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We show that light evolution occurring in waveguide arrays with a particular n-functional square root
dependence of coupling coefficients can be used to produce classical analogues of nonlinear quantum
coherent states. Using operator algebras we obtain closed-form expressions describing the optical field
dynamics in such structures. In addition, by numerically monitoring the Mandel's parameter, we obtain the
conditions necessary to generate sub-Poissonian and super-Poissonian classical intensity distributions in the
proposed photonic lattices.
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1. Introduction

Optical discrete systems have been recently employed to observe a
host of optical processes in both the linear and nonlinear regime [1,2].
On many occasions, these effects have direct analogues in optics and
solid state physics. In particular, optical waveguide arrays provide a
versatile environment where discrete diffraction can be highly
controlled and tailored at will to match specific applications [3].
Along these lines, effects ranging from Rabi oscillations and Talbot
revivals, to Anderson localization and resonant localization have been
successfully observed.

On the other hand, considerable experimental and theoretical
work has been carried out on optical systems exhibiting quantum/
classical correspondences [4–8]. One topic of great interest in
quantum computing is that associated with the dynamics of trapped
ions. The description of these configurations is typically carried out
through the so-called nonlinear coherent states (NLCS) [9]. In
principle such NLCS can be generated by applying a deformed
displacement operator on vacuum states. Particular versions of
nonlinear coherent states have been frequently encountered in
several nonlinear quantum optics arrangements, as for example in
Kerr nonlinear media [10]. Of interest will be to devise optical systems
where classical analogues of NLCS can be directly observed and
studied.

In this communication we show that it is possible to classically
emulate NLCS by using photonic lattices with a particular n-functional
dependence in their coupling coefficients, namely κ nð Þ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + χn2ð Þ= χ

p
, where χ is the so-called “deforming” parameter and

n is the site position of any channel. We would like to mention that
here the term χ represents another degree of freedom in nonlinearly
altering the coupling coefficients between neighboring channels.
Since the coupling constants between parallel waveguides depend
exponentially with the separation distance dn, κn,n+1~exp(−γdn)
[11,12], the proposed n-functional dependence of the coupling
constants can be established by simply adjusting the separation
between waveguide elements. These waveguide arrays can be
fabricated on semiconductor wafers by etching or in bulk silica by
direct laser writing [11]. In fact, in the latter array system is easier to
observe from the top light evolution using fluorescence effects.

2. Analysis and results

In the proposed system, the normalized modal field evolution can
be described by the following set of coupled differential equations

i
dE0
dZ

+ f 1ð ÞE1 = 0; ð1aÞ

i
dEn
dZ

+ f n + 1ð ÞEn+1 + f nð ÞEn−1 = 0; ð1bÞ

f nð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + χn2

χ

s
; ð1cÞ

where Eq. (1a) describes the field dynamics at the edge of the lattice
(at n=0) while Eq. (1b) at any other site nN0. The normalized
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coordinate z is given by Z=κ1z, where z is the actual propagation
distance and κ1 stands for the coupling coefficient between sites 0
and 1.

In order to obtain the impulse response of this array system, i.e.
when only one channel is excited, we consider the equation

i
dψ x; Zð Þ

dZ
= − A + A†

� �
ψ x; Zð Þ; ð2Þ

where the nonlinear “annihilation/creation” operators are respectively
[13,14]

A =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + χ

χ

s
a f nð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + χ

χ

s
f n + 1ð Þa; A† =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + χ

χ

s
f nð Þa† =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + χ

χ

s
a†f n + 1ð Þ;

ð3Þ

and n=a†a. The usual “annihilation/creation” operators are respec-
tively defined by [15]

a =
1ffiffiffi
2

p x +
d
dx

� �
; ð4:aÞ

aþ =
1ffiffiffi
2

p x− d
dx

� �
; ð4:bÞ

such that

aψn xð Þ = ffiffiffi
n

p
ψn−1 xð Þ; ð5:aÞ

a†ψn xð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n + 1

p
ψn+1 xð Þ: ð5:bÞ

The eigenfunctions ψn are given by Gauss–Hermite functions

ψn xð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π1=22nn!

p exp −x2 = 2
� �

Hn xð Þ: ð6Þ

In a similar fashion, as in quantum theory, a Hamiltonian with the
form of a harmonic oscillator can be written in terms of the deformed
operators

H =
Ω2

2
A†A + AA†
� �

: ð7Þ

By substituting Eqs. (1c) and (3), in Eq. (7) we find that

H = n2 + n + 1ð Þ2 + χn3 + χ n + 1ð Þ3
h i

; ð8Þ

where we have defined Ω2 = 2 = χ2= 1 + χð Þ. Notice that this Hamilto-
nian contains a cubic and a quadratic nonlinearity in the number
operator.

Note that the set of functions ψn(x) is complete and orthogonal;
therefore, we can always expand any function in terms of ψn(x, Z), e.g.

ψ x; Zð Þ = ∑
∞

n=0
En Zð Þψn xð Þ: ð9Þ

In order to introduce Dirac's notation, we establish a correspon-
dence between ψn(x) and |n〉, (ψn(x)→ |n〉). Substitution of Eq. (9)
into Eq. (2) then yields

i ∑
∞

n=0

dEn Zð Þ
dZ

jn〉 = − ∑
∞

n=0
f nð ÞEn Zð Þ jn−1〉 + f n + 1ð ÞEn Zð Þ jn + 1〉ð Þ:

ð10Þ

Using the orthonormality properties of the eigenfunctions |n〉, we
finally derive Eq. (1b). In this manner, we have effectively obtained
the equations governing light evolution in the system under inves-
tigation. Eq. (2) can be readily solved using the evolution operator

jψ zð Þ〉 = exp iZ A + A†
� �h i

jψ 0ð Þ〉: ð11Þ

Unlike the operators a and a†, operators A and A† obey a more

complicated commutation relation, A;A†
� �

=
1 + χ
χ2

� �
n + 1ð Þ +ð

�
χ n + 1ð Þ3−n2−χn3ÞÞ. Direct use of the Baker–Hausdorff formula is
not allowed in factorizing the exponential in Eq. (11). Instead another
way should be pursued. To show this, we define a new operator A0 as
follows

A0 = n +
1
2χ

+
1
2
; ð12Þ

such that, jointly these three operators, (A, A†,A0), provide an operator
algebra where the commutation relations between them are closed
and are given by

A0;A
†

h i
= A†

; A0;A½ � = −A; A;A†
h i

= 2A0: ð13Þ

Notice that these operators form an SU(1,1) group and therefore
the exponential in Eq. (11) may be factorized as follows [16]

exp iZ A + A†
� �� �

= exp iF Zð ÞA†
� �

exp G Zð ÞA
0

� �
exp iH Zð ÞAð Þ: ð14Þ

By differentiating both sides of Eq. (14) with respect to Z, and by
using the commutation relations, one can then show that F, G, and H
are given by

F Zð Þ = H Zð Þ = tanh Zð Þ; G Zð Þ = −2 ln cos Zð Þ½ �: ð15Þ

In this case, Eq. (11) takes the form:

jψ zð Þ〉 = exp i tanh Zð Þð Þ exp −2 ln tanh Zð Þð Þð Þ exp i tanh Zð Þð Þ jψ 0ð Þ〉:
ð16Þ

To evaluate the field distribution in themth waveguide when light
is launched into a single lattice site at position k from the edge, the
initial condition |ψ(0)〉 should be substituted by |k〉, and then perform
the inner product 〈m|ψ(z)〉. In the particular case where the first
waveguide is excited (|k〉=|0〉), the entire propagating lattice field
configuration can be obtained and it corresponds to a classical
analogue of a nonlinear coherent state. This is given by:

jα = i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + χ

χ

s
tanh Zð Þ〉= cosh Zð Þð Þ− 1+χð Þ=χð Þ ∑

∞

n=0

αð Þnffiffiffiffiffi
n!

p f nð Þ½ �! jn〉:

ð17Þ

In this realm, we are now in the position to emulate these quantum
states by optical means, namely in specially designed waveguide
arrays exhibiting the coupling rule of Eq. (1). The amplitude field
distribution, at any distance Z, in the nth lattice site is provided by the
expression

En Zð Þ = cosh Zð Þð Þ− 1+χð Þ=χð Þffiffiffiffiffi
n!

p i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + χ

χ

s
tanh Zð Þ

 !n
f nð Þ½ �!; ð18Þ

where [f(n)]! ≡ f(n)f(n−1)... f(1). Eq. (18) provides the evolution of
these particular nonlinear coherent states with distance. In the
quantum domain, such states can be thought as generalizations of
the coherent states associatedwith the linear harmonic oscillator [17].
Furthermore, they have been used to model light modes in Kerr



Fig. 1. Propagation dynamics for the classical nonlinear coherent state (a), and its
corresponding output intensity profile (b) at Z=1. Fig. 2. Propagation dynamics for the classical nonlinear coherent state.

Fig. 3. Calculated ratio R for the classical nonlinear coherent state for Z∈ [0.5,1.5] with
two different values of χ, dotted line for χ=1, and solid line for χ=0.3.
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media, where the Hamiltonian of such systems is nonlinear in nature
[18]. In addition, it has been pointed out that nonlinear coherent
states exhibit many interesting properties such as squeezing, and sub-
Poissonian behavior, to mention a few [19]. Figs. 1 and 2 depict the
intensity evolution among waveguides when the 0th channel is
initially excited. The corresponding output intensity profiles at two
different propagation distances and for two different values of χ are
also shown. As clearly indicated in these figures, the intensity
distribution happens to be more localized around the first channel
as the deforming parameter χ increases. In addition, this array
performs very differently from its Glauber–Fock counterpart consid-
ered in Ref. [4]. To begin with, the χ factor cannot be totally
eliminated or set to zero. Indeed, even at very low values of χ, the
array response differs from the Poissonian output predicted in [4]. As
Fig. 1 shows, this becomes more apparent when considering the right
tails (high n values) of the intensity distribution. At higher deforma-
tions, the optical fields tend to persist around the first array channel.
In all occasions, the intensity distribution at the output of the lattice
resembles the photon probability distribution of a nonlinear coherent
state shown for example in Ref. [20].

Tomonitor the nature of the intensity distribution, i.e. whether it is
Poissonian, sub-Poissonian or super-Poissonian, we use Mandel's

parameter Q = σh i
.

nh i

� �
−1 = R−1

� �
, where σ is the variance or

dispersion, and 〈n〉 is the “expectation value” of the intensity in the
entire lattice [21]. Note that, Q can be any number between 0 and−1
when the process is “sub-Poissonian”, and is “super-Poissonian”when
it is greater than 0. If Q=0, then the distribution is “Poissonian”.
Equivalently, we can consider the ratio:

R =
σ
nh i ⋅ ð19Þ

Depending upon the propagation distance, and the size of the
deformation parameter χ, R can be equal, less than or greater than
unity. For “states” with R in the range 0≤Rb1, the distribution
function is sub-Poissonian, if RN1, super-Poissonian, and if R=1 is
“coherent”. In our case, σ is given by

σ =
	
cosh Zð Þ
−2

1 + χ
χ

� �½∑Nn=0

jα j2n f nð Þ!½ �2n2

n!

−
	
cosh Zð Þ
−2

1 + χ
χ

� �
∑
N

n=0

jα j2n f nð Þ!½ �2n
n!

 !2�;
ð20Þ
and the “expectation value “

nh i = 	
cosh Zð Þ
−2

1 + χ
χ

� �
∑
N

n=0

jα j2n f nð Þ!½ �2n
n!

; ð21Þ

where N is the total number of waveguides (where N→∞).
Fig. 3 shows that this classical nonlinear coherent state undergoes

sub-Poissonian behavior for a propagation distance Z≤0.7,
whenχ=0.3 (solid line) and for Z≤0.9, χ=1 (dotted line). It then
becomes “super-Poissonian” for the rest of the interval. Wewould like
to emphasize once again that the field configurations resulting from
this optical lattice are in fact classical in nature. We only used the
mathematical formalism of quantum mechanics to investigate this
system.
3. Conclusion

In this work we have shown that optical array lattices with specific
coupling rules can support classical analogues of quantum nonlinear
coherent states. The problem was solved analytically using operator
algebra. We demonstrated that both classical sub-Poissonian and
super-Poissonian intensity distributions can be generated over
distance depending on the nonlinear deformation parameter used.
Pertinent examples have been provided.
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