

Computación y Sistemas

ISSN: 1405-5546

computacion-y-sistemas@cic.ipn.mx

Instituto Politécnico Nacional

México

Pomares Hernández, Saúl E.; López Domínguez, Eduardo; Rodríguez Gómez, Gustavo

An Efficient delta-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable

Networks

Computación y Sistemas, vol. 14, núm. 1, julio-septiembre, 2010, pp. 31-44

Instituto Politécnico Nacional

Distrito Federal, México

Available in: http://www.redalyc.org/articulo.oa?id=61519184004

 How to cite

 Complete issue

 More information about this article

 Journal's homepage in redalyc.org

Scientific Information System

Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal

Non-profit academic project, developed under the open access initiative

http://www.redalyc.org/revista.oa?id=615
http://www.redalyc.org/articulo.oa?id=61519184004
http://www.redalyc.org/comocitar.oa?id=61519184004
http://www.redalyc.org/fasciculo.oa?id=615&numero=19184
http://www.redalyc.org/articulo.oa?id=61519184004
http://www.redalyc.org/revista.oa?id=615
http://www.redalyc.org

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative
Systems in Unreliable Networks

Algoritmo Eficiente Distribuido ∆-Causal para Sistemas Cooperativos Síncronos sobre Redes
no Fiables

Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez
Department of Computer Science, National Institute of Astrophysics, Optics and Electronics (INAOE)

Luis Enrique Erro No. 1, Tonantzintla, Puebla, Mexico, C.P. 72840
spomares@ccc.inaoep.mx, edominguez@ccc.inaoep.mx, grodrig@ccc.inaoep.mx

Article received on July 03, 2008; accepted on March 23, 2009

Abstract. In cooperative systems causal ordering delivery
has been used to resolve problems of coherency of type
producer-consumer. Causal order delivery is important for
distributed systems since it allows an asynchronous
execution to participants. When time delivery constraints are
considered, ensuring causal delivery becomes more complex,
as is the case for synchronous cooperative systems, such as
Telemedicine and Teleimmersion. In these systems, the
messages (units of data of continuous and discrete media)
have an associated lifetime that determines the period of
useful time in which the messages must be delivered. On the
other hand, generally in these systems there is no time for
retransmit them when messages are lost. Causal order with
time constraints has previously been addressed, and it is
called ∆ -causal order. In this paper, we present an efficient
∆-causal distributed algorithm for unreliable networks that is
characterized by the use of a forward error correction (FEC)
scheme and a distributed method to calculate the message
lifetime based on relative time points (i.e. no global time is
used). We show the efficiency of our ∆ -causal algorithm in
terms of the control information attached per message.

Keywords: Cooperative systems, Group communication,
Causal order.

Resumen. En los sistemas cooperativos el ordenamiento
causal ha sido usado para resolver problemas de coherencia
de tipo productor-consumidor. La entrega de orden causal es
importante en general para los sistemas distribuidos debido a
que permite a los participantes una ejecución asíncrona.
Cuando las restricciones de entrega en tiempo real son
contempladas, asegurar la entrega causal se vuelve más
complejo, como es el caso para los sistemas cooperativos
síncronos, tales como Telemedicina y Teleinmersión. En
estos sistemas, los mensajes (datos continuos y discretos)
tienen asociado un tiempo de vida que determina el periodo
de tiempo útil en cual los mensajes deben ser entregados, y
por el otro lado, en general en estos sistemas, cuando los

mensajes son perdidos no existe tiempo para retransmitirlos.
El orden causal con restricciones de tiempo ha sido
previamente estudiado, y es nombrado orden ∆ -causal. En
este trabajo, presentamos un algoritmo distribuido ∆ -causal
eficiente sobre redes no fiables, nuestro algoritmo se
caracteriza por el uso de un esquema de corrección de errores
hacia delante (FEC) y un método distribuido para calcular el
tiempo de vida de un mensaje basado en puntos de tiempo
relativo (ningún tiempo global es utilizado). Mostramos la
eficiencia de nuestro algoritmo ∆ -causal en términos de la
información de control unida a cada mensaje.

Palabras clave: Sistemas cooperativos, Comunicación en
grupo, Orden causal.

1 Introduction

Although synchronous cooperative systems have been
a major research focus in computer supported
cooperative work (CSCW) for over two decades, there
is still a lack of protocols oriented to support their
communication requirements, which guarantee, at
runtime, ordering dependencies and time constraints.
In this sense, causal protocols have been used in
cooperative systems mainly to resolve problems of
coherency of type producer-consumer (Plesca et al.
2005, Pomares et al. 2002). In general, the causal order
delivery (Birman et al. 1993) ensures that for each
participant in the system the events (send and delivery
of messages) will be seen in the cause-effect order as
they occur in the system.

Many works concerning protocols of causal
ordering delivery exist (Pomares et al. 2004; Birman et
al. 1993; Kshem-kalyani et al. 1998). The previous
algorithms assume a reliable transmission without an

32 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

associated lifetime per message. These works are not
suitable for synchronous cooperative systems since
these systems intrinsically have time constraints that
are not considered by them.

 Synchronous cooperative systems are
characterized by two main time constraints. First, the
information units (continuous and discrete) have an
associated lifetime that establishes the period of time
in which the information (messages) must be received;
a message that arrives after its lifetime is useless and,
consequently, discarded. The second constraint
establishes that there is no time for retransmission
when messages are lost. In order not to greatly affect
the quality of service, a forward recovery scheme is
preferable over a backward recovery scheme (Perkins
et al. 2003).

Causal order with time constraints has previously
been addressed by Baldoni (1998), and it is called ∆ -
causal order. In his work, Baldoni ensures ∆ -causal
order by using a global clock. In our work, we propose
an algorithm that ensures ∆ -causal order in unreliable
networks while avoiding the use of global references.
To achieve this, we propose an original FEC
mechanism and a method to calculate, in a distributed
manner, the lifetime per message for continuous and
discrete media units. The FEC mechanism ensures that
causal order delivery is accomplished even in the
presence of lost messages. The lifetime in our work is
calculated based on relative time points1

We apply our FEC mechanism and our distributed
lifetime method to extend the minimal causal broadcast
algorithm presented in Pomares et al. 2004. This
minimal algorithm only sends control information
about messages with an immediate dependency
relation (IDR). Messages related by an IDR have a
causal distance (see Definition 4) of one (i.e. no
intermediate causal message exists between them). In
order to support delays and loss of messages, we
introduce redundancy on the control information by
sending information about messages with a causal
distance greater than one. One interesting aspect of our
FEC mechanism, as we will show in Section 4, is that

. Our work is
intended for the transmission of continuous data, such
as audio and video, and discrete data such as text and
still images.

1 A relative time point establishes a reference point from which it is

possible to calculate a period of time.

the redundancy is dynamically adapted according to
the behavior of the system.

The rest of the article is structured in the following
way: Section 2 presents the most relevant related
works concerning the ∆ -causal ordering. In Section 3,
the system model is described and the background
information is presented. Next, we present in Section 4
our ∆-causal order algorithm with our proposed FEC
mechanism and the distributed life-time method. A
sketch of the algorithm correctness proof is presented
in Section 5. Finally, some conclusions are pre-sented
in Section 6.

2 Related Work

The most important work that tackles the problem of
causality and time constraints was presented by
(Baldoni et al. 1998). Baldoni addresses the problem of
causality and time constraints by introducing the ∆ -
causal order. Informally, the ∆ -causal order says that a
message m is ∆-causally-related to another message m´
if m causally precedes m’ and arrives before its
deadline. Baldoni ensures message ∆ -causal order by
using a reference global clock. More specifically, by
using a global clock, Baldoni determines if a message
accomplishes the causal order and the time delivery
constraints. The ∆ -causal order defined by Baldoni is
correct; however, the use of a global clock is not
suitable for distributed communication systems where
the message transmission delay is not negligible
(Lamport et al. 1978).

Several ∆ -causal algorithms exist (Baldoni et al
1996; Prakash et al. 1997; Tachikawa et al. 1997) that
ensure causal ordering in the presence of lost messages
and time delivery constraints; however, to achieve this,
all of them use some type of global reference (shared
memory, wall clock, master-slave scheme, etc).

3 Preliminaries

3.1 The System Model

Processes: The application under consideration is
composed of a set of processes P = {j, k,…} organized
into a group that communicates by passing non reliable
broadcast asynchronous messages.
Messages: We consider a finite set of messages M,
where each message m∈M is identified by a tuple
m=(p,t), where p∈P is the sender of m, denoted by

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks 33

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

Src(m), and t is the sequential ordered logical clock
for messages of p when m is broadcasted. The set of
destinations of a message m is always P.
Events: Let m be a message. We denote by send(m)
the emission event of m by Src(m), and by
delivery(p,m) the delivery event of m to participant
p∈P. The set of events associated to M is then the set
E= {send(m) : m∈M} ∪ {delivery(p,m) : m ∈ M ∧ p
∈P}. The process p(e) of an event e∈E is defined by p
(send(m))= p and p (delivery(p,m))=p. The set of
events of a process p is Ep

3.2 Background and Definitions

={ e∈E :p(e)=p}.

The Happened-Before Relation. The happened-
before relation was defined by Lamport (1978). The
happened-before relation establishes possible
precedence dependencies in a set of events without
using physical clocks. It is a strict partial order (i.e.
irreflexive, asymmetric and transitive) defined as
follows:

Definition 1. The causal relation “→” is the least
partial order relation on E satisfying the following
properties:
1. If a and b are events belonging to the same

process, and a was originated before b, then a→b.
2. If a is the send message of a process, and b is the

reception of the same message in another process,
then a→b.

3. If a→b and b→c, then a→c.

By using Definition 1, we define that a pair of events
are concurrent related “a || b” only if

¬ (a→b ∨ b→a)

The precedence relation on messages denoted by

m→m’ is induced by the precedence relation on events,
and is defined by:

m→m’ ⇔ send(m)→ send(m’)

The Immediate Dependency Relation. The
Immediate Dependency Relation (IDR) introduced in
Pomares et al. 2004 is the propagation threshold of the
control information regarding the messages sent in the
causal past that must be transmitted to ensure a causal

delivery. We denote it by ↓, and its formal definition is
the following:

Definition 2. Immediate Dependency Relation
“↓” (IDR):

a↓b⇔[(a → b) ∧ ∀ c ∈ E, ¬(a → c→ b)]

Thus, an event a directly precedes an event b, iff no
other event c belonging to E exists, such that a
precedes c and c precedes b. We note that the IDR
relation is the transitive reduction of the Lamport’s
relation. This is important because if the delivery of
messages respects the order of the diffusion for all
pairs of IDR related messages, then the delivery
respects the causal order for all messages (Pomares et
al. 2004). This property is formally defined for the
broadcast case as follows:

Property 1:

∀ m,m’ ∈ M, if send(m) ↓ send(m’) ⇒ ∀p ∈ P :
delivery(p,m) → deliver(p,m’) then send(m) →

send(m’) ⇒ ∀p ∈ P : delivery(p,,m) → delivery(p,m’)

The ∆ -Causal Ordering. The ∆ -causal ordering has
been introduced in Baldoni et al. 1998; it is formally
defined for the broadcast case as follows:

Definition 3. A set of events E satisfies the ∆ -causal
ordering if:

1. All events that arrive in ∆ are delivered within ∆.
All other events are considered to be lost or
discarded, and therefore, are never delivered.

2. All delivery events respect causal ordering, i.e.

∀ m,m’∈ M, if send(m)→ send(m’), then ∀p ∈ P :
delivery(p,m) → delivery(p,m’)

The Causal Distance. The causal distance identifies
the number of causal messages that exist in a
linearization between a pair of messages in the system
(Lopez et al. 2005). Formally, the causal distance is
defined as follows:

Definition 4. Let m and m’ be messages, the distance
d(m,m’) is defined for any pair m and m’ (send(m)→
send(m’)), such that d(m,m’) is the integer n for some
sequence of messages (mi, i= 0...n), with m= m0 and

34 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

m’=mn, such that send(mi)↓send(mi+1

4 The ∆-Causal Order Algorithm

) for all i =0…n-
1.

In order to avoid the use of a global clock, we propose
an original FEC mechanism and a distributed lifetime
method that verifies if a message satisfies or not its
deadline. In this section we give a general description
of each mechanism separately, and then integrate them
to the minimal broadcast causal algorithm.

4.1 The FEC Mechanism

All FEC mechanisms introduce some kind of
redundancy to support the loss of information. The
redundancy in causal algorithms represents the number
of times that information about a causal message is
sent in the system. The causal algorithm presented in
Pomares et al. 2004, which uses the IDR relation, is
minimal because the IDR relation identifies the
necessary and sufficient causal information that needs
to be sent attached per message (denoted in this paper
by H(m)). Even when this is a minimal algorithm,
redundant control information is still transmitted in
some communication scenarios. Our FEC mechanism
identifies and uses this inherent redundancy in order to
be efficient and will only add extra redundancy when it
is needed. The purpose of adding extra redundancy is
to increase the probability that causal order delivery
will be obtained, even in the presence of lost messages
and significant network delays.

Fig. 1. Example scenarios and their associated IDR graph

Redundancy and the IDR relation
To ensure causal ordering, the minimal algorithm only
sends control information attached to each message

about messages with an immediate dependency
relation. For two messages that are IDR-related
(m↓m’), the causal distance is equal to one
(d(m,m’)=1). Note that for the serial case, a message m
has only one immediate predecessor (best case), and
that a message m can have at most n immediate
predecessors, one for each process.

For the serial case, for messages that are IDR-
related, there is no redundancy in the control
information sent. For example, in the serial scenario
depicted in Figure 1a, message m3 only sends causal
information about message m2 (H(m3) ={m2=(p3,
t2)}) and message m2 only sends information about
message m1 (H(m2) ={m1=(p1, t1)}). In this case, if a
message is lost, the causal order delivery can be
violated. As shown in Figure 1a, the causal order
delivery is violated because at the reception of message
m3, process p5 cannot determine if a message
preceding m2 exists or not. With the IDR information
on m3, process p5 can only detect that it missed
message m2. In order not to stop the system execution,
process p5 considers message m2 as lost and then
delivers m3. In this scenario, m1 can be delivered after
m3

For the concurrent relation, inherent redundancy
exists on the causal information sent. For example, in
the scenario depicted in Figure 1b, messages m

, which violates the causal ordering.

2 and
m3 have the same immediate predecessor m1, and
therefore m2 and m3 send information about message
m1 (H(m2)= H(m3)={m1=(p1, t1)}). If either message
m2 or m3 is lost, message m1 can still be detected as
shown in Figure 1b. In this scenario, m2 is lost and m3
successfully arrives at p5. With the IDR information on
m3, process p5 determines that m1 exists, which
precedes message m3. To deliver m3, process p5
establishes message m1 as lost. In this scenario, m1
arrives at p5 after the delivery of message m4, but since
message m1

 has been established as lost, it is
immediately discarded. Therefore, causal order is
ensured.

Our Proposal
In order to support the loss of messages, we propose to
increase the redundancy in the control information sent
per message by sending information about causally-
related messages with a causal distance greater than
one. For example, in Figure 1a, if we establish a causal
distance of two (causal_distance = 2), this means that
message m3 must send information about m2 and m1

Causal order
ensured

p 5 p 1 p 2 p 3 p 4
m 1

m 2

m 3

5 1 2 3 4

1
2

3

1 2 3 4

1
2

3
x

Causal order
violation

m 1
2

m 4

1
m 2

1
2

x

m 3 3 3

m 4
IDR graph

IDR graph

a) b)

x
m1 determined
as lost

p 5 p 1 p 2 p 3 p 4 5 1 2 3 4 1 2 3 4

m 1 1 1 m 2 2 2 m
3 3 3 m 1 1 1

m 2 2 2

m
3 3 3

m1 discarded

x

t

.

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks 35

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

To be efficient, the redundancy is increased
considering the inherent redundancy introduced by the
IDR relation. We formally define that redundancy
about a message m, denoted by redundancyp(m),
determines the number of times that the information
about a causal message m has been seen (received) by
a participant p. As previously described, the
redundancy increases as the number of concurrent
messages increases. Taking into account
redundancyp

(m) with a causal distance greater than
one (causal_distance > 1), we establish that a message
m’ must include information about a causal message m
(m→m’) only if the following propagation constraints
are satisfied:

PC1: d(m,m’) ≤ causal_distance and
PC2: causal_distance > redundancyp

(m)

With both of these PCs, the control information
sent per message is dynamically adapted to the
behavior of the system by only introducing redundancy
when it is needed. For example, with causal_distance
= 2, message m3, shown in Figure 1a, must send causal
information about m2 and m1 (H(m3)={m2, m1})
because p4 has redundancy(m1) equal to one and a
causal distance of d(m1,m3) = 2 and d(m2,m3) = 1,
respectively. Nevertheless, for the scenario presented
in Figure 1b, message m4 must send information only
about messages m2 and m3 (H(m4)={m2, m3}), and
not about m1, even when d(m1,m4) = 2. This is done
because the redundancy(m1) seen by p4

We note that the value of redundancy

 is equal to 2,
and therefore, it does not satisfy the second PC.

p

4.2 The Distributed Lifetime Method

(m) can
differ between participants since it is calculated from
the messages received by each one. In a general case,
according to the analysis presented in Appendix I, it is
sufficient to take a causal_distance equal to 5 since the
probability that three or more consecutive and/or
concurrent messages can be lost is very low.

The distributed lifetime method identifies two cases.
one case for continuous media data, and another case
for discrete media data. In the transmission of
continuous media data, such as audio and video it is
possible to establish relative time points (ReTPs) ,
since the messages are periodically sent, and this
ReTPs can be used to determine if the units of data

satisfies or not its lifetime. Nevertheless, the ReTPs
must be dynamically established in order to support
random transmission delays. For the case of discrete
media units is totally different since they are no
periodical, which means that the period of time
between emissions is variable. For this reason, we
propose for a discrete media unit to calculate its
lifetime based on the lifetime of the causally-related
messages of continuous media that are included in its
causal control information. Next, we will present the
lifetime method for continuous media followed by the
method for discrete media.

Establishing Relative Time Points and Deadline
Points for Continuous Media
In order to establish the relative time points and
deadline points, we assume that the transmission of
data, such as audio and video, is executed by
transferring messages at a relatively constant rate, and
that these messages are sequentially timestamped. By
taking into account these hypotheses, we establish a
ReTP at the reception of the most recent message. For
example, in Figure 2, the reception of message m1
establishes the first relative time point rtp1; the
reception of m2 establishes the rtp2

, and so on.

Fig. 2. Streaming scenario

Based on the ReTPs, the deadline point of a

message m, denoted by deadline_cont(m), is
determined from the ReTP previously established. If
no message is lost and the messages arrive in order, we
have:

 deadline_cont(mi)=rtpi-1

 + ∆ : i ≥ 1
(1)

…

deadline(m3) deadline(mn)

m2 m3 mn

∆

… m3

m2

m1=start

∆

m1=start

rtp1 rtp2 deadline(m2)

t

Video

36 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

where ∆ is the message lifetime that establishes the
maximum transmission delay supported2

If we consider lost or discarded messages, the equation
above is redefined as follows:

.

deadline_cont(mi)=rtpx

where rtp

 + (i-x)∆ : x < i and i ≥ 1
(2)

x

For broadcast asynchronous communication, each
process p∈P locally establishes its own ReTPs, and
therefore, its own deadline points. For this case, we
denote a deadline as deadline_cont(m, p), which
determines the deadline point for a message m at a
process p. It is the same case for discrete media as we
will present in the next paragraph.

 is the last relative time point
established. This general equation is used in the rest of
the paper to calculate the deadline for continuous
media.

Deadline Points for Discrete Media
As we previously said, the period of time between the
emission of messages of discrete media is variable, and
therefore we cannot take it as reference. For this
reason, we take the deadline points of the messages of
continuous media included in the causal information
H(m). For each message we take its causal information
H(m), and we find its maximum deadline point. We
take this the maximum deadline point as reference to
determine the deadline point for the discrete message.
Formally, a deadline point for a discrete message is
calculated as follows:

deadline_disc(m) = max({deadline_cont(m’):
m’∈ H(m) and typem’

(3) =continuous)} + δ

where δ is the lifetime established for discrete
media units. We recall that every message in its causal
information H(m) satisfies the PC1 and PC2 presented
in Section 4.1.

More specifically, we take the maximum deadline
point since in order to causally deliver a message m, it
must wait until and delivery after that every message
that belongs to its H(m) has been causally delivered or
has been discarded as a consequence of its lifetime
expiration, which is determined by its deadline point.

2 For simplicity, in our work, we consider only one ∆ for all

messages in the system.

In the case that m’∈ H(m), such that
typem’

=continuous we have:

deadline_disc(m) = receive_timep

(m) + δ (4)

where receive_timep

(m) gives the time when message
m has been received at participant p

4.3 The Algorithm Code

Data Structures

The main data structures used in the algorithm are:

 VT(p) is the vector time. For each process p there

is an element VT(p)[j] where j is a process
identifier. When we need to refer to a specific
process with its respective identifier, we write pj

.
The size of VT is equal to the number of processes
in the group. VT(p) contains the local view that
process p has of the elements of the system. In
particular, element VT(p)[k] represents the greatest
element number of the identifier k and ‘seen’ in
causal order by p. It is through the VT(p) structure
that we are able to guarantee the causal delivery of
elements.

 CI(p) is the control information structure. It is a
set of entries (k, t, d, type). Each entry in CI(p)
denotes a message that satisfies the PC1 and PC2
propagation constraints and that can potentially be
attached in the next message m sent by p. The
entry (k, t, d, type) represents a message diffused
by participant k at a logical local timeclock t =
VT(p)[k], d contains the redundancy of m=(k, t)
seen by p and type determines the type of media
transmitted, which can be continuous or discrete.

 The structure of a message m is a quadruplet m =
(j, t, type, content, H(m)), where:
• j is the participant identifier.
• t=VT(p)[j] is the logical local clock at node j.
• type determines the type of media transmitted.
• content is the structure that carries the media

data.

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks 37

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

• H(m) contains the set of all entries (k, t, type)
about messages that satisfy the propagation
constraints (PC1 and PC2) with m.

 The causal_distance variable is the predetermined

causal distance considered.

 VTIME(p) is a vector that contains the most recent
relative time points. The size of VTIME(p) is equal
to VT(p) (one element for each process in the
system).

 current_time(p) represents the physical local time
of a process p.

 deadline(k,t,type) is a function that calculates the
deadline point for message m identified by (k,t)
where k is the sender process and t is the logical
clock. This function considers the two types of
discrete and continuous messages.

Algorithm Description
The ∆-causal algorithm is presented in Table 1. When
a message m is broadcasted (continuous or discrete) by
a process p, the H(m) is constructed by adding entries
from the CI(p) (lines 12-14) to it. Each entry in H(m)
satisfies, with respect to m, the PC1 and PC2
propagation constraints. In order to comply with PC1
and PC2, we use a logical counter d by each entry in
CI(p) ((k, t, d, type) ∈ CI(p)). The variable d is
increased by one each time that its associated entry is
added to a H(m) by a process p (line 13) or when that
entry is received in a H(m) (lines 39-40). The variable
d contains the redundancy of the message m=(k, t) seen
by p. We note that only when no concurrent messages
exist the value of d specifies the causal distance
between events.

The ∆ -Causal Delivery Condition. At the reception
of a message, m=(k, t, type, content, H(m)) will be
immediately discarded if it has already been marked as
lost (t < VT(p)[k]) or if it misses its deadline (line 20).
If m is not discarded, it is delivered as soon as the ∆-
causal delivery condition becomes true (lines 26-30).
This delivery condition ensures that a message m is
delivered in its lifetime (lines 27 and 30) and that it
will be delivered if and only if all messages causally
related to it have either been delivered or have been
established as missing, i.e. that its lifetime has been
expired. A posteriori, these messages are marked as
lost in lines 34-35, and therefore, they will never be

delivered. We note that in order to ensure ∆ -Causal
delivery if at a participant p, a message m’ in the causal
future of a message m (m→m’) has a smaller lifetime
than m (deadline(m,p) > deadline(m’,p)) and both
messages have arrived but are not yet delivered, we
make deadline(m) = deadline(m’). This is done in
order to ensure Rule one of definition 3, which says
that all events that arrive in ∆ are delivered within ∆.
This behavior is better illustrated in the proof of
Section 5.

Overhead analysis. In order to be efficient, each entry
in CI(p), and eventually in H(m) corresponds to the
most recent message sent by a process pj ∈ P and
causally received by p. This is possible since each
message m is sequentially timestamped with its
respective local logical clock of pj = Src(m). By
knowing the sequential order, a participant pj can
determine at any message reception if a message or set
of messages diffused by pj

Since H(m) only has the most recent messages that
precede a message m, the overhead per message in this
algorithm to ensure ∆ -causal ordering is given by the
cardinality of H(m), which can fluctuate in our case
between 0 and n-1 (0 ≤ |H(m)| ≤ n-1). For the serial
case, |H(m)| is at most the causal_distance established
(|H(m)| ≤ causal_distance), and for the case of
concurrent messages, the worst case is at most n-1
(|H(m)| ≤ n-1), which is the same boundary for
messages that are IDR related (causal_distance = 1).

 has been lost,
independently of the causal distance.

We note that in our algorithm, as for the minimal
causal algorithm in (Pomares et al. 2004), the
likelihood that the worst case will occur approaches
zero as the number of participants in the group grows.
Compared with algorithms that are exclusively based
on vector clocks (Matern et al. 1989), our worst case
denotes for them the constant overhead that must
always be attached per message.

38 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks 39

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

Table 1. Multimedia Broadcast ∆-Causal algorithm

1. Initially

2. VT(p)[j] = 0 ∀ j:1…n /* Vector clock */

3. VTIME(p)[j] = 0 ∀ j:1…n /* Vector with the ReTPs */

4. CI(p), H(m), deadline_arr(m) ← ∅

5. causal_distance = z

6. let deadline_cont(k,t) ≡ VTIME(p)[k]+(t- VT(p)[k]) *∆

7. let deadline_disc(k,t) ≡ if ∃m’=(k’,t’) ∈ H(m) such that typem’

 max({deadline_cont(m’=(k’,t’)) : (k’,t’) ∈ H(m=(k,t))

=continuous then

 and typem’

 else

= continuous}) + δ

 receive_timep(m) + δ

8. let deadline(k,t,type) ≡ if type=continuous then

 deadline_cont(k,t)

 else

 deadline_disc(k,t)

9. let deadline_arr(k,t,type)≡ {deadline(m=(k,t,type)) ∪ deadline(m’=(k’,t’,type’)) :

 m’ arrived in its lifetime and not yet delivered and m→m’}

10. For each diffusion of message send(m), at pj

11. VT(p)[j] = VT(p)[j] +1

12. for all (k,t,d,type) ∈ CI(p)

13. (k,t,d,type)← (k,t,d+1,type) /* Accounts for redundancy */

14. H(m) ← H(m) ∪ {k,t,type} endfor

15. m= (j, t=VT(p)[j], type, content, H(m))

16. Diffusion: send(m)

17. for all (k,t,d,type) ∈ CI(p) if d = causal_distance then

18. CI(p)←CI(p) / (k,t,d,type) endfor

19. For each reception receive(m) at p, m=(k, t, type, content, H(m))

20. if (t < VT(p)[k] or deadline(k, t, type) < current_time(p)) then

21. if not (t < VT(p)[k]) then

22. VTIME(p)[k] = current_time(p) endif

23. VT(p)[k] = max(VT(p)[k], t)

24. Discard(m)

25. else

40 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

26. wait ((t = VT(p)[k] + 1 or /*∆-causal delivery condition*/

27. min(deadline(k,VT(p)[k],type), {deadline_arr(k,t,type)}) < current_time(p)) and

28. (∀ (l,x,type’) ∈ H(m):

29. x ≤ VT(p)[l] or

30. min(deadline(l,x,type’), {deadline_arr(k,t,type)}) ≤ current_time(p))

31. Delivery: delivery(m)

32. VTIME(p)[k] = current_time(p)

33. VT(p)[k] = max(VT(p)[k], t)

34. for all (l,x,type’) ∈ H(m) if x >VT(p)[l] /* For missing messages */

35. VT(p)[l]=x endfor

36. if (∃(l,x,d,type) ∈ CI(p) | l = k) then /* Keeps the most

37. CI(p)←CI(p) / (l,x,d,type) endif recent message

38. CI(p) ← CI(p) ∪ {(k,t,d=0,type)} sent by pk */

39. for all (l,x,type) ∈ H(m) if ∃d : (l,x,d,type) ∈ CI(p) then

40. (l,x,d,type) ← (l,x,d+1,type) endfor /* Accounts for redundancy*/

41. for all (l,x,d,type) ∈ CI(p) if d=causal_distance then

42. CI(p)←CI(p) / (l,x,d,type) endfor

43. endif

5 Correctness Proof

To show that our algorithm ensures the ∆ -causal
delivery (correctness), we give a sketch of proof. In
order to do the proof as simple as possible, we focus
on showing that the time constraints are satisfied and
that the causal order is guaranteed independently of the
data type. For this reason, we avoid using the type of
data when referring to the messages. We refer to them
only by the participant identifier and the logical clock,
such as m=(k,t).

Theorem 1. (Liveness) i) All messages arriving
within their deadlines and whose deliveries do not
violate causal ordering will be delivered within their
deadlines, and ii) All messages arriving after the
expiration of their deadlines or whose delivery would
cause a causal violation will be discarded.

Proof Point ii) is ensured from the test of line 20. Point
i) is proved by contradiction. Suppose that a message

m=(k,t) exists that arrived within its deadline, but is
not delivered within its deadline. To proof this, we first
introduce Lemma 1.

Lemma 1 Each variable in VTIME(p)[j], for all j:1…n
does not decrease.

The proof follows directly from the algorithm (lines 20
and 31)
To proof Point i) we have two cases:

a) Messages from the same source. For this case, by
using Lemma 1, we have the following property:

P1) For all m=(k,t) ∈ M : Src(m) = pk ⇒ ∀ p∈P,
deadlinep(k, t’) < deadlinep

(k,t) ∀ t’:1,2,…,t-1

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks 41

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

Denying the first part of the delivery condition (line
27) that corresponds to messages from the same
source, we have that

∃ (k, t’), t’< t : (deadline(k, t’=VT(p)[k])) ≥

current_time(p))

On the deadline of message m=(k,t), we have that
current_time(p) = deadline(k, t). So by direct
replacement, we have:

∃ (k, t’), t’< t : (deadline(k, t’) ≥ deadline(k, t))

This sentence contradicts property P1. It follows

that at the deadline of an arrived message m, the first
part of the denied delivery condition is false, thus
contradicting our initial assumption.

b) Messages from a different source. To proof this
case, we first introduce two functions:
delivery_timep(m), which is the time when a message
m is delivered at a process p and discarded_timep

(m),
which is the time when a message m is marked as
missing at a process p. By using lines 27, 30 and
Lemma 1, we have the second and third properties:

P2) For all m’, m ∈ M , m’ → m received at p ∈ P ⇒
delivery_time p(m’) ≤ deadline p

(m)

P3) For all m’, m ∈ M, m’ → m: m’ has not been
received at p ∈ P ⇒ discarded_timep(m’) ≤
deadlinep

(m)

Next, we only present the proof that involves P2.
The proof involving P3 is similar and not presented
here.

For m’→m received at p ∈ P. By denying the
second part of the delivery condition (line 30), we
have:

∃m’=(l,x)∈ H(m):
 (min(deadline(l,x), {deadline_arr(m)}) >
 current_time(p))

If we do delivery_timep

(l,x) = min(deadline(l,x),
{deadline_arr(m)}), we have

∃ m’=(l,x)∈ H(m):

(delivery_time p

(l,x)) > current_time(p))

On the deadline of message m=(k,t), we have that
current_time(p) = deadline(m). So by direct
replacement, we have:

∃ m’=(l,x) ∈ H(m):

(delivery_time p

(m’)) > deadline(m))

This sentence contradicts property P2. It follows
that at the deadline of an arrived message m, the
second part of the denied delivery condition is false,
thus contradicting our initial assumption. �

Lemma 2. For all m’,m ∈ M, m’ → m such that
Src(m’)≠Src(m) and redundancyp

(m’) ≤
causal_distance implies that m’=(l,x) ∈ H(m)

This is accomplished by the procedures at the
diffusion message by lines 12 and 17, and at the
reception message by lines 38, 39 and 41.

Theorem 2. (Correctness) for all m’,m ∈ M, m’→ m
such that d(m’,m) ≤ causal_distance implies that
delivery(m’) → delivery(m).

Proof. Let us consider two messages m0 and mn
such that send(m0) →send(mn

) and both are received
by p. We show that they are delivered to p according to
causal ordering.

For this proof, we have two general cases. The
proof is by induction on the distance d(m0,mn

Base case: d(m
).

0,mn) = 1 and d(m0,mn

) ≤
causal_distance

In this case, m0 is IDR related to mn, and from
lemma 2 and since always d(m’,m) ≤ redundancy(m’),
we have m0 ∈ H(mn). It follows that line 29 will delay
the delivery of mn until after the delivery of m0

.

Induction case: d(m0,mn) ≥ 2 and d(m0,mn

) ≤
causal_distance

By induction, we have that all messages of the set
{mi ∈ M : mi-1 ↓ mi for all i =1…n-1} that are
delivered to p are delivered in causal order. For the

42 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

induction phase, we have two cases depending on
whether mn-1

 has been delivered or discarded at p.

a) For mn-1 delivered at p. We have mn-1 that
immediately precedes mn so the base case applies to
these messages: mn-1 is delivered before mn and by
transitivity m0 is delivered before mn

.

b) For mn-1 discarded at p. In this case mn-1 ∈ H(mn)
and by Lemma 1 and Lemma 2 and P3, it follows that
mn is delivered after that discarded_timep(mn-1). By
lines 27, 30 and Lemma 1, we have that for a message
mi that belongs to the path m0 to mn-1 implies that the
delivery or discarded time of mi is less than or equal to
the discarded time of mn-1. Consequently, mn is
delivered at p after m0

. �

We notice that when a message mn-y such that n-y >
causal_distance, we have mn-y ∉ H(mn) and therefore,
we cannot ensure the causal delivery of mn-y with
respect to mn

6 Conclusions

.

An efficient ∆ -causal algorithm has been presented.
The algorithm is efficient since the control information
attached per message is dynamically adapted to the
behavior of the system. We have shown that this
control information allows us to perform a causal
forward error recovery when messages are lost. Our
algorithm ensures ∆ -causal order delivery without
using a global clock. To avoid the use of a global
clock, we have proposed an original FEC mechanism
and a distributed lifetime method. Our ∆ -causal
algorithm is suitable for synchronous cooperative
systems since it performs a forward error recovery, and
it neither uses global references nor requires previous
knowledge of the behavior of the system.

References

Baldoni, R., Raynal, M., Prakash, R., & Singhal M.
(1996). Broadcast with Time and Causality
Constraints for Multimedia Applications, 22nd
EUROMICRO Conference '96, Beyond 2000:
Hardware and Software Design Strategie, Prague,
Czech Republic, 617-624.

Baldoni, R., Prakash, R., Raynal, M., & Singhal, M.
(1998). Efficient ∆-causal broadcasting.
International Journal of Computer Systems Science
and Engineering, 13(5), 263-269.

Birman, K. (1993). The Process Group Approach to
Reliable Distributed Computing, Communications
of the ACM, 36(12), 36-53.

Kshemkalyani, A. D. & Singhal, M. (1998).
Necessary and Sufficient Conditions on
Information for Causal Message Ordering and their
Optimal Implementation, Distributed Computing
Journal, 11(2), 91-111.

Lamport, L. (1978). Time, Clocks and the Ordering of
Events in a Distributed System, Communications of
the ACM, 21(7), 558-565.

Lopez, E., Estudillo J., Fanchon J., & Pomares
Hernandez, S.E. (2005). A Fault-tolerant Causal
Broadcast Algorithm to be Applied to Unreliable
Networks, 17th International Conference on
Parallel and Distributed Computing and Systems,
Phoenix, Arizona, USA, 465-470.

Mattern, F. (1989). Virtual Time and Global States of
Distributed Systems, International Workshop on
Parallel and Distributed Algorithms, Chateau de
Bonas, France, 215-226.

Olsen, J. (2003). Stochastic Modeling and Simulation
of the TCP Protocol, PhD thesis, Uppsala
University, Uppsala, Sweden.

Perkins, C. (2003). RTP Audio and Video for Internet,
Boston : Addison Wesley.

Plesca, C., Grigoras, R., Queinnec, P., & Padiou G.
(2005). A Flexible Communication Toolkit for
Synchronous Groupware, 2005 Systems
Communications, Washington, DC, USA, 216-221.

Pomares Hernandez, S.E., Fanchon, J., & Drira, K.
(2004). The Inmediate Dependency Relation: An
Optimal Way to Ensure Causal Group
Communication, Annual Review of Scalable
Computing, 6(1), 61-79.

Pomares Hernandez, S.E., Drira, K., Fanchon J., &
Diaz, M. (2002). An Efficient Multi-Channel
Distributed Coordination Protocol for Collaborative
Engineering Activities, IEEE International
Conference on Systems, Man and Cybernetics,
Hammamet, Tunisia, 415 – 420.

Prakash, R., Raynal, M., & Singhal, M. (1997). An
Adaptive Causal Ordering Algorithm Suited to
Mobile Computing Environment, Journal of
Parallel and Distributed Computing, 41(2), 190-
204.

An Efficient ∆-Causal Distributed Algorithm for Synchronous Cooperative Systems in Unreliable Networks 43

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

Tachikawa, T., & Takizawa, M. (1997). ∆-Causality
in Wide-Area Group Communications,
International Conference on Parallel and
Distributed Systems, Seoul, Korea, 260-267.

Appendix I

Analysis of Probabilities

Lets us consider that we have Ei

,,.....,1,0,
!

}{)(mj
j

ejXpjp
j

==== − λλ

 independent events
(send events) with i = 1,…..m, and let us suppose that
the rate of their delivery or loss is λ > 0, obeying a
Poisson distribution.

where X is a random variable that takes one of the
values 0,1……

We consider the events to be successful if they

arrive to their destination, and unsuccessful to those
who do not arrive. Suppose that there are n < m events
of the m possible ones, then

1. The probability that an event is unsuccessful is

λ−= ep)0(
2. The probability that at least one event is

unsuccessful is given by
λ−−=−=≥ epXp 1)0(1}1{

3. The probability that there is no more than n
successful events is given by

∑
=

−=≤
n

i

i

i
enXp

0 !
}{ λλ

4. The probability that there are at least n or more

unsuccessful events that do not arrive, is given by

∑
=

−=≥
n

i

i

i
enXp

0 !
1}{ λλ

If we consider a loss rate of λ = 0.1 (Olsen et al. 2003),
the diagram corresponding to case (4), which is the
case that we are interested in, is presented below.

Lost events

Fig. 3 Probability that at least n events or more are
unsuccessful.

As we can see, the diagram approaches zero

extremely fast. From values n ≥ 3, the likelihood
becomes negligible.

Saul Eduardo Pomares Hernandez he is a Researcher
in the Computer Science Department at the National
Institute of Astrophysics, Optics and Electronics
(INAOE), in Puebla, Mexico. He completed his PhD
Degree at the Laboratory for Analysis and
Architecture of Systems of CNRS, France in 2002.
Since 1998, he has been researching in the field of
distributed systems, partial order algorithms and
multimedia synchronization.

Eduardo Lopez Dominguez is currently a PhD student
in the Department of Computer Science at the INAOE.
He holds the M.S. degree in Computer Science from
the same institute in 2006. His research interests
include mobile distributed systems and multimedia
communications. His postgraduate studies are
supported by the National Council of Science and
Technology of Mexico (CONACYT).

P{X}

44 Saúl E. Pomares Hernández, Eduardo López Domínguez and Gustavo Rodríguez Gómez

Computación y Sistemas Vol. 14 No. 1, 2010, pp 31-43
ISSN 1405-5546

Gustavo Rodriguez Gomez: Received the Bachelor
degree and Master degree in Mathematics from the
National Autonomous University of Mexico (UNAM).
He has a PhD degree in Computational Sciences from
the lNAOE. His current research interests include
scientific computing and the numerical solution of
partial differential equations and ordinary differential
equations with radial basis functions, multirate
methods also called subcycling methods.

