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Abstract. In cooperative systems causal ordering delivery 
has been used to resolve problems of coherency of type 
producer-consumer. Causal order delivery is important for 
distributed systems since it allows an asynchronous 
execution to participants. When time delivery constraints are 
considered, ensuring causal delivery becomes more complex, 
as is the case for synchronous cooperative systems, such as 
Telemedicine and Teleimmersion. In these systems, the 
messages (units of data of continuous and discrete media) 
have an associated lifetime that determines the period of 
useful time in which the messages must be delivered. On the 
other hand, generally in these systems there is no time for 
retransmit them when messages are lost.  Causal order with 
time constraints has previously been addressed, and it is 
called ∆ -causal order. In this paper, we present an efficient 
∆-causal distributed algorithm for unreliable networks that is 
characterized by the use of a forward error correction (FEC) 
scheme and a distributed method to calculate the message 
lifetime based on relative time points (i.e. no global time is 
used). We show the efficiency of our ∆ -causal algorithm in 
terms of the control information attached per message. 
 
Keywords: Cooperative systems, Group communication, 
Causal order. 
 
Resumen. En los sistemas cooperativos el ordenamiento 
causal ha sido usado para resolver problemas de coherencia 
de tipo productor-consumidor. La entrega de orden causal es 
importante en general para los sistemas distribuidos debido a 
que permite a los participantes una ejecución asíncrona. 
Cuando las restricciones de entrega en tiempo real son 
contempladas, asegurar la entrega causal se vuelve más 
complejo, como es el caso para los sistemas cooperativos 
síncronos, tales como Telemedicina y Teleinmersión. En 
estos sistemas, los mensajes (datos continuos y discretos) 
tienen asociado un tiempo de vida que determina el periodo 
de tiempo útil en cual los mensajes deben ser entregados, y 
por el otro lado, en general en estos sistemas, cuando los 

mensajes son perdidos no existe tiempo para retransmitirlos. 
El orden causal con restricciones de tiempo ha sido 
previamente  estudiado, y es nombrado orden ∆ -causal. En 
este trabajo, presentamos un algoritmo distribuido ∆ -causal 
eficiente sobre redes no fiables, nuestro algoritmo se 
caracteriza por el uso de un esquema de corrección de errores 
hacia delante (FEC) y un método distribuido para calcular el 
tiempo de vida de un mensaje basado en puntos de tiempo 
relativo (ningún tiempo global es utilizado). Mostramos la 
eficiencia de nuestro algoritmo ∆ -causal en términos de la 
información de control unida a cada mensaje. 
 
Palabras clave: Sistemas cooperativos, Comunicación en 
grupo, Orden causal. 

1   Introduction 

Although synchronous cooperative systems have been 
a major research focus in computer supported 
cooperative work (CSCW) for over two decades, there 
is still a lack of protocols oriented to support their 
communication requirements, which guarantee, at 
runtime, ordering dependencies and time constraints. 
In this sense, causal protocols have been used in 
cooperative systems mainly to resolve problems of 
coherency of type producer-consumer (Plesca et al. 
2005, Pomares et al. 2002). In general, the causal order 
delivery (Birman et al. 1993) ensures that for each 
participant in the system the events (send and delivery 
of messages) will be seen in the cause-effect order as 
they occur in the system. 

Many works concerning protocols of causal 
ordering delivery exist (Pomares et al. 2004; Birman et 
al. 1993; Kshem-kalyani et al. 1998). The previous 
algorithms assume a reliable transmission without an 
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associated lifetime per message. These works are not 
suitable for synchronous cooperative systems since 
these systems intrinsically have time constraints that 
are not considered by them. 

 Synchronous cooperative systems are 
characterized by two main time constraints. First, the 
information units (continuous and discrete) have an 
associated lifetime that establishes the period of time 
in which the information (messages) must be received; 
a message that arrives after its lifetime is useless and, 
consequently, discarded. The second constraint 
establishes that there is no time for retransmission 
when messages are lost. In order not to greatly affect 
the quality of service, a forward recovery scheme is 
preferable over a backward recovery scheme (Perkins 
et al. 2003). 

Causal order with time constraints has previously 
been addressed by Baldoni (1998), and it is called ∆ -
causal order. In his work, Baldoni ensures ∆ -causal 
order by using a global clock. In our work, we propose 
an algorithm that ensures ∆ -causal order in unreliable 
networks while avoiding the use of global references. 
To achieve this, we propose an original FEC 
mechanism and a method to calculate, in a distributed 
manner, the lifetime per message for continuous and 
discrete media units. The FEC mechanism ensures that 
causal order delivery is accomplished even in the 
presence of lost messages. The lifetime in our work is 
calculated based on relative time points1

We apply our FEC mechanism and our distributed 
lifetime method to extend the minimal causal broadcast 
algorithm presented in Pomares et al. 2004. This 
minimal algorithm only sends control information 
about messages with an immediate dependency 
relation (IDR). Messages related by an IDR have a 
causal distance (see Definition 4) of one (i.e. no 
intermediate causal message exists between them). In 
order to support delays and loss of messages, we 
introduce redundancy on the control information by 
sending information about messages with a causal 
distance greater than one. One interesting aspect of our 
FEC mechanism, as we will show in Section 4, is that 

. Our work is 
intended for the transmission of continuous data, such 
as audio and video, and discrete data such as text and 
still images. 

                                                  
1 A relative time point establishes a reference point from which it is 

possible to calculate a period of time. 
 

the redundancy is dynamically adapted according to 
the behavior of the system. 

The rest of the article is structured in the following 
way: Section 2 presents the most relevant related 
works concerning the ∆ -causal ordering. In Section 3, 
the system model is described and the background 
information is presented. Next, we present in Section 4 
our ∆-causal order algorithm with our proposed FEC 
mechanism and the distributed life-time method. A 
sketch of the algorithm correctness proof is presented 
in Section 5. Finally, some conclusions are pre-sented 
in Section 6. 

2   Related Work 

The most important work that tackles the problem of 
causality and time constraints was presented by 
(Baldoni et al. 1998). Baldoni addresses the problem of 
causality and time constraints by introducing the ∆ -
causal order. Informally, the ∆ -causal order says that a 
message m is ∆-causally-related to another message m´ 
if m causally precedes m’ and arrives before its 
deadline. Baldoni ensures message ∆ -causal order by 
using a reference global clock. More specifically, by 
using a global clock, Baldoni determines if a message 
accomplishes the causal order and the time delivery 
constraints. The ∆ -causal order defined by Baldoni is 
correct; however, the use of a global clock is not 
suitable for distributed communication systems where 
the message transmission delay is not negligible 
(Lamport et al. 1978).  

Several ∆ -causal algorithms exist (Baldoni et al 
1996; Prakash et al. 1997; Tachikawa et al. 1997) that 
ensure causal ordering in the presence of lost messages 
and time delivery constraints; however, to achieve this, 
all of them use some type of global reference (shared 
memory, wall clock, master-slave scheme, etc). 
 
3   Preliminaries 

3.1  The System Model 

Processes: The application under consideration is 
composed of a set of processes P = {j, k,…} organized 
into a group that communicates by passing non reliable 
broadcast asynchronous messages. 
Messages: We consider a finite set of messages M, 
where each message m∈M is identified by a tuple 
m=(p,t), where p∈P is the sender of m, denoted by 
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Src(m),  and t is the sequential ordered logical clock 
for messages of p when m is broadcasted. The set of 
destinations of a message m is always P.  
Events: Let m be a message. We denote by send(m) 
the emission event of m by Src(m), and by 
delivery(p,m) the delivery event of m to participant 
p∈P. The set of events associated to M is then the set 
E= {send(m) : m∈M} ∪ {delivery(p,m) : m ∈ M ∧ p 
∈P}. The process p(e) of an event e∈E is defined by p 
(send(m))= p and p (delivery(p,m))=p. The set of 
events of a process p is Ep

3.2  Background and Definitions 

={ e∈E :p(e)=p}.  

The Happened-Before Relation. The happened-
before relation was defined by Lamport (1978). The 
happened-before relation establishes possible 
precedence dependencies in a set of events without 
using physical clocks. It is a strict partial order (i.e. 
irreflexive, asymmetric and transitive) defined as 
follows:  

 
Definition 1. The causal relation “→” is the least 
partial order relation on E satisfying the following 
properties: 
1. If a and b are events belonging to the same 

process, and a was originated before b, then a→b. 
2. If a is the send message of a process, and b is the 

reception of the same message in another process, 
then a→b. 

3. If a→b and b→c, then a→c. 
 

By using Definition 1, we define that a pair of events 
are concurrent related “a || b” only if  

 
¬ (a→b ∨ b→a) 

 
The precedence relation on messages denoted by 

m→m’ is induced by the precedence relation on events, 
and is defined by: 

 
m→m’ ⇔ send(m)→ send(m’) 

 
The Immediate Dependency Relation. The 
Immediate Dependency Relation (IDR) introduced in 
Pomares et al. 2004 is the propagation threshold of the 
control information regarding the messages sent in the 
causal past that must be transmitted to ensure a causal 

delivery. We denote it by ↓, and its formal definition is 
the following: 
 
Definition 2. Immediate Dependency Relation 
“↓” (IDR): 
 

a↓b⇔[(a → b) ∧ ∀ c ∈ E, ¬(a → c→ b)] 
 

Thus, an event a directly precedes an event b, iff no 
other event c belonging to E exists, such that a 
precedes c and c precedes b. We note that the IDR 
relation is the transitive reduction of the Lamport’s 
relation. This is important because if the delivery of 
messages respects the order of the diffusion for all 
pairs of IDR related messages, then the delivery 
respects the causal order for all messages (Pomares et 
al. 2004). This property is formally defined for the 
broadcast case as follows: 
 
Property 1: 

∀ m,m’ ∈ M, if send(m) ↓ send(m’) ⇒ ∀p ∈ P : 
delivery(p,m) → deliver(p,m’) then send(m) →  

send(m’) ⇒ ∀p ∈ P : delivery(p,,m) → delivery(p,m’) 
 
The ∆ -Causal Ordering. The ∆ -causal ordering has 
been introduced in Baldoni et al. 1998; it is formally 
defined for the broadcast case as follows: 
 
Definition 3. A set of events E satisfies the ∆ -causal 
ordering if: 

1. All events that arrive in ∆ are delivered within ∆. 
All other events are considered to be lost or 
discarded, and therefore, are never delivered. 

2. All delivery events respect causal ordering, i.e. 
 

∀ m,m’∈ M,  if send(m)→ send(m’), then ∀p ∈ P : 
delivery(p,m) → delivery(p,m’) 

 
The Causal Distance. The causal distance identifies 
the number of causal messages that exist in a 
linearization between a pair of messages in the system 
(Lopez et al. 2005). Formally, the causal distance is 
defined as follows: 

 
Definition 4. Let m and m’ be messages, the distance 
d(m,m’) is defined for any pair m and m’ (send(m)→ 
send(m’)), such that d(m,m’) is the integer n for some 
sequence of messages (mi, i= 0...n), with m= m0 and 
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m’=mn, such that send(mi)↓send(mi+1

4   The ∆-Causal Order Algorithm 

) for all i =0…n-
1. 

In order to avoid the use of a global clock, we propose 
an original FEC mechanism and a distributed lifetime 
method that verifies if a message satisfies or not its 
deadline. In this section we give a general description 
of each mechanism separately, and then integrate them 
to the minimal broadcast causal algorithm. 

4.1  The FEC Mechanism 

All FEC mechanisms introduce some kind of 
redundancy to support the loss of information. The 
redundancy in causal algorithms represents the number 
of times that information about a causal message is 
sent in the system. The causal algorithm presented in 
Pomares et al. 2004, which uses the IDR relation, is 
minimal because the IDR relation identifies the 
necessary and sufficient causal information that needs 
to be sent attached per message (denoted in this paper 
by H(m)). Even when this is a minimal algorithm, 
redundant control information is still transmitted in 
some communication scenarios. Our FEC mechanism 
identifies and uses this inherent redundancy in order to 
be efficient and will only add extra redundancy when it 
is needed. The purpose of adding extra redundancy is 
to increase the probability that causal order delivery 
will be obtained, even in the presence of lost messages 
and significant network delays.   

 

 
Fig. 1. Example scenarios and their associated IDR graph 

 
Redundancy and the IDR relation 
To ensure causal ordering, the minimal algorithm only 
sends control information attached to each message 

about messages with an immediate dependency 
relation. For two messages that are IDR-related 
(m↓m’), the causal distance is equal to one 
(d(m,m’)=1). Note that for the serial case, a message m 
has only one immediate predecessor (best case), and 
that a message m can have at most n immediate 
predecessors, one for each process.  

For the serial case, for messages that are IDR-
related, there is no redundancy in the control 
information sent. For example, in the serial scenario 
depicted in Figure 1a, message m3 only sends causal 
information  about message m2 (H(m3) ={m2=( p3, 
t2)})  and message m2 only sends information about 
message m1 (H(m2) ={m1=( p1, t1)}). In this case, if a 
message is lost, the causal order delivery can be 
violated. As shown in Figure 1a, the causal order 
delivery is violated because at the reception of message 
m3, process p5 cannot determine if a message 
preceding m2 exists or not. With the IDR information 
on m3, process p5 can only detect that it missed 
message m2. In order not to stop the system execution, 
process p5 considers message m2 as lost and then 
delivers m3. In this scenario, m1 can be delivered after 
m3

For the concurrent relation, inherent redundancy 
exists on the causal information sent. For example, in 
the scenario depicted in Figure 1b, messages m

, which violates the causal ordering. 

2 and 
m3 have the same immediate predecessor m1, and 
therefore m2 and m3 send information about message 
m1 (H(m2)= H(m3)={m1=( p1, t1)}). If either message 
m2 or m3 is lost, message m1 can still be detected as 
shown in Figure 1b. In this scenario, m2 is lost and m3 
successfully arrives at p5. With the IDR information on 
m3, process p5 determines that m1 exists, which 
precedes message m3. To deliver m3, process p5 
establishes message m1 as lost. In this scenario, m1 
arrives at p5 after the delivery of message m4, but since 
message m1

 

 has been established as lost, it is 
immediately discarded. Therefore, causal order is 
ensured.   

Our Proposal 
In order to support the loss of messages, we propose to 
increase the redundancy in the control information sent 
per message by sending information about causally-
related messages with a causal distance greater than 
one. For example, in Figure 1a, if we establish a causal 
distance of two (causal_distance = 2), this means that 
message m3 must send information about m2 and m1

 

Causal order 
ensured 

p 5 p 1 p 2 p 3 p 4 
m 1 

m 2 

m 3 

5 1 2 3 4 

1 
2 

3 

1 2 3 4 

1 
2 

3 
x 

Causal order 
violation 

m 1 
2 

m 4 

1 
m 2 

1 
2 

x 

m 3 3 3 

m 4 
IDR graph 

IDR graph 

a) b) 

x 
m1 determined 
as lost 

p 5 p 1 p 2 p 3 p 4 5 1 2 3 4 1 2 3 4 

m 1 1 1 m 2 2 2 m 
3 3 3 m 1 1 1 

m 2 2 2 

m 
3 3 3 

m1 discarded 

x 

t 

. 
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To be efficient, the redundancy is increased 
considering the inherent redundancy introduced by the 
IDR relation. We formally define that redundancy 
about a message m, denoted by redundancyp(m), 
determines the number of times that the information 
about a causal message m has been seen (received) by 
a participant p. As previously described, the 
redundancy increases as the number of concurrent 
messages increases. Taking into account 
redundancyp

 

(m) with a causal distance greater than 
one (causal_distance > 1), we establish that a message 
m’ must include information about a causal message m 
(m→m’) only if the following propagation constraints 
are satisfied: 

PC1: d(m,m’) ≤ causal_distance and 
PC2: causal_distance > redundancyp

   
(m)   

With both of these PCs, the control information 
sent per message is dynamically adapted to the 
behavior of the system by only introducing redundancy 
when it is needed. For example, with causal_distance 
= 2, message m3, shown in Figure 1a, must send causal 
information about m2 and m1 (H(m3)={m2, m1}) 
because p4 has redundancy(m1) equal to one and a 
causal distance of d(m1,m3) = 2 and d(m2,m3) = 1, 
respectively. Nevertheless, for the scenario presented 
in Figure 1b, message m4 must send information only 
about messages m2 and m3 (H(m4)={m2, m3}),  and 
not about m1, even when d(m1,m4) = 2.  This is done 
because the redundancy(m1) seen by p4

We note that the value of redundancy

 is equal to 2, 
and therefore, it does not satisfy the second PC.  

p

4.2 The Distributed Lifetime Method 

(m) can 
differ between participants since it is calculated from 
the messages received by each one. In a general case, 
according to the analysis presented in Appendix I, it is 
sufficient to take a causal_distance equal to 5 since the 
probability that three or more consecutive and/or 
concurrent messages can be lost is very low. 

The distributed lifetime method identifies two cases. 
one case for continuous media data, and another case 
for discrete media data. In the transmission of 
continuous media data, such as audio and video it is 
possible to establish relative time points (ReTPs) , 
since the messages are periodically sent, and this 
ReTPs can be used to determine if the units of data 

satisfies or not its lifetime.  Nevertheless, the ReTPs 
must be dynamically established in order to support 
random transmission delays. For the case of discrete 
media units is totally different since they are no 
periodical, which means that the period of time 
between emissions is variable. For this reason, we 
propose for a discrete media unit to calculate its 
lifetime based on the lifetime of the causally-related 
messages of continuous media that are included in its 
causal control information. Next, we will present the 
lifetime method for continuous media followed by the 
method for discrete media. 

 
Establishing Relative Time Points and Deadline 
Points for Continuous Media 
In order to establish the relative time points and 
deadline points, we assume that the transmission of 
data, such as audio and video, is executed by 
transferring messages at a relatively constant rate, and 
that these messages are sequentially timestamped. By 
taking into account these hypotheses, we establish a 
ReTP at the reception of the most recent message. For 
example, in Figure 2, the reception of message m1 
establishes the first relative time point rtp1; the 
reception of m2 establishes the rtp2
 

, and so on. 

 
Fig. 2. Streaming scenario 

 
Based on the ReTPs, the deadline point of a 

message m, denoted by deadline_cont(m), is 
determined from the ReTP previously established. If 
no message is lost and the messages arrive in order, we 
have:  

           
    deadline_cont(mi)=rtpi-1

 

 + ∆ : i ≥ 1                        
(1) 

 

… 

deadline(m3) deadline(mn) 

m2 m3 mn 

∆ 

… m3 

m2 

m1=start 

∆ 

m1=start 

rtp1 rtp2 deadline(m2) 

t 

Video 
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where ∆ is the message lifetime that establishes the 
maximum transmission delay supported2

If we consider lost or discarded messages, the equation 
above is redefined as follows: 

.  

 
deadline_cont(mi)=rtpx

where rtp

 + (i-x)∆ :  x < i and i ≥ 1       
(2) 

x

For broadcast asynchronous communication, each 
process p∈P locally establishes its own ReTPs, and 
therefore, its own deadline points. For this case, we 
denote a deadline as deadline_cont(m, p), which 
determines the deadline point for a message m at a 
process p. It is the same case for discrete media as we 
will present in the next paragraph.    

 is the last relative time point 
established. This general equation is used in the rest of 
the paper to calculate the deadline for continuous 
media. 

 
Deadline Points for Discrete Media 
As we previously said, the period of time between the 
emission of messages of discrete media is variable, and 
therefore we cannot take it as reference. For this 
reason, we take the deadline points of the messages of 
continuous media included in the causal information 
H(m). For each message we take its causal information 
H(m), and we find its maximum deadline point. We 
take this the maximum deadline point as reference to 
determine the deadline point for the discrete message. 
Formally, a deadline point for a discrete message is 
calculated as follows: 
 

deadline_disc(m) = max({deadline_cont(m’): 
m’∈ H(m) and typem’

(3) =continuous)} + δ 
        

where δ is the lifetime established for discrete 
media units. We recall that every message in its causal 
information H(m) satisfies the PC1 and PC2 presented 
in Section 4.1. 

More specifically, we take the maximum deadline 
point since in order to causally deliver a message m, it 
must wait until and delivery after that every message 
that belongs to its H(m) has been causally delivered or 
has been discarded as a consequence of its lifetime 
expiration, which is determined by its deadline point.  

                                                  
2 For simplicity, in our work, we consider only one ∆ for all 

messages in the system. 

In the case that m’∈ H(m), such that 
typem’
 

=continuous we have: 

deadline_disc(m) = receive_timep
 

(m) + δ                (4) 

where receive_timep

 

(m) gives the time when message 
m has been received at participant p 

 

4.3 The Algorithm Code 

Data Structures 
 
The main data structures used in the algorithm are: 
 
 VT(p) is the vector time. For each process p there 

is an element VT(p)[j] where j is a process 
identifier. When we need to refer to a specific 
process with its respective identifier, we write pj

 

. 
The size of VT is equal to the number of processes 
in the group. VT(p) contains the local view that 
process p has of the elements of the system. In 
particular, element VT(p)[k] represents the greatest 
element number of the identifier k and ‘seen’ in 
causal order by p. It is through the VT(p) structure 
that we are able to guarantee the causal delivery of 
elements. 

 CI(p) is the control information structure. It is a 
set of entries (k, t, d, type). Each entry in CI(p) 
denotes a message that satisfies the PC1 and PC2 
propagation constraints and that can potentially be 
attached in the next message m sent by p. The 
entry (k, t, d, type) represents a message diffused 
by participant k at a logical local timeclock  t = 
VT(p)[k], d contains the redundancy of m=(k, t) 
seen by p and type determines the type of media 
transmitted, which can be continuous or discrete. 
 

 The structure of a message m  is a quadruplet  m = 
(j, t, type, content, H(m)), where: 
•  j is the participant identifier. 
•  t=VT(p)[j] is the logical local clock at node j. 
• type determines the type of media transmitted. 
• content is the structure that carries the media 

data. 
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• H(m) contains the set of all entries (k, t, type) 
about messages that satisfy the propagation 
constraints (PC1 and PC2) with m. 

 
 The causal_distance variable is the predetermined 

causal distance considered.  
 

 VTIME(p) is a vector that contains the most recent 
relative time points. The size of VTIME(p) is equal 
to VT(p) (one element for each process in the 
system). 

  current_time(p) represents the physical local time 
of a process p. 
 

 deadline(k,t,type) is a function that calculates the 
deadline point for message m identified by (k,t) 
where k is the sender process and t is the logical 
clock. This function considers the two types of 
discrete and continuous messages. 

 
Algorithm Description 
The ∆-causal algorithm is presented in Table 1. When 
a message m is broadcasted (continuous or discrete) by 
a process p, the H(m) is constructed by adding entries 
from the CI(p) (lines 12-14) to it. Each entry in H(m) 
satisfies, with  respect to m, the PC1 and PC2 
propagation constraints. In order to comply with PC1 
and PC2, we use a logical counter d by each entry in 
CI(p) ((k, t, d, type) ∈ CI(p)). The variable d is 
increased by one each time that its associated entry is 
added to a H(m) by a process p (line 13) or when that 
entry is received in a H(m) (lines 39-40). The variable 
d contains the redundancy of the message m=(k, t) seen 
by p. We note that only when no concurrent messages 
exist the value of d specifies the causal distance 
between events.  
 
The ∆ -Causal  Delivery Condition. At the reception 
of a message, m=(k, t, type, content, H(m)) will be 
immediately discarded if it has already been marked as 
lost (t < VT(p)[k]) or if it misses its deadline (line 20). 
If m is not discarded, it is delivered as soon as the ∆-
causal delivery condition becomes true (lines 26-30). 
This delivery condition ensures that a message m is 
delivered in its lifetime (lines 27 and 30) and that it 
will be delivered if and only if all messages causally 
related to it have either been delivered or have been 
established as missing, i.e. that its lifetime has been 
expired. A posteriori, these messages are marked as 
lost in lines 34-35, and therefore, they will never be 

delivered. We note that in order to ensure ∆ -Causal 
delivery if at a participant p, a message m’ in the causal 
future of a message m (m→m’) has a smaller lifetime 
than m (deadline(m,p) > deadline(m’,p)) and both 
messages have arrived but are not yet delivered, we 
make deadline(m) = deadline(m’). This is done in 
order to ensure Rule one of definition 3, which says 
that all events that arrive in ∆ are delivered within ∆. 
This behavior is better illustrated in the proof of 
Section 5. 
 
Overhead analysis. In order to be efficient, each entry 
in CI(p), and eventually in H(m) corresponds to the 
most recent message sent by a process pj ∈ P and 
causally received by p. This is possible since each 
message m is sequentially timestamped with its 
respective local logical clock of pj = Src(m). By 
knowing the sequential order, a participant pj can 
determine at any message reception if a message or set 
of messages diffused by pj

Since H(m) only has the most recent messages that 
precede a message m, the overhead per message in this 
algorithm to ensure ∆ -causal ordering is given by the 
cardinality of H(m), which can fluctuate in our case 
between 0 and n-1 (0 ≤ |H(m)| ≤ n-1). For the serial 
case, |H(m)| is at most the causal_distance established 
(|H(m)| ≤ causal_distance), and for the case of 
concurrent messages, the worst case is at most n-1 
(|H(m)| ≤ n-1), which is the same boundary  for 
messages that are IDR related (causal_distance = 1). 

 has been lost, 
independently of the causal distance.  

We note that in our algorithm, as for the minimal 
causal algorithm in (Pomares et al. 2004), the 
likelihood that the worst case will occur approaches 
zero as the number of participants in the group grows. 
Compared with algorithms that are exclusively based 
on vector clocks (Matern et al. 1989), our worst case 
denotes for them the constant overhead that must 
always be attached per message.  
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Table 1. Multimedia Broadcast ∆-Causal algorithm 

1.   Initially 

2.   VT(p)[j] = 0 ∀ j:1…n                                           /* Vector clock */ 

3.   VTIME(p)[j] = 0 ∀ j:1…n                                    /* Vector with the ReTPs */ 

4.   CI(p), H(m), deadline_arr(m) ← ∅ 

5.   causal_distance = z 

6.  let deadline_cont(k,t) ≡ VTIME(p)[k]+(t- VT(p)[k]) *∆  

7.  let deadline_disc(k,t) ≡ if ∃m’=(k’,t’) ∈ H(m) such that typem’

                                        max({deadline_cont(m’=(k’,t’)) : (k’,t’) ∈ H(m=(k,t))                         

=continuous then 

                                                 and typem’ 

                                  else 

= continuous}) + δ 

                                         receive_timep(m) + δ 

8.   let deadline(k,t,type) ≡ if type=continuous then 

                                      deadline_cont(k,t) 

                                 else  

                                       deadline_disc(k,t) 

9.   let deadline_arr(k,t,type)≡ {deadline(m=(k,t,type)) ∪ deadline(m’=(k’,t’,type’)) :  

                                           m’ arrived in its lifetime and not yet delivered  and m→m’}  

10.   For each diffusion of message send(m), at pj 

11.    VT(p)[j] = VT(p)[ j] +1 

12.    for all (k,t,d,type)  ∈ CI(p) 

13.            (k,t,d,type)← (k,t,d+1,type)                                         /* Accounts for redundancy */ 

14.            H(m) ← H(m) ∪ {k,t,type} endfor 

15.     m= (j, t=VT(p)[j], type, content, H(m)) 

16.     Diffusion: send(m) 

17.     for all  (k,t,d,type)  ∈ CI(p)  if  d = causal_distance  then  

18.          CI(p)←CI(p) / (k,t,d,type)   endfor   

19.     For each reception receive(m) at p, m=(k, t, type, content, H(m))  

20.         if (t < VT(p)[k] or deadline(k, t, type) < current_time(p)) then   

21.              if not (t < VT(p)[k]) then 

22.                     VTIME(p)[k] = current_time(p)  endif 

23.              VT(p)[k] = max(VT(p)[k], t)      

24.              Discard(m) 

25.           else             
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26.          wait ( (t = VT(p)[k] + 1 or                              /*∆-causal delivery condition*/ 

27.                     min(deadline(k,VT(p)[k],type), {deadline_arr(k,t,type)}) < current_time(p)) and 

28.                    (∀ (l,x,type’) ∈ H(m):            

29.                            x ≤ VT(p)[l] or  

30.                            min(deadline(l,x,type’), {deadline_arr(k,t,type)}) ≤ current_time(p)) 

31.              Delivery: delivery(m) 

32.              VTIME(p)[k] = current_time(p) 

33.              VT(p)[k] = max(VT(p)[k], t) 

34.         for all  (l,x,type’) ∈ H(m) if  x >VT(p)[l]                /* For missing messages */ 

35.                     VT(p)[l]=x endfor 

36.         if (∃(l,x,d,type) ∈ CI(p) | l = k ) then                     /* Keeps the most  

37.             CI(p)←CI(p) / (l,x,d,type) endif                        recent message  

38.         CI(p) ← CI(p) ∪ {(k,t,d=0,type)}                              sent by pk       */ 

39.         for all  (l,x,type) ∈ H(m)  if ∃d :  (l,x,d,type) ∈ CI(p) then   

40.               (l,x,d,type) ← (l,x,d+1,type) endfor                        /* Accounts for redundancy*/ 

41.         for all (l,x,d,type) ∈ CI(p)   if  d=causal_distance then 

42.                 CI(p)←CI(p) / (l,x,d,type) endfor 

43.      endif 

5   Correctness Proof  

To show that our algorithm ensures the ∆ -causal 
delivery (correctness), we give a sketch of proof. In 
order to do the proof as simple as possible, we focus 
on showing that the time constraints are satisfied and 
that the causal order is guaranteed independently of the 
data type. For this reason, we avoid using the type of 
data when referring to the messages. We refer to them 
only by the participant identifier and the logical clock, 
such as m=(k,t). 
 
Theorem  1. (Liveness) i) All messages arriving 
within their deadlines and whose deliveries do not 
violate causal ordering will be delivered within their 
deadlines, and ii) All messages arriving after the 
expiration of their deadlines or whose delivery would 
cause a causal violation will be discarded. 
 
Proof Point ii) is ensured from the test of line 20. Point 
i) is proved by contradiction. Suppose that a message 

m=(k,t) exists that arrived within its deadline, but is 
not delivered within its deadline. To proof this, we first 
introduce Lemma 1. 
 
Lemma 1 Each variable in VTIME(p)[j], for all j:1…n 
does not decrease. 

 
The proof follows directly from the algorithm (lines 20 
and 31) 
To proof Point i) we have two cases: 

 
a) Messages from the same source. For this case, by 
using Lemma 1, we have the following property: 

 
P1) For all m=(k,t) ∈ M : Src(m) = pk ⇒ ∀ p∈P, 
deadlinep(k, t’) < deadlinep

 
(k,t) ∀  t’:1,2,…,t-1 
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Denying the first part of the delivery condition (line 
27) that corresponds to messages from the same 
source, we have that 

 
∃ (k, t’), t’< t : (deadline(k, t’=VT(p)[k])) ≥ 

current_time(p)) 
 

On the deadline of message m=(k,t), we have that 
current_time(p) = deadline(k, t). So by direct 
replacement, we have: 

 
∃ (k, t’), t’< t : (deadline(k, t’) ≥ deadline(k, t)) 

 
This sentence contradicts property P1. It follows 

that at the deadline of an arrived message m, the first 
part of the denied delivery condition is false, thus 
contradicting our initial assumption.   

 
b) Messages from a different source. To proof this 
case, we first introduce two functions: 
delivery_timep(m), which is the time when a message 
m is delivered at a process p and discarded_timep

 

(m), 
which is the time when a message m is marked as 
missing at a process p. By using lines 27, 30 and 
Lemma 1, we have the second and third properties: 

P2) For all m’, m ∈ M , m’ → m received at p ∈ P ⇒  
delivery_time p(m’) ≤ deadline p
 

(m)  

P3) For all m’, m ∈ M, m’ → m: m’ has not been 
received at p ∈ P ⇒ discarded_timep(m’) ≤ 
deadlinep

 
(m) 

Next, we only present the proof that involves P2. 
The proof involving P3 is similar and not presented 
here. 
 

For m’→m received at p ∈ P. By denying the 
second part of the delivery condition (line 30), we 
have: 

 
∃m’=(l,x)∈ H(m):  
         (min(deadline(l,x), {deadline_arr(m)}) >    
          current_time(p)) 
 
If we do delivery_timep

 

(l,x) = min(deadline(l,x), 
{deadline_arr(m)}), we have 

∃ m’=(l,x)∈ H(m):  

(delivery_time p
 

(l,x)) > current_time(p)) 

On the deadline of message m=(k,t), we have that 
current_time(p) = deadline(m). So by direct 
replacement, we have: 
 
∃ m’=(l,x) ∈ H(m):  

(delivery_time p
 

(m’)) > deadline(m)) 

This sentence contradicts property P2. It follows 
that at the deadline of an arrived message m, the 
second part of the denied delivery condition is false, 
thus contradicting our initial assumption.  � 

 
Lemma 2. For all m’,m ∈ M, m’ → m such that 
Src(m’)≠Src(m) and redundancyp

 

(m’) ≤ 
causal_distance implies that  m’=(l,x) ∈ H(m)  

This is accomplished by the procedures at the 
diffusion message by lines 12 and 17, and at the 
reception message by lines 38, 39 and 41. 
 
Theorem 2. (Correctness) for all m’,m ∈ M, m’→ m 
such that d(m’,m) ≤ causal_distance implies that 
delivery(m’) →  delivery(m). 
 

Proof. Let us consider two messages m0 and mn 
such that send(m0) →send(mn

 

) and both are received 
by p. We show that they are delivered to p according to 
causal ordering.  

For this proof, we have two general cases. The 
proof is by induction on the distance d(m0,mn

Base case: d(m
). 

0,mn) = 1 and d(m0,mn

 

) ≤ 
causal_distance 

In this case, m0 is IDR related to mn, and from 
lemma 2 and since always d(m’,m) ≤ redundancy(m’), 
we have m0 ∈ H(mn). It follows that line 29 will delay 
the delivery of mn until after the delivery of m0

 
. 

Induction case: d(m0,mn) ≥ 2  and d(m0,mn

 

) ≤ 
causal_distance 

By induction, we have that all messages of the set 
{mi ∈ M : mi-1 ↓ mi for all i =1…n-1} that are 
delivered to p are delivered in causal order. For the 
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induction phase, we have two cases depending on 
whether mn-1

 
 has been delivered or discarded at p.   

a) For mn-1 delivered at p. We have mn-1 that 
immediately precedes mn so the base case applies to 
these messages: mn-1 is delivered before mn and by 
transitivity m0 is delivered before mn

 
. 

b) For mn-1 discarded at p. In this case mn-1 ∈ H(mn) 
and by Lemma 1 and Lemma 2 and P3, it follows that 
mn is delivered after that discarded_timep(mn-1). By 
lines 27, 30 and Lemma 1, we have that for a message 
mi that belongs to the path m0 to mn-1 implies that the 
delivery or discarded time of mi is less than or equal to 
the discarded time of mn-1. Consequently, mn is 
delivered at p after m0

 
. �  

We notice that when a message mn-y such that n-y > 
causal_distance, we have mn-y ∉ H(mn) and therefore, 
we cannot ensure the causal delivery of mn-y with 
respect to mn

6   Conclusions  

.  

An efficient ∆ -causal algorithm has been presented. 
The algorithm is efficient since the control information 
attached per message is dynamically adapted to the 
behavior of the system. We have shown that this 
control information allows us to perform a causal 
forward error recovery when messages are lost. Our 
algorithm ensures ∆ -causal order delivery without 
using a global clock. To avoid the use of a global 
clock, we have proposed an original FEC mechanism 
and a distributed lifetime method. Our ∆ -causal 
algorithm is suitable for synchronous cooperative 
systems since it performs a forward error recovery, and 
it neither uses global references nor requires previous 
knowledge of the behavior of the system. 
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Appendix I 

Analysis of Probabilities 

Lets us consider that we have Ei

,,.....,1,0,
!

}{)( mj
j

ejXpjp
j

==== − λλ

 independent events 
(send events) with i = 1,…..m, and let us suppose that 
the rate of their delivery or loss is λ > 0, obeying a 
Poisson distribution. 

                         

 
where X is a random variable that takes one of the 
values 0,1…… 

 
We consider the events to be successful if they 

arrive to their destination, and unsuccessful to those 
who do not arrive. Suppose that there are n < m events 
of the m possible ones, then 
 
1. The probability that an event is unsuccessful is 

λ−= ep )0(  
2. The probability that at least one event is  

unsuccessful is given by  
λ−−=−=≥ epXp 1)0(1}1{  

3. The probability that there is no more than n 
successful events is given by 

∑
=

−=≤
n

i

i

i
enXp

0 !
}{ λλ

 
4. The probability that there are at least n or more 

unsuccessful events that do not arrive, is given by 

∑
=

−=≥
n

i

i

i
enXp

0 !
1}{ λλ  

If we consider a loss rate of λ = 0.1 (Olsen et al. 2003), 
the diagram corresponding to case (4), which is the 
case that we are interested in, is presented below.   
 

 
Lost events 

Fig. 3 Probability that at least n events or more are 
unsuccessful. 

 
As we can see, the diagram approaches zero 

extremely fast. From values n ≥ 3, the likelihood 
becomes negligible. 
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