators is a good choice. In the position 

representation, the basis consists of an infinite set of vectors        , which are 

eigenstates of the position operator   . Thus, the position representation of the state 

vector, known as the wave function, is                   . The momentum operator is 

expressed        . In what follows, I will assume that the single-particle 

Hamiltonian can be generally written as 

 

   
 

  
             

 
          

(2.24) 

 

such as the Schrödinger equation is 

 

            
 

  
       , (2.25) 

 

and the current density or expectation value of the current density operator is 

 

        
 

   
    

                         
                         

    
(2.26) 

 

The potential energy        may be, for example, the sum of the Hartree 

energy, the exchange-correlation energy, the energy due to the electron-ion 

interaction, and any other possible external potential energy. It describes all these 

interactions for the complete electrode-nanojunction-electrode system. Here, I have 

also implicitly assumed that electrons scatter with static ions. By doing so I am 

considering only elastic scattering where the energy is conserved, while single-
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particle momentum changes. This amounts to saying that the time it takes electrons 

to relax energy due to any inelastic interaction is much longer than the time it takes 

electrons to traverse the junction. Similarly for the time it takes them to relax phase, 

as if all the energy relaxation and all dephasing effects occur in the reservoirs. This 

is clearly an idealization. However, in terms of the magnitude of the total resistance 

considering the scattering problem as phase-coherent turns out to be not a bad 

approximation. The reason is that the majority of the resistance is due to elastic 

scattering at the nano-junction, while the inelastic component generally gives a small 

contribution, both from electron-phonon and electron-electron interactions [17]. 

 

 

Fig. 2.2 Schematic representation of the analogy system under study. 

We can replace the dynamical coupling with the reservoirs with 

scattering boundary conditions at infinity. 

 

C. Approximation III: Wave-Guide Boundary Conditions 
 

Once the problem has been considered ideally stationary and    has been defined, 

the role of the reservoirs is simply to continually prepare electrons in the distant past, 

and far away from the nano-system, into wave-packets, which then move towards or 

away from the junction, without changing the current in time. Thus, the idea of 

solving the open quantum problem represented by an equation of the type (2.20) can 

be abandoned and instead the ¨openness¨ can be replaced with wave-guide 

boundary conditions. These wave-packets are now injected into the nano-system 

from regions of space called leads or electronic wave-guides. The waves scatter on 
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the nano-structure, and then move far away from it without suffering further 

scattering, so that they turn into different wave-packets propagating in the leads in 

the distant future. These are known as wave-guide boundary conditions. The system 

under study is now a closed but infinite system in a pure or micro-state.  

A diagram that represents a z-slide of the general system under study is 

shown in Fig. 2.2. The system can be divided into a “device” region   , and several 

waveguide or lead regions,                , which extend to infinity in the x-y 

plane. The boundaries of region    are                , and   , being    the 

boundary between the lead region    and the device region   , while    denotes the 

rest of its boundary. The lead boundaries are denoted     . The problem in a lead is 

basically two-dimensional due to the intrinsic uniformity along its length where the 

particle moves freely. Therefore, it is convenient to define a right-hand local 

coordinate system for each lead  , 

 

                                            (2.27) 

 

such that     is the unitary vector parallel to the lead walls and points away from   . 

Thus, the Hamiltonian for lead   turns out to be 

 

    
  

  
  

             
(2.28) 

 

and the corresponding time-independent Schrödinger equation,  

 

                              (2.29) 

 

with a general solution at a given total energy    

 

                
   

     

  

   

    
   

     

  

   

    
  

  
  

    

 

       

  

(2.30) 
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This is the general state that one electron can occupy and consists of a linear 

superposition of incoming traveling-wave states, 

 

  
        

         
    

     (2.31) 

 

outgoing traveling-wave states 

 

  
        

         
    

      (2.32) 

 

and evanescent exponentially-decaying states 

 

  
  

       
  

        
   

  
    (2.33) 

 

The coefficients   
  are an input to the problem, while the coefficients   

  and 

  
  

 are unknown complex numbers that must be calculated as part of the solution. 

The amplitude   
        , taking       or   , is the oth-eigenstate or transversal 

mode of the two dimensional Schrödinger equation 

 

  
  

  
 

 

   
 

 

   
              

           
   

          
(2.34) 

 

The wave vector for the oth mode in the ith lead is given by 

 

  
                 

     
(2.35) 

 

and the number of traveling waves or transversal modes    allowed in the lead is the 

maximum   such that     
 . Once the transversal solutions   

         have been 

calculated separately, the boundary conditions at the boundaries between the 

system and the leads,                , must achieve the continuity of both the wave 

function and the directional derivative of the wave function, 
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              (2.36) 

                       (2.37) 

 

D. Current per Mode 
 

Lets now calculate the current through a given cross sectional surface along the lead 

 . For this, the current density (i.e. the expectation value of the current density 

operator) with only the paramagnetic component for the general state    can be 

stated as 

 

                                    
   

  
           

        
                

(2.38) 

 

I then integrate the current density over a plane perpendicular to the    

direction to calculate the average current  

 

             
 

    
   

  
         

   
     

   
   

     
       

   
    

  

  

   

  

  

  
(2.39) 

 

Consider a two-port system that consists of two leads (i.e.     and    ) connected 

to a nano-structure. Consider now an electron in lead   in an initial eigenstate   
      

of    with momentum    
  such that     

      
        . At the nano-system   , 

this state may be very complicated, according to the form of the potential energy 

     . Nonetheless, a linear combination of    reflected eigenstates of    is reflected 

back into lead   in addition to   
      after scattering at the nano-structure,  

 

  
        

         
    

     

  

   

  

(2.40) 

 

Deep into lead  , a linear combination of    eigenstates of    is transmitted 

into lead   
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(2.41) 

 

The superscripts    indicate that the coeficients   
   and   

   of the reflected 

and transmitted states, respectively, result from the injected particle in the state 

  
     . The contribution of evanescent modes was neglected because they do not 

carry any current. The application of (2.39) to (2.40) and (2.41), respectively, leads to 

 

  
       

        
    

    

  

   

    
              

  

   

   

(2.42) 

and, 

  
        

    
    

  

   

    
           

  

   

  

(2.43) 

 

The reflection probability for a wave-state incident on the nano-structure with 

momentum    
  to be scattered back into the same lead   in a state with momentum 

   
 , while the energy is conserved, is 

 

           
    

   
     

   
     

  
(2.44) 

 

Similarly, the transmission probability that the wave with initial momentum 

   
  is transmitted across the nanojunction into lead   in a final state with momentum 

   
 , at the same energy, is 

 

           
    

   
     

   
     

  
(2.45) 

 

I have defined the current carried by each mode independently as 
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(2.46) 

  
       

   
 

 
  

(2.47) 

and, 

  
      

   
 

 
  

(2.48) 

 

Imposing the steady state condition, the current in lead 1 must be identical to the 

current in lead 2. Thus, expression (2.42) must be equal to (2.43) stating the 

conservation of particle flux as 

 

       

  

   

        

  

   

    

(2.49) 

 

E. Approximation IV: Independent-Channel Assumption 
 

If the channels are assumed independent, the total current in the system is the sum 

of the current carried by all particles each in a different state. It is thus needed to 

multiply the one particle current   
       

     by the number of states in an 

infinitesimal energy range    (i.e.   
      ), to integrate in energy and to sum over 

all the    incident channels. Since each channel represents a one-dimensional 

problem, the density of states for a momentum   
  (considering the spin of the 

electron) is simply 

 

  
       

    

 
 

      
    

(2.50) 

 

Then, the current generated by channel   in the energy range    is 
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(2.51) 

 

The channels are populated according to the Fermi-Dirac statistics,         

                , that applies to identical non-interacting particles with half-integer 

spin in a system in thermodynamic equilibrium. Thus, multiplying (2.51) by the Fermi 

function corresponding to lead 1,        
  , and integrating over all energies, the 

one-channel current in lead 1 is: 

 

  
  
 

             
    

      
            

  

   

 

  

  

    

(2.52) 

 

An important result of mesoscopic physics is that the density of states times the 

current, both corresponding to one specific transmission channel, is constant: 

 

  
      

      
 

  
  (2.53) 

 

Adding the contribution of all incident channels, the total current in lead 1 is: 

 

  
            

  
 

   

  

   

 
 

  
        

       

  

  

   

(2.54) 

 

where the total transmission coefficient is 

 

              

  

   

  

   

 

(2.55) 

 

Similarly, the total current in lead 2 is 
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(2.56) 

 

Finally, due to time-reversal invariance the above relations must hold even if we 

revert the velocities of initial and final states, by changing simultaneously the 

directionality of the scattering process. Then, the total transmission probabilities in 

lead 1 and 2 are equal, 

 

           , (2.57) 

 

and the total current in the system, known as the Landauer formula, can be 

expressed as 

 

                
      

 

  
        

         
         

  

  

 

(2.58) 

 

Where the Fermi levels and the externally applied voltage   are related to each other 

according to 

 

     
    

  (2.59) 

 

V. Conclusions 
 

The determination of the current in a nano-structure is reduced to the calculation of 

the total transmission coefficient      which is equivalent to solve the Schrödinger 

equation with wave-guide boundary conditions. Two popular procedures to solve it 

are the Quantum Transmitting Boundary Method [18] and the Green’s Function 

Method [19]. In the next chapter, an analogy between the Schrodinger and Maxwell 

equations that show direct equivalence between the quantum transmission 

probability and the S-parameters calculated from full wave simulations will be 

demonstrated.  
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CHAPTER 3:  
Analogy Between Maxwell and Schrödinger Equations Valid 
for Two-Dimensional Systems with Wave-Guide Boundary 
Conditions 
 

A time-independent Maxwell-Schrödinger equation analogy is carried out for two-

dimensional systems with wave-guide (lead) boundary conditions. On the lead 

boundaries, the third-order boundary conditions for the electric field reduce to the 

normal derivative of its z-component, adopting the same form of the equivalent 

boundary conditions for the Schrödinger equation. The total energy and position-

dependent potential energy are included in the set of quantities that have an 

equivalent electromagnetic parameter. Standard electromagnetic analysis methods 

were applied to determine the wave function and transmission probability of phase-

coherent quantum electron devices including a tunneling structure. The Schrödinger 

equation was solved via the Quantum Transmitting Boundary method for comparison 

with the electromagnetic simulations. 

The remarkable similarities between the time-independent Schrödinger 

equation and the Helmholtz equation (i.e. the time-independent form of Maxwell 

equations) have led to de design of many new quantum electron devices where 

standard electromagnetic analysis techniques have been applied to study the 

interference, propagation, reflection, refraction and diffraction of electron waves [20]. 

Exact quantitative electromagnetic analogies exist for all forms of the general 

Hamiltonian [21], which applies to single-band effective-mass electron wave 

propagation in semiconductors. It has been further shown that these analogies are 

valid for propagation in the bulk, propagation through an interface between dissimilar 

materials, and propagation within one- and two-dimensional (2-D) inhomogeneous 

materials [22,23]. The position-dependent potential energy has been included 

approximately as a quantity with an equivalent electromagnetic parameter in the 

case of 2-D closed systems by imposing bound states in the third dimension [24].  
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The purpose of this thesis is to extend the previous analogy applicable to 

two-dimensional inhomogeneous systems adding the possibility of having current-

carrying states or propagation modes via wave-guide boundary conditions. For the 

first time, the total energy and position-dependent potential energy are incorporated 

in the set of quantities with an equivalent electromagnetic parameter by direct 

comparison between electron waves propagating in a semiconductor heterostructure 

and electromagnetic waves traveling across plasma. This analogy represents an 

alternative approach to compute the wave function for arbitrarily shaped device 

regions with intricate internal potentials [25] and is suitable for the calculation of the 

quantum transmission probability, through the determination of the S-parameters 

from full-wave electromagnetic simulations. The transmission probability is frequently 

used to calculate the total current when electrons are coherent over the device 

region via Landauer-like formulas [19,17].  

Section I of this chapter presents the schematic diagram of the system where 

the analogy will be developed. The governing electromagnetic equation and the 

corresponding boundary conditions will be presented in Sec. II. The analogy will be 

stated in Sec. III, after the quantum equivalent equation and boundary conditions are 

presented. A resonant cavity and a tunneling resonant structure are presented in 

Sec. V as examples of the application of this analogy. Section V states the 

corresponding conclusions.  

 

 

Fig. 3.1 Schematic representation of the analogy system under study. 
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I. The Study Case 
 

A diagram that represents the general system where the analogy is shown to be 

valid is depicted in Fig. 3.1. The system is assumed to be homogeneous in the z-

direction. Besides, the system can be divided into a “device” region   , and several 

parallel-plate waveguide or lead regions,              , which extend to infinity in 

the x-y plane. The boundaries of region    are   , being               the 

boundaries between a lead region,   , and the device region,   , while the rest of its 

boundary is denoted   . The lead boundaries are denoted     .  

 

II. Electromagnetic Case 
 

A. Electromagnetic formulation 
 

Consider the problem illustrated in Fig. 3.1, and assume that only   -polarized 

waves are injected by the leads into de device region. Then, the scattered and total 

electric field will have only a z-component due to the uniformity of the structure in the 

z-direction. In other words, if the normal vector to the boundary surface (    and      ), 

the gradient of the permittivity and the wave number of the   -polarized incident 

waves are all contained in the x-y plane, then, the scattered waves will be   -

polarized and will have a wave number contained in the x-y plane as well. Hence, 

from the time-harmonic Maxwell equations with no free charges and currents, for a 

homogeneous permeability,  , and for a position dependent permittivity,       , the 

scalar Helmholtz equation for the electric field that corresponds to the system of Fig. 

3.1 can be expressed as 

 

                                     (3.1) 

 

such that 

 

                                        (3.2) 
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and the system has ideal conductive walls, 

 

              (3.3) 

                (3.4) 

 

It is also required that the permittivity        in each lead be independent of 

the distance along the lead (i.e. this known as a waveguide or lead). We can choose 

  to be frequency-dependent and to have the following form (e.g. the effective 

permittivity of a plasma [26]): 

 

       
  

 

  
   

(3.5) 

 

where 

 

    
   

   
 

(3.6) 

 

is the plasma frequency,   is the density of electrons,    is the vacuum permittivity,   

is the electron charge and    its mass. Therefore, when the angular frequency of the 

wave,  , falls below the plasma frequency,   , the wave number becomes 

imaginary which indicates that the wave attenuates exponentially as it propagates, in 

analogy to quantum tunneling. Hence,   
  can play the role, in the Helmholtz 

equation for the electric field, of the potential energy, in the Schrödinger equation. 

Then, the larger the concentration of particles is, the higher the potential energy 

barrier is. An absence of particles corresponds to a null barrier.  

 

B. Wave-guide boundary conditions 
 
The goal is to formulate a boundary condition on the lead boundaries,     , that 

would allow us to specify the incoming flux in each lead and to solve the Helmholtz 



 41 

equation for    in the device region   . This is known as wave-guide ports. At these 

boundaries we require both, continuity of the electric field,  

 

                 (3.7) 

 

and that the third-order boundary condition be satisfied [27], 

 

                         (3.8) 

 

Equation (3.8), under the assumptions that led to Eq. (3.1), reduces to the 

continuity of the normal derivative of the z-component of the electric field: 

 

                           (3.9) 

 

     can be expressed as a sum of traveling and evanescent modes in the 

leads whose amplitudes are to be determined as part of the problem’s solution.  

 

III. Quantum Case and the Analogy 
 

The equivalent time-independent Schrödinger equation corresponding to the 

structure of Fig. 3.1 is 

 

                                            (3.10) 

 

such that 

 

                                 (3.11) 

 

The corresponding boundary conditions at the hard walls       and at the 

wave-guide boundaries are: 
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            (3.12) 

              (3.13) 

              (3.14) 

                       (3.15) 

 

TABLE I. Analogous parameters for the quantum/electromagnetic wave propagation 

QUANTUM ELECTROMAGNETIC 

     

              
  

            

 

Now, since the form of the governing equations (Eq. (3.1) and Eq. (3.10)) and 

their respective boundary conditions (Eqs. (3.3), (3.4), (3.7) and (3.9), and Eqs. 

(3.12)-(3.15)) for the device and lead regions are the same, the Maxwell-Schrödinger 

analogy for two-dimensional systems with wave-guide boundary conditions is fully 

valid. The resulting set of analogies is presented in Table I. 

 

IV. Examples 
 

Two representative examples are presented to illustrate the analogy. The first 

one consists of a resonant cavity in a waveguide. The corresponding geometry is 

shown in Fig. 3.2. The potential energy and its electromagnetic counterpart inside 

the device and lead regions are null. Fig. 3.3 and Fig. 3.4 show the wave function 

and the electric field calculated via the quantum transmitting boundary method 

(QTBM) [18] and calculated with Comsol Multiphysics [28], respectively. The 

solutions were calculated for an incident wave coming from the left with an energy 

         in the first propagation mode of the waveguide.    is the onset energy of 

the first transversal mode. A comparison between the transmission coefficient, T, 

(solved via the QTBM) and the squared magnitude of the S21-parameter (solved 
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with Comsol) as a function of energy for the first transmission mode is shown in Fig. 

3.5.  

 

 

Fig. 3.2 The scattering geometry 

 

 

Fig. 3.3 Wave function, calculated via the QTBM,  for an incident wave in 

the first propagation mode with a normalized energy of      

   . 

 

 

 

 

Fig. 3.4 Electric field, solved with Comsol, for an incident wave in the first 

propagation mode with an equivalent normalized energy of 

        . 
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Fig. 3.5 A comparison between the transmission, T, (via the QTBM) and 

the squared magnitude of the S21-parameter (via Comsol). 

 

The second example consists of a resonant tunneling structure in a 

waveguide. The corresponding geometry is shown in Fig. 3.6. Note that two potential 

barriers were added. Fig. 3.7 and Fig. 3.8 show the wave function and the electric 

field calculated via the QTBM and calculated with Comsol Multiphysics, respectively. 

The solutions were calculated for an incident wave coming from the left with an 

energy           (the resonant tunneling peak) in the second propagation mode of 

the waveguide.    is the onset energy of the second transversal mode. A 

comparison between the transmission coefficient, T, (solved via the QTBM) and the 

squared magnitude of the S21-parameter (solved with Comsol) as a function of 

energy for the second transmission mode is shown in Fig. 3.9.  

 

 

Fig. 3.6 The scattering geometry. 
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Fig. 3.7 Wave function, calculated via the QTBM, for an incident wave in 

the first propagation mode with a normalized energy of      

    . 

 

 

Fig. 3.8 Electric field, solved with Comsol, for an incident wave in the first 

propagation mode with an equivalent normalized energy of 

         . 

 

 

Fig. 3.9 A comparison between the transmission, T, (via the QTBM) and 

the squared magnitude of the S21-parameter (via Comsol). 
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V. Conclusions 
 

An analogy between the time-independent form of the Maxwell equations and the 

time-independent effective-mass Schrödinger equation was presented. It was proved 

that this analogy is valid for two-dimensional systems with wave-guide boundary 

conditions and introduced two examples that illustrate the analogy. This analogy, 

when fulfilled, is an alternative strategy to calculate the wave function without 

actually solving the Schrödinger equation, and it might represent an advantage when 

full wave simulation software is available. In addition, the calculations introduced in 

this work are applicable to the study of carrier transport in a large variety of quasi 2-

D semiconductor structures, where electrons are coherent over the device region 

due to its small dimensions, a condition that is reinforced when the device is 

operated at low temperatures or exposed to a high magnetic field.  
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CHAPTER 4:  
Multiport Analysis of Two-Dimensional Nanosystems in a 
Magnetic Field Based on the NEGF Formalism 
 

When full quantum mechanical characterization and modeling of charge carrier 

transport in nano-scaled semiconductor devices is required, the Non-Equilibrium 

Green’s Function (NEGF) formalism is the most prominent theoretical approach now 

days. In fact, the NEGF formalism is considered the quantum version of the 

Boltzmann transport theory. Based on this theory, a systematic analysis of different 

multiport nanostructures modulated by the action of a magnetic field is introduced in 

this chapter.  

With the purpose of improving device performance and increase integration 

density, modern transistors are down scaled to a 10 nm size and below. At these 

device dimensions, electrons (or holes) travel from source to drain without suffering 

inelastic scattering. Under this condition, the dynamics of the carriers in the channel 

is deterministic and is represented by the Schrodinger equation. The Non-

Equilibrium Green’s Function (NEGF) formalism provides an efficient manner to 

impose the appropriate boundary conditions needed to solve the Schrodinger 

equation. Therefore, the NEGF formalism can be used to analyze the wave nature of 

the carrier transport in a large variety of nano-scaled semiconductor devices. 

There is a variety of nano-scaled MOSFET models. However, many of them 

apply semi-classical approaches that treat the electrons only as particles, neglecting 

the possible phenomena resulting of the wave nature of the electrons [29,30]. Some 

models include the influence of a magnetic field classically, which is incorrect at high 

field intensities [31]. Other descriptions consider only two ports or include the 

influence of another port by post-processing the resulting two ports data [32]. There 

are quantum models of one-dimensional nanostructures [33,34], but in this case the 

charges cannot be deflected by a magnetic field. Therefore, a multiport analysis that 

uses a magnetic field as an auxiliary modeling tool, will render in the development of 
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a wave-nature new transistor model, very much required for the new sub 10 nm 

scale era. 

A systematic analysis of representative nanostructures shows the non-ohmic 

behavior of nano-systems under different electrical bias conditions. In addition, 

extreme cases in the analysis that agree with the theory of quantum transport are 

introduced as a way to validate the results. 

The rest of this chapter is organized as follows: Section I briefly describes the 

NEGF formalism. Section II shows the quantum transport analysis of one-

dimensional systems, and Section III extends the analysis to bi-dimensional multiport 

structures under the influence of a magnetic field and shows the simulation results. 

 

I. NEGF Formalism. 
 

The kind of devices analyzed in this chapter is the one composed by reservoirs and 

baths that surround and perturb the nano-structure of interest in the way explained in 

chapter 2. A reservoir is a subsystem that is assumed to remain in local equilibrium 

all the time and that can exchange particles with the nanostructure. A bath is a 

subsystem that only exchanges energy but not particles. The transistor belongs to 

this category since the source and drain contacts constitute the reservoirs, the ideal 

gate is the bath that is able to induce an electric field and the channel is the nano-

structure of interest. In this case, it is said that the channel is open to the contacts. It 

must be emphasized that the analysis will include only elastic scattering inside the 

channel and that all the heat dissipation occurs in the contacts.  

 

 

Fig. 4.1 Schematic view of the channel coupled to the contacts. 
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An open system, like the transistor, is mathematically described by the 

Hamiltonian of the channel   and the self-energies corresponding to the source and 

drain contacts (     ) [35]. The Hamiltonian represents the dynamics of the charge 

carriers inside the channel (kinetic and potential energy) and the self-energies 

represent the level of coupling between the contacts and the channel (see Fig. 4.1). 

In fact, the self-energies play the role of the leads in chapter 2. The time-

independent Schrödinger equation for one particle corresponding to an open system 

is (in matrix form): 

 

                    (4.1) 

 

Where   is the total energy;   is the identity matrix of the same size as the 

Hamiltonian of the isolated channel  ;   is the wave function and   corresponds to 

an external perturbation (current and voltage probes). This equation is the discrete 

version of a non-homogeneous differential equation. 

The Hamiltonian of the isolated channel including the electromagnetic fields 

is:  

 

  
 

  
           

 
       

(4.2) 

 

where   and   are the vector and scalar potentials that correspond to the 

electromagnetic field and   is the electron mass. The system Hamiltonian   by itself 

represents a closed system and does not describe the in and out flux of electrons 

from the channel. On the other hand,              can be considered as an 

effective Hamiltonian that allows the desired charge flux to occur when the 

appropriate boundary conditions are imposed by the contacts (i.e. wave-guide 

boundary conditions). The energy dependent quantities    and    can be 

numerically determined by a recursive procedure [19]. 

Since this work focuses on determining macroscopic observables such as the 

current, it is important to determine the probability that an electron injected from a 

contact into the channel has to be transmitted to the other contact. The transmission 

probability is defined as: 
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   (4.3) 

 

where  

 

          
                   

   (4.4) 

and 

 

              
    (4.5) 

 

Note that   is the Green’s function of the open system and      represents the 

conjugate transpose operator. Finally, the equation for calculating the current as a 

function of the transmission is (2.58): 

 

     
 

  
        

         
         

 

 

  
(4.6) 

 

where       
   and       

   the Fermi functions of the source and drain contacts  

 

       
 
    

 

      

  

         
 
    

 

      

  

 

(4.7) 

 

with electrochemical potentials   
  and   

 , respectively.    and   are the Boltzmann 

constant and the temperature, respectively. 

 

II. One-Dimensional Analysis (B=0) 
 

The band diagram or potential profile      versus position of a 65 nm n-MOSFET 

under different polarization voltages is depicted in Fig. 4.2. At low gate voltages, the 

energy barrier between the source and drain is high, and the device is off. A high 

drain bias lowers the energy in the drain, and when a high gate voltage lowers the 
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potential energy barrier, electrons flow from source to drain. Then, transistor action 

occurs by modulating the height of the energy barrier. 

 

 

Fig. 4.2 Simulated energy band diagrams or a 65 nm n-MOS transistor 

under different drain and gate voltages. Simulations were 

performed with Minimos NT [36]. 

 

 

 

 

 

 

Fig. 4.3 Left: electron transmission probability as a function of energy for 

electron motion across the double-barrier structure. Right: 

potential profile versus position. 

 

The result of considering the wave nature of electrons in the form of 

quantum-wave states is clearly visible in the double potential-barrier structure (see 

right plot in Fig. 4.3) where a resonance can be seen in the transmission coefficient 

(see left plot in Fig. 4.3) as well as in the current-voltage characteristics shown in 
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Fig. 4.4. Note that electrons with energy          have a unity transmission 

probability. The effective mass of the gallium arsenide at room temperature for all the 

simulations in this chapter was implemented. 

 

 

Fig. 4.4 Drain current (  ) versus drain-source voltage (   ) to a double-

barrier structure. 

 

 

Fig. 4.5 Transmission of a two-dimensional structure for different barrier 

heights. 

 

III. Two-Dimensional Analysis  
 

The presence of transversal modes in a two-dimensional system gives place to 
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gap. Hence, more than one electron with the same total energy can be transmitted 

simultaneously in analogy with an electromagnetic waveguide where different 

propagation modes can coexist. In order to save simulation time, the chosen 

structure to be analyzed is simple and small. The structure is a nanowire of 6 nm 

wide and 15 nm long.  

 

A. Different Barrier Heights (B=0 T) 
 

In order to visualize the activation of the different transmission modes, the simulated 

transmission of the nanowire under study (6 nm wide and 15 nm long) is shown in 

Fig. 4.5. For a null potential barrier (barrier height = 0), a ballistic transmission is 

obtained. The onset energies of the different transmission modes are clearly shown 

by the discontinuities at                       and           . Thus, one transversal 

mode propagates between     and       ; two transversal modes propagate 

between     and        and so on. Note that the transmission becomes continuous 

and lowers in magnitude in the presence of a potential barrier as expected. 

 

 

Fig. 4.6 Transmission of a two-dimensional structure for different 

magnetic field intensities. The potential barrier is absent for all 

cases. 
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B. Applying a Magnetic Field (B≠0 T) 
 

The influence of a perpendicular magnetic field (normal to the surface of the two-

dimensional structure) is added to the analysis. Because the structure under analysis 

is too small, very high intensities of a magnetic field are needed to observe its 

effects. Despite this, the analysis does not lack generality. For instance, in the case 

of a real MOSFET that has a width of 1 μm, the magnetic field intensities at which 

quantum phenomena become evident are relatively small (for classical effects the 

intensity needed is even smaller). Fig. 4.6 depicts the transmission of the quantum 

wire of the previous section but this time for different magnetic field intensities. The 

ballistic case is shown as a reference. The important thing to note is that at high 

enough magnetic field intensities (B = 2100 T) the transmission becomes ballistic 

again. This is evident from the formation of discontinuities. Fig 4.7 shows that even 

in the presence of a potential barrier, ballistic transmission can be achieved! This is 

known as the quantum Hall effect. In this regime the carrier transport is carried out 

near to the edges of the structure. The carrier states responsible of this are known 

as edge states. Besides, quantized transmission gives rise to the quantized 

conductance and within the quantum Hall effect regime the quantization is so precise 

that it has been established as an electrical resistance standard [37].  

 

 

Fig. 4.7 Transmission of a two-dimensional structure for different 

magnetic field intensities. The height of the potential barrier is 

0.4 eV in all cases. 
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Fig. 4.8 Left: four-port two-dimensional system. Right: transmissions for 

the multiport two-dimensional system. 

 

C. Multiport Analysis (B=0) 
 

In general, the presence of active or inactive ports modifies the quantum transport 

properties of the device being analyzed (see the diagram Fig. 4.8). The plot in Fig. 

4.8 shows, as references, the ballistic transmission from port 1 to port 2 (from port 3 

to port 4) without the presence of ports 3 and 4 (ports 1 and 2). It is interesting how 

the transmission from port 1 to port 2 lowers if port 3 or port 4 (ports 3 and 4) is (are) 

present inactively (there is not current flux across these ports).  

 

D. Multiport Analysis Including the Magnetic Field (B≠0) 
 

The transmission for all the systems analyzed until now is symmetric (time reverse 

invariant) [38]. This means that the transmission from port m to port n        is 

the same as the transmission from port n to port m       , 

 

               (4.8) 

 

However, under the presence of a magnetic field this is no longer true. In 
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                       (4.9) 

 

with the only exception of the two-port system were the transmission is symmetric, 

 

                       (4.10) 

 

The MOSFET can be considered as a three-port (four-port) system if the gate is 

considered as a contact (if the gate and bulk have a contact). Relation (4.9) is known 

as the Onsager-Casimir reciprocity relation for nano-systems. Fig. 4.9 shows that the 

simulator developed for this analysis matches the predicted behavior by the 

Onsager-Casimir reciprocity relation, validating the analysis. 

 

 

Fig. 4.9 The Onsager-Casimir reciprocity relation is matched. 

 

E. ID-VG Characteristics of the 3-port 2-D System in a Magnetic 
Field with Opposite Directions 

 

Fig. 4.10 shows the impact of changing the magnetic field direction to an opposite 

side on the drain current-gate voltage curve. The main thing to consider is that for 

         the respective values for    is larger for the curve corresponding to the 

positive magnetic field and for          the corresponding values for    are greater 

for the negative magnetic field. 
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Fig. 4.10 Relationship       of the three-port two-dimensional system in 

a magnetic field with opposite directions. 

 

IV. Conclusions 
 

A quantum analysis where the electron’s wave nature was accounted for was 

presented for a different variety of semiconductor nanostructures. The influence of 

an external magnetic field as well as different potential profiles has been included, 

which serves as an exploratory tool to study magneto-quantum effects in nano-

scaled semiconductor devices, like MOSFETs, FinFETs, nano-wires, and quantum 

dots. This analysis and model is expected to serve as a tool for device designers to 

optimize the electrical performance of nano-scaled semiconductor devices. 
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