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Elementary long-range plasmon modes are described assuming an exponential dependence of the refractive index in the neighbour-
hood of the interface dielectric-metal thin film. The study is performed using coupling mode theory. The interference between two long-
range plasmon modes generated that way allows the synthesis of surface sinusoidal plasmon modes, which can be considered as com-
pletely coherent generalized plasmon modes. These sinusoidal plasmon modes are used for the synthesis of new partially coherent
surface plasmon modes, which are obtained by means of an incoherent superposition of sinusoidal plasmon modes where the period
of each one is considered as a random variable. The kinds of surface modes generated have an easily tuneable profile controlled by
means of the probability density function associated to the period. We show that partially coherent plasmon modes have the remarka-
ble property to control the length of propagation which is a notable feature respect to the completely coherent surface plasmon mode.
The numerical simulation for sinusoidal, Bessel, Gaussian and Dark Hollow plasmon modes are presented. [DOI: 10.2971/j€05.2011.11009]
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1 INTRODUCTION

Elementary surface non-
homogeneous electromagnetic waves propagating on the
interface of a dielectric-metal media. An interesting feature
of surface plasmon modes is its interaction with other struc-
tures such as nanoparticles, this interaction has been report-
ed by several authors. Interesting physical features have
been presented, for example, the spectroscopy properties of a
single nanoparticle when it is deposited on different sub-
strates [2]-[4]. Essentially, the interaction between surface-
nanoparticle implies that some physical concepts must be
readapted to this configuration, and in a particular manner
the concept of refractive index. This is due to the fact that in
the optical classical model the configuration for the change
between two media makes use of an abrupt change in the
refractive index avoiding the index transition. However, be-
ing a surface effect it is necessary to implement a model to
describe the surface changes in the refractive index to reflect
the physical reality.

For a semi-infinite media, the electric field for an elementary
surface plasmon mode is

plasmon modes [1], are

E(x,z)=(fa1 +l€a2)exp{—ax}exp{iﬂz}, (1)
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where g is the dispersion relation function given by

1/2
L= 2(&} )
clég te,

w is the frequency of light, «is a parameter whose value
determines the decreasing rate in x-coordinate, ¢, and e, are
the permittivity of the dielectric and conductive media
respectively. In a media free of charge, the electric field must
satisfy V - E =0, this condition means that parameters c, o,
o and Bin Eq. 1 are related by

a, =— @a, 3)

B

where o; is a constant which depends of the excitation
strength of the surface plasmon mode, more details
concerning the physical implications of these parameters can
be found in Raether [1]. The permittivity of the conducting
media have a mathematical representation by means of a
complex number; consequently the dispersion relation
function 8 have a complex representation too. As a conse-
quence of the imaginary part of 8, among other factors such
as attenuation due to electric resistance, the elementary
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FIC. 1 Scheme to describe the interaction between two surface plasmon modes. In the left side the thickness of the metal film is large enough that no plasmon interaction

is generated. In the right side the interaction between two plasmon propagating on each side of a thin film modifies the dispersion relation function. In both cases, the

continue line represents an elementary surface plasmon generate on e; - & interface, the dashed line represents an elementary surface plasmon generated on e5 - €3

interface.

surface plasmon mode propagates short distances,
vanishing completely in about 100 pm, this represent a seri-
ous limitation in the application of the elementary plasmon
modes [5]-[7].

Related to this electromagnetic mode is the charge motion
of the free electrons that oscillates longitudinally and
transversally to the surface. A geometrical interpretation of
charge oscillations in the plasmon phenomena is that these
oscillations are determined by the trajectory of the electric
field, whose geometry can be obtained establishing an
analogy with the classical polarization model. It is easy to
show that the trajectory of the electric field on the x-z plane
is given by
E; E:

X

2E FE
Sy ———2_¢0sJ, =exp{—2ax}sin’F,. (4)
i aa ) a0 TR A

Where g =|gl exp {i5} and & = & — /2. It must be not-
ed that & depends of the permittivity associated with the
metal media. From Eq. 3 we deduce that a large 8 is desira-
ble in order to decrease the interaction of the k-component,
of the electric field with the surface, obtaining electromag-
netic waves capable of propagating long distances. The am-
plitude of k-component depends inversely on the disper-
sion relation function 8 and we consider a “more homoge-
neous” surface plasmon mode. In general Eq. 4 represents
an ellipse, and large 8 means that the mayor axis becomes
closer to the x-axis. Then we have geometrically that the

eccentricity of the ellipse is a good measure of the homoge-
neity of the surface plasmon mode.

2 LONG-RANGE PLASMON MODES

Here we describe the generation of long-range surface plas-
mon modes propagating on a interface dielectric-metal thin
film considering the refractive index as a decreasing expo-
nential function which allows us the study of resonance
effects, the analysis is performed using the coupling mode
theory. In order to obtain a long-range plasmon mode we
need to adapt the dispersion relation function g, this analy-
sis has been reported by other authors in several configura-
tions [11]-[13]. Resonance effects emerge when the interac-
tion with other surface plasmon is allowed, modifying the
trajectory of charge oscillations. The new surface plasmon
modes has an amplitude depending of z-coordinate. The
system under analysis is sketched (see Figure 1).
The refractive index for the interface is approximated by
n=n+oaexp{-px} x2d; 5)
in last equation a is a small constant that is determined by
the combination of the materials involved and 2d is the
thickness of the film. For the region x > d, we assume a simi-
lar expression for the refractive index. It must be noted
when x — oo the refractive index so expressed recovers the
classic expression for a dielectric media. The reason to pro-
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pose the expression for the refractive index comes from the
fact that a beam propagating parallel and sufficient closed to
a flat surface is bended this means that the refractive index in
the surface neighbourhood looks like no more constant, then
we have that the exponential term allows us to model the
surface effects.

The plasmon field has a vector representation, where each
scalar term must satisfy a Helmholtz equation of the form

Vo+K,; ("12 +2nlaexp{—px})go=0, (6)

in Eq. 6, a term in the form & exp {-2 px} has been
disregarded by smallness. The coupling mode theory is used
to propose a solution in the dielectric-metal interface of the
form

9(x,9,2) = A (2)exp{ - [x—d|}exp{ifz} + )
4,(2)exp{-a, |x—d|}exp{if,z}.

This solution is valid in the region near to the interface
sketched as shadow region in Figure 1. Selecting the appro-
priate sign in the phase terms and by direct substitution, we
find that the differential equations for the amplitude func-
tions A, ,(z) satisfies

i, %‘4‘ 2am A, exp{—(a, +a,)d }exp{i(B, - B,)z} =0, ®

ip, %+2anlA1 exp{—(oz1 + az)d} exp{—i(,ﬁ’2 —ﬁl)z} =0.
z

Where the second order derivatives have been omitted, this
is the slow envelope condition [14],

2 2

Ph Pk o
oz* 02>

This condition is close related with the curvature of the pro-
file solution, decreasing the interaction of the electromagnet-
ic field with the surface, which justifies on a physical basis
the possibility to generate long range plasmon modes.

The parameter p in the expression for the refractive index Eq. 5
is matched with the o;-parameter by means of the relation p
=ao; + a, which is the required condition for the resonance
between the two surface plasmon modes, this condition is
analogous to the Bragg condition [14]. The resonance effect
modifies the trajectory of the oscillation of the charges chang-
ing in consequence the dispersion relation function g.

A symmetrical configuration is obtained when the permittiv-
ity in both sides of the metal thin film has the same value, we
havethat 8, = B, = B, o=
ential equations takes the simplest form

o =a and the system of differ-

i o4, 2an A, exp{-2ad} =0,
0z

oA (10)

ip 6_2+ 2an, 4, exp{-2ad} = 0;
Z

whose solution is

A ,(z)=c,, exp {i (2?‘ exp {—Zad}j Z} +

€y, CXP {—i ( 22”‘ exp {—2ad}j z} ,

where ¢,,, ¢, are arbitrary constants. Then we have that the

(11)

expression for long-range plasmon modes is of the form

o(x,z) =cexp {—ax} exp

1/2 -1/2 12
{izw[(s‘gz] +2an1( 15 ] eXp{Zad}]} 12
clle+e & +¢,

Where the modified dispersion relation function is given by

172 -1/2
B= 2{(&} + Zanl[ Si%2 ] exp{—Zocd}}, (13)
c|lg+e, £ +e,

Is easy to show that in this representation the sum of the

imaginary parts is lower than the imaginary part of the
relation dispersion function for semi-infinite media, given us
the ability to increase the length propagation of the surface
plasmon mode. This relation has a view similar to the one
obtained in references [11, 15]. However, our expression
allows us to associate a geometric interpretation for the
charge oscillations [16, 17] sketched (see Figure 1). In
addition, the coefficient for the decreasing exponential term
depends on the refractive index parameters which are
necessary to describe the surface effects. These effects are
relevant when two surfaces are sufficiently near each other
or a particle is placed in the surface neighborhood. It must be
noted that a # 0, however, when d — o the obtained dispersion
relation function recovers the form for a semi-infinite media.

3 INTERACTION BETWEEN TWO LONG-RANGE
PLASMON MODES: COHERENT CASE

Eq. 12 is the expression for a component of the electric field
propagating along the z-coordinate. In order to generate the
interference between two long-range plasmon modes, it is
necessary to represent the long-range plasmon mode propa-
gating on the y-z plane. The corresponding expression can be
obtained by means of a rotation respect the x-axis, having the
transformation of coordinates x — x; z — z cosf * ysind.
The physical configuration to generate the interference be-
tween two long-range plasmon modes is similar to Young's
experiment that consists in two sub-wavelength apertures on
a conductive thin film. From each aperture emerges a long-
range plasmon mode, the expression for the coherent
interference is

E(x,y,z)=

(fa +kbcos@+ jbsin H)exp{—a]x} exp{iﬂ(z cos @+ ysin «9)}+
(fa +kbcos@— jbsin H) exp{—a,x}exp {iﬂ(zcos@—ysin 9)} (14)
= (2(?a+l€bcos€)cos(ﬂysin 6)+j2ibsinc9sin(ﬂysin¢9))x

exp{-a,x}exp{ifzcosb}.
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With g given in Eq. 13 Eq. 14 can be considered as a plasmon
diffraction free mode because the field intensity for long dis-
tances of propagation remains unchanged, this same approx-
imation was used by Durnin [9], then we have that the field
intensity is

I(x, y,z) =
4(a2 +b’ cos’ 6?) cos’ ( Bysin@)+4b’ sin’ Gsin’ ( Bysinf)x  (15)
exp{—2a,x} exp{—2 Im( ) z} .

For small angle 6 the expression for generalized plasmon
modes can be approximated as

E(x,z)=

(fa + lgb)cos (Bysin@)exp{-a,x}exp{ificosfz}, (16)

and it is considered as the expression for a generalized plas-
mon mode completely coherent in the paraxial approxima-
tion. Using the fact that a and b may be complex numbers,
the field intensity distribution can be rewritten as

I(x,y,z) =

¢’ cos® (Bysin 0 +1)exp{—2a,x} exp{—2 Im(ﬂ)z}, a7

where n is a phase term. Up to now, we have that sinusoidal
surface plasmon modes represent an expression for a com-
pletely coherent generalized surface mode. It must be noted
that Eq. 17 is a parametric representation for surface plasmon
modes. The parameters #and n allows to incorporate partial-
ly coherent features as it is described in the following sec-
tion.

In Figure 2 we show the field intensity distribution for a si-
nusoidal plasmon mode, the parameters employed in the
numerical simulation are a gold film with thickness of 20 nm,
the wavelength is 500 nm, the substrate has a refractive index
of 2, the range of values for p is 0.01 nm™ to 0.023 nm", These
values were obtained using the fact that a surface plasmon
mode can propagate 100 nm. into the dielectric media, ac-
cording to Raether [1]. With these parameters we expect that
the plasmon mode propagates between 500 pm to 1000 pm.

4 GENERALIZED SURFACE PLASMON MODES:
PARTIALLY COHERENT CASE

It is a well known fact that the spatial frequency representa-
tion for diffracting free beams propagating in free space
must be on a circle. The corresponding frequency representa-
tion for a generalized surface plasmon mode consists of two
points as may be deduced from Eq. 14. These two points are
obtained by intersecting the frequency circle with the inter-
face plane. These are the reasons why sinusoidal modes rep-
resent generalized completely coherent surface plasmon
modes. Additional details concerning the frequency repre-
sentation for diffracting free beams can be found in refer-
ences [7]-[10].
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FIG. 2 Sinusoidal profile of the field intensity distribution generated by interfering

two long range plasmon modes propagating on x = o plane.

The partially coherent surface plasmon mode can be ob-
tained by means of an ergodic superposition of sinusoidal
plasmon modes, the parameter #in Eq. 17 is a random vari-
able with probability density function o(6). The mean field
intensity distribution function is

<1(x,y,z)> =

exp{—a,x} exp{72 Im(ﬂ)z}fC(H) cos’ (Bysin@+n)p(@)do. (18)

In Figure 3 we show the computational simulations for the
incoherent superposition of sinusoidal plasmon modes for
different po(6), using the same parameters as in Figure 2. In
Figure 3a, the probability density function is uniform with
n =0and a J, Bessel surface plasmon mode is obtained, this
mode propagates about 500 pm. In Figure 3b, the probabil-
ity density function is Gaussian, the profile along the y-
coordinate is Gaussian, and its length of propagation is ap-
proximately 700 um exceeding the Bessel case. Finally in
Figure 3c the probability density function is uniform and by
setting the value n = /2, the incoherent convergence tends
to a Dark Hollow surface plasmon mode, in this case the
length propagation is about 50 um. This is easily understood
because the energy is distributed on a bigger area. In all cas-
es the dispersion relation function is given by Eq. 13. In spite
of all the modes have the same dispersion relation function,
the length of propagation can be controlled with the super-
position of modes. The explicit calculations for the incoher-
ent convergence are shown in appendix A.

Controlling the phase parameter n also as the probability
density function for the relative separation between the ap-
ertures we are able to control the intensity distribution as it
is shown in Figures 3. This is an implication of the partially
coherent features. Physically implies to control the length of
propagation of the surface plasmon synthesized.
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FIG. 3 Mean field intensity distributions on y-z plane for: a) J, Bessel surface plasmon mode, b) Gaussian surface plasmon mode and c) Dark Hollow surface plasmon mode.

For the experimental implementation [16, 17], a possible set
up consists in a metallic thin film with two sub-wavelength
apertures deposited on an elastic polymer substrate. Com-
pressing mechanically the polymer along the y-axis that con-
nects the apertures we are able to control the relative separa-
tion between the apertures. This configuration allows us to
implement a generalized surface plasmon as optical twee-
zers, in order to avoid the drag forces, the apertures are illu-
minated from the bottom of the substrate and the nanoparti-
cles are deposited over the metallic film, in this way we have
only a surface plasmon-nanoparticle interaction. The experi-
mental details will be presented in a forthcoming paper.

5 CONCLUSIONS

By proposing a decreasing exponential representation for the
refractive index in the neighbourhood of a dielectric-
conducting media, and using coupling mode theory we
found a new expression for the dispersion relation function
that allows the synthesis of long-range plasmon modes. The
interference between these modes generates a completely
coherent generalized plasmon mode whose profile is cosine
like. The sinusoidal plasmon modes were implemented to
generate a new variety of modes, by considering the spatial
period as a random process. The energy convergence of the
sinusoidal modes is controlled by means of the probability
density function, this convergence offers a more versatile
way to control the propagation length. As an example of this
convergence, we synthesized J,Bessel, Gaussian and Dark
Hollow surface plasmon modes, which present partially co-
herent features, until our knowledge this is the first time that
this kind of surface plasmon modes have been reported. The-
se modes offer applications for the synthesis of plasmonic
tweezers, trapping and confinement of particles, tuneable
resonance effects, etc. An important topic that remains to be
studied is the analysis of arbitrary partially coherent plas-

mon fields which can be represented as a superposition of
generalized plasmon modes, this representation allows the
study of the partially coherent features establishing the Van-
Cittert-Zernike theorem for plasmonic fields. This analysis
will be presented in a forthcoming paper. One of the authors
(GMN) is very grateful to the “Consejo Nacional de Ciencia y
Tecnologia, CONACyT” by the support through project re-
search No. 47325.

APPENDIX

The expression for the mean field intensity associated with a
sinusoidal surface plasmon mode rewritten Eq. 18 is

<I (x, ¥, z)> = exp {—alx} exp {—2 Im (,b’)z}

J‘C(l+0052ﬂysin€+77)p(0)d9, (A1)

where C is a constant, If the probability density function o(6)
is uniform in the interval —n/2 <@ < n/2, and considering =0,
we have that the mean field intensity is given by a Jo Bessel
function

<I(x,y,z)> =

exp{-a,x}exp{-21Im(B)z}(1+J,(2y)).

(A.2)

where no relevant terms has been omitted. We used the
result

/2
Jo(x)=% J cos(xsin@)do

0

(A3)

To justify the mean field intensity for the dark hollow surface
plasmon mode we consider n =7/2 and the Eq. A.1 takes the
form
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<1(x,y,z)>
=exp{-a,x}exp
=exp{-a,x}ex

{-2mm(p)z=}[( 1—c052ﬁysin9)p(9)d9 (A.4)
p{-21m(8)=}(1-, (287))

This result presents a reverse contrast in the mean field in-
tensity distribution respect to the J, Bessel surface plasmon
mode.

To explain the field intensity distribution for a Gaussian sur-
face plasmon mode we consider n = 0 and use the probability
density function p(6) = aexp — 6°/2 in the interval —n2 <6 < 2.
Considering the approximation, we have that Eq. A.1 takes
the form

<1 (x,y,z)>
= exp{-a,x}exp{-21Im (B)z}x
1+%J‘exp{i2ﬁy9}exp{—02—2}d9 (A.5)

+Iexp{—i2ﬂy0}exp{—92—2}d9

this can be approximated as the Fourier transform of a
Gaussian function, justifying in this way the mean field
intensity described in Figure 3b.
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