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A class of nonlinear cohierent states related to the Susskind-Glosower [phase) operators s
obtained. We call these nonlinear coherent states as Bessel statos becinse the coctticients thit
expand them into mnmber states ave Bessel functions, We eive a closed form for the displicement
operator that produees snch states,
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1. Introduction

Over the vears, there has been major effort towards the generation of nonclassical
states i ditferent systems. such as electromagnetic fields. trapped ions. ete. Nou-
classical states exhibit less Hhuctuations or noise than coherent states for certain
observables. This is why coherent states noise is referred to as the standard (uanti
limit (SQL). Nonclassical states that have attracted the greatest interest include
macroscopic quantum superpositions of (uasiclassical coherent states.'* squeezed
states.” whose fluctuations in one of the quadratures or the amplitude are reduced the
SQL and the particularly important limit of extreme amplitude squeezing, naely,
Fock states.” One mayv think of several systems that may generalize the harmonic
oscillator in order to produce such NCS, for instance. we wmay consider time depen-
dent frequencies.” or a type that has recently attracted great interest is to deform the

I

harmonic oscillator to generate so-called non-linear coherent states.”” that may be
related to g-deformed algebras.®
A g-deformed algehra was used to introduce the idea of quantuin g-oscillators. whose

interpretation ™ was as a nonlincar oscillator with a very specific type of nonlinearity.,

“g-deformed algebras are deformed versions of the standard Lie algebras, which are recovered as the
deformation parameter ¢ goes to unity. ‘The basic interest in y-deformed algebras resides in the fact that
they encompass a set of svimmetries that is richer than that of the standard Lie algebras. g-deformed
algebras conld be a useful tool to describe physical systen svinmetries that cannot be properly rreated
within Lic algebras.
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in which the frequency of vibration depends on the cuergy of these vibrations through
the hyperbolic cosine function containing a nonlincar parameter. This observation
suggested that there would exist other types of nonlinearities for which the frequency of
oscillation varies with the amplitude in a different manner from the one obtained with
the g-deformed algebra. Such oscillators are called Sf-oscillators.™ One can extend the
notion of coherent states by using f-oscillators to constrict Jf-coherent states (also
called nonlinear coherent states) by means of “deformed” creation and annihilation
operators representing the dynamical variables to he associated with the quantum
J-oscillators.” These operators are defined throngh

A=aflN) = fIN +Da. 1" = fiNj0 ca' /(N ~1). il
with @ and ' the annihilation and creation operators for the harmonic oscillator and
N = a0 is the munber operator.

The importance of studving nonlinear colerent states resides in their phyvsical
consequences such as amplitude squeezing. quantim interferences and the possibility
ol haviug super- or sub-Poissouian statistics. Furthermoro, noulinear coherent states
mayv be realized in the motion of a trapped ion.™ *

The modelling of quantin mechanical svstems with classical opties is a topic that
has attracted interest recently. Along these lines Manko of al. have proposed to
vealize quantum computation hy quantmu like svstems and Crasser of ol hiave
pointed out the similavities between quantu mechanies and Fresnel optics in phase
space. Following these cross-applications. here we wonld like to show how non-
linear coherent state mayv he wmodelled in o fiher array. " Therefore. che purpose of the
present work is twolold: to show how to use quantium optics methods 1o solve clas-
sical optics propagation problems and create o classical svstent to emulate aquantum

one showing the potential for studyving quantm optics with classical systems.

2. Susskind-Glogower Operators

The annihilation and creation Susskind-Glogower:  operators mav be delined as

. ! Lt s ] )
V= — . 1= II'?. (_))
vaa! vaa'

L.e.as the definitions of deformed creation and annihilation operators given in ({) and
(2). We can verify that V1= 1 hut Vil = | — 103{0]. that gives the conmmutation

relation (171771 = [0)(0). that makes it complicated ro caleulate the exponential
(displacement operator by analogy to normal annihilation and creation operators)

Do) =eV oV, (3)

The commmration relation for the Susskind-Glogower operators do not allow the
application of the Baker-Hansdortf formula * or even to propose an ansatz that would
work properly for the factorization of (3) in the products of exponentials. Instead we
can try to develop the exponential (3) in a Tavlor series. and then to evaluate the
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terms (V7= 1797 For instance. for & = 7 we have

1

b= Jonon = o

(V= 1) = {(1" 5+ V)

- (13301 + 103 {31 + -2)¢1] + 11){2})

- (5301 = 108} 4 11
. 0

where [} means antinoral order. that is. to arrangee terms such that the powers of

the operator Vave always to the left of powers of the operaror 17, Note that in the

above equation. the term multiplying ("’

) are all the possible combinations for one
phonon (photon in the case of the quantized clectromagnetic field). the term mul-
tiplving ( ; ) are all the combinations for three phonons and the term multiplying

i . . . .
( ’) all the combinations for five phonons.

3. Coherent States from Application of Displacement
Operator to the Vacuum

We deline coherent states as

e = D)0}, (9)

From (5) we can write”
". el E e ()b i i . .
i) = i 0y = ety ) — ’S:“) T Z“ <” ) [k —2n —2) (6)

where (A2 - 1 is the Hloor function, also called the greatest integer function or
integer value. gives the Largest integer less than or equal to (k/2) — 1. We can rewrite

the above equarion as

2 T ST s S 2 R
DT VRS Y - S <”>v-’ Vik|o). (
[ :

n-0 N

=
—

ad take the second smn to x as we wonld add only zeros

i X, gmn N 5 5 5
ity = e oV gy - 12§ LD h 1721710). (8
A! n \

IO . =)

b simplicity we vuse o - e however it nies be easily generalized to a complex number by a nsing a

trausformation of the forme e ™ This iss o™ % feig o™ 70V =U00) ey e
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We now exchange the order of the sums

XN p sV
1o\ — pheV eV o g ed {r) sy rikiny 0
tZ)se =" e 10) = 1 Z E T fl}'ll" 1710, (9
=) h=p ' e
By taking m =k — n we finally write
x N
o nn O s . ]J.)(m+/u - &
\!l-I:).s'(? e (?/_:‘ pl.l‘ IU/‘ _ 1 2 (“‘ _'n‘ '”H‘”‘IU>~ (“))
m!n!
=0 ni={)
or
lidh g = (1 = TVt gy, (11

3.1. Bessel states

Application of the nonlinear displacement operator to the vacuum then gives

N
lia) o = D(ix)'0) = —"L' Z(u LT, (20 0. (12)
o)

In Fig. 1 we plot the Q function’ tor several amplitudes. We can see hanana shaped
states that are typical of some other nonlinear systems such as Kerr medivmn, 7 Tt is
also possible to see that for large valnes of the amplitnde a superposition of two
distinguishable states arises, This states will show squeezing in the amplitnde. This

may be clearly seen by plotting the Mandel-Q paramcter-?

(13
A

i

R LIS

« q
(a) (b)

Fig. 1. Q-fanction for the rotated Bessel state. Ledg, =e V7 2o with (@) o= 1. (b) ¢ 5.

Wi = 100 and (d) » = 20.

CL = 1 ]ad <1/ with | 3 a coherent state.
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(c)

Fig. 1. (Continued)

Q)

Fie. 2. Mandel-Q pavameter for the Bessel state as a function of the amplitude «.
| 1

which. if Q@ < 0 shows sub-Poissonian features. In Fig. 2 we show a plot this par-
awmeter. and we can see that the state is sub-Poissouian from zero to large amplitudes
(=212).

4. Non-Linear Displaced Number States and Fiber Arrays

The analogy (0 a classical optical system comes froin noticing that the system we
are solving is similar to the propagation of light throngh a semi-infinite fiber array.”
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In such a system. the differential equations to solve are

dE
iT,.,l+ C(ErH-l + En ~l) =0. n> A (11)
and
i%-’.—cE’l =0 (15)

where E,, is the electric modal field in the nth waveguide of the fiber array.
If we consider a non-linear Hamiltonian of the form'

H=nyV+Vh (16)
with 7 proportional to the Lamb-Dicke parameter ™ in the rrapped ion-laser inrer-
action case. We can solve the Schridinger equation

dlu(t)) _
i—— = Hlu«(t) (17)
o = Hltn)

for this Haumiltonian by expanding the wave function into munber statoes
X%
le(t) = > E,(hin). (18)
n-)

where £ () are the coefficients of the expansion. By plugging the wave function
above into the Schrédinger equation. we obtain a svstemn of differential cquations for

the coetticients £, (t) which is in fact the system ol Egs. (L) and (15) with ez = .
Therefore we ean borrow the solution by Makris and Christodoulides
Eu(t) =" ”l‘lu ~m(_2’/” + i”+m'lno 1114-'.3(_2"’“‘ (19)

for an initial condition [1(0)) = m). Therefore the wave function

A5
() = DG (=20) + 07 =208 1), (20)
n-A)
corresponds to a non-linear displaced number state. i.c. application of the non-linear
displacement operator to a number state.

5. Conclusion

We have shown that new quantum states. namely Bessel states, may e generated,
for instance. in ion traps by properly engineering a nonlinear Hamiltonians In this
case it corresponds to a Hamiltonian given by the sumt of the Susskind-Glogower
phasc operators. We have not considered the offect of dissipation, but it has been

ANaTICAT interctinne av | : . ; G ..'*.k- advautage of the [
aonhnear mteractions may be properly engineered in ion traps  taking advantage of th Jdguerre
. . fn
polyuomials properties,”
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shown already that the wave function of an ion or an electromagnetic field may be
reconstructed even though dissipation occurs.>

Finally. it is worth noting that. although we cannot apply Baker-Hausdorff for-
mula to write the nonlinear displacement operator as a product of exponentials, it is
possible to find the evolution operator. D(—int). for the Hamiltonian (16): from (20)
we have

(kle(t)) = 5™ _.(=24t) + T mea(=20t) = (kle =tV +V N m) (21)

from which the evolution operator may be written as

b T X
Di—int) =YY (M Jy (=200 + i T (=200 B (m]. (22)
m=0h 0
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