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domains is elaborated for the important case when the semiconductor laser is matched by an external
single-mode fiber cavity and operates in the active mode-locking regime. This approach involves the
joint Wigner time–frequency distributions, which can be created for those pulses due to exploitation
of a novel interferometric technique. Practically, the InGaAsP/InP-heterolaser generating at the wave-
length 1320 nm was used during the experiments carried out and an opportunity of reconstructing the

er tim
igner time–frequency distribution
rain-average parameters

corresponding joint Wign

. Introduction

We present an approach to the characterization of low-power
right picosecond optical pulses with an internal frequency modu-

ation in both time and frequency domains in practically important
ase of exploiting the semiconductor laser matched by a single-
ode optical fiber and operating in a near-infrared range in the

ctive mode-locking regime [1]. This approach uses the joint
igner time–frequency distributions [2], which can be found

or this regime due to involving a novel original interferomet-
ic technique [3]. In so doing, the modified scanning Michelson

nterferometer was chosen for shaping the field-strength auto-
orrelation functions peculiar to the pulsed infrared light radiation.

e exploit the key features of this experimental technique for
ccurate and reliable measurements of the train-average temporal

∗ Corresponding author. Tel.: +52 222 2472940; fax: +52 222 2472940.
E-mail addresses: alex@inaoep.mx (A.S. Shcherbakov),

lexey.kosarsky@jt-int.com (A.Yu. Kosarsky), pemzamx@gmail.com (P.M. Zarate),
oaquin.campos@ita.cetef.csic.es (J.C. Acosta), ptk@mail.ioffe.ru (Y.V. Il’in),
arasov@hpld.ioffe.ru (I.S. Tarasov).

1 Tel.: +52 222 2472940; fax: +52 222 2472940.
2 Tel.: +7 812 534 3334.
3 Tel.: +34 915618806; fax: +34 914117651.
4 Tel.: +7 812 292 7379/7997.

030-4026/$ – see front matter © 2010 Elsevier GmbH. All rights reserved.
oi:10.1016/j.ijleo.2009.11.020
e–frequency distributions was successfully demonstrated.
© 2010 Elsevier GmbH. All rights reserved.

width and the frequency chirp associated with picosecond opti-
cal pulses in high-repetition-rate pulse trains. This technique is
founded on an ingenious algorithm elaborated specially for the
advanced optical metrology, which makes possible constructing
the joint Wigner distributions and describing the above-listed
parameters of optical pulses. The InGaAsP/InP-heterolaser, oper-
ating at 1320 nm range, with about one meter length external
single-mode silicon fibers was exploited during the experiments
carried out. When the optical signal consisted of contiguous pulses
with the repetition frequency close to 1 GHz, due to operating semi-
conductor laser in the active mode-locking regime, typical pulse
train-average auto-correlation function had been characterized by
temporal widths just in picosecond range. The accuracy of similar
measurements increased with growth of the repetition frequency
due to rising in a number of samples.

2. The joint Wigner time–frequency distribution

This consideration is directly related to the analysis of sig-
nals, which are non-stationary in behavior in time and frequency

domains. The main problem here is connected with finding a joint
function of both the time and the frequency, i.e. some distribution,
which will be able to describe the energy density or the intensity
of an arbitrary signal in terms of time and frequency simultane-
ously. Ideally, it would be an analytic function of two arguments
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bt/T . Two illustrative examples of the time–frequency distribution
WG(t, ω) = �−1/2 exp[−t2 − (ω + bt)2], defined by Eq. (7) with T =
1 and b = 0, 2 are presented in Fig. 1. One can see that a contribution
of the frequency chirp gives mainly rotating the Wigner distribution
on the (t, ω)-plane.
A.S. Shcherbakov et al.

aving properties of the density function, which characterizes the
nergy, or intensity, of a signal at unity time interval as well as at
nity frequency interval. Together with this, it should be noted that
ime–frequency analysis exhibits a row of peculiarities; for exam-
le, it is governed by the uncertainty principle. Introducing similar

oint time–frequency distribution P(t, ω), one can write:
∞∫
∞

P(t, ω) dω = |A(t)|2, (1a)

∞∫
∞

P(t, ω) dt = |S(ω)|2, (1b)

here A(t) and S(ω) are the amplitude of a determined signal and
ts Fourier transform, respectively, so that

(ω) = 1/2�

∞∫
−∞

A(t) exp(−iωt) dt.

The total energy can be determined as

0 =
∞∫

−∞

∞∫
−∞

P(t, ω)dω dt =
∞∫

−∞

|A(t)|2dt =
∞∫

−∞

|S(ω)|2dω, (2)

f the conditions for existing both the corresponding one-
imensional distributions are satisfied. It follows from the basic
athematical principles that an uncertainty principle characterizes

he fundamental coupling between a root-mean-square deviation
f some function and a root-mean-square deviation of Fourier-
ransform peculiar to the same function. In the particular case of a
air including A(t) and S(ω), these root-mean-square deviations in
ime and frequency domains can be determined by

SA =
√

T2 − (T1)2, (3a)

n = W−1
0

∞∫
−∞

tn|A(t)|2 dt, (3b)

SA =
√

ω2 − (ω1)2, (4a)

n = W−1
0

∞∫
−∞

ωn|S(ω)|2 dω. (4b)

The corresponding uncertainty principle is given by the relation
SA · ωSA ≥ 1/2. In context of the determined functions, this relation
eans that the determined function and its Fourier transform can-

ot have simultaneously arbitrary small widths. In its turn, in the
ignal analysis, where �SA has a meaning of the root-mean-square
ime duration and ωSA has a meaning of the root-mean-square spec-
ral width, this fact speaks that the signal and its spectrum cannot
ave simultaneously arbitrary small widths as well. There are a few
ptions to choose a concrete form of the joint time–frequency dis-
ribution. In particular, one can take the Wigner time–frequency
istribution, i.e. assume that P(t, ω) = W(t, ω), which is given by,
ee for example [2]:

(t, ω) = 1
2�

∞∫
A∗

(
t − �

2

)
exp(−i�ω)A

(
t + �

2

)
d�
−∞

= 1
2�

∞∫
−∞

S∗
(

ω − �

2

)
exp(it�)S

(
ω + �

2

)
d�. (5)
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The kernel of this distribution depends on the product of its
arguments. Theoretically, the Wigner distribution has an infinite
resolution in time due to absence of averaging over any finite
time interval. Moreover, for finite lag length, it has an infinite
frequency resolution. Together with this, the Wigner distribution
being quadratic in nature is able to introduce various cross terms
for a multi-component signal.

The complex amplitude of a solitary optical pulse with the Gaus-
sian shape of envelope can be written as

AG(t) = A0 exp

[
− (1 + ib)t2

2T2

]
, (6)

where A0 is the real-valued amplitude, T is the Gaussian pulse half-
width measured at a level of 1/e for the intensity contour and b is
the parameter of frequency modulation, i.e. the frequency chirp. In
this case, the joint Wigner time–frequency distribution, see Eq. (5),
inherent in a Gaussian pulse with A0 = 1 is given by

WG(t, ω) = T√
�

exp

[
− t2

T2
−

(
ωT + bt

T

)2
]

. (7)

The Wigner distribution (7) for the Gaussian pulse is positive-
valued. When T = 1 and b = 0, Eq. (7) gives the distribution, which
is symmetrical relative to repositioning the variables t and ω. With
decreasing the parameter b, the energy distribution concentrates
in a bandwidth corresponding to the chirp-free spectrum (i.e. to
the transform limited pulse) whose center lies along the line ω =

2

Fig. 1. Two examples of typical Wigner time–frequency distributions for the Gaus-
sian pulses with T = 1 and the varying parameter b: (a) b = 0 and (b) b = 2.
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Integrations of Eq. (7) give the partial one-dimensional Wigner
istributions for a Gaussian pulse over the time or frequency sepa-
ately:

AG(t)|2 =
∞∫

−∞

WG(t, ω) dω = exp

(
− t2

T2

)
, (8a)

SG(ω)|2 =
∞∫

−∞

WG(t, ω) dt = T2√
1 + b2

exp

(
− T2ω2

1 + b2

)
. (8b)

It is seen from Eq. (8b) that to reach a level of 1/e one need

ary the variable ω from −T−1
√

1 + b2 to T−1
√

1 + b2, so that

he variation �ω = T−1
√

1 + b2 means actually the half-width of
he spectral contour at a level of e−1. Thus, one can determine the
roduct:

ωT =
√

1 + b2. (9)

n the particular case of b = 0 (i.e. in the absence of the frequency
hirp or the phase modulation), one yields �ωT = 1 for a Gaussian
ulse. Nevertheless, b � 1 in general case, so that the product �ωT
an far exceed unity.

. Measuring the train-average parameters of picosecond
ptical pulses with Gaussian shape in high-repetition-rate
rains

When simple method is required for measuring current
ime–frequency parameters of low-power pico- and sub-
icosecond optical pulses traveling in high-repetition-rate
rains, a method based on forming a train-average auto-correlation
unction of the field-strength, which is coupled through the Fourier
ransform with the spectral power density, can be exploited. From
he recorded power spectral density, one can determine an average
idth of the radiation spectrum. However, in this case, information

n the average field phase is lost and one cannot determine the
ime variation of the field amplitude A(t). Exact determination of
he train-average pulse duration from the width of the radiation
pectrum is only possible when the shape of pulse envelope is
nown a priori and, in addition, the pulse spectrum is transform
imited in behavior [4]. An approximate estimation of the pulse
uration is also correct, if the frequency chirp is sufficiently small
5]. Here, we use an opportunity [3] of providing experimental
onditions, under which the train-average auto-correlation func-
ion of the field-strength can serve as a source of exact and reliable
nformation on the average values of both duration and frequency
hirp of a low-power optical pulses traveling in high-repetition-
ate trains. As usually, let us proceed from the assumption that all
ulses in a train are identical pulses with a Gaussian envelope, see
q. (6), with the amplitude A0 = √

P, where P is the incoming pulse
eak power. As it was listed above for a Gaussian envelope, the
elationships between the train-average pulse parameters T and b
nd the width �0 of the corresponding auto-correlation function,
easured on a level of 1/e for the intensity contour, are given by

= �0 = 2T√
1 + b2

(10)

Usually, the real-time auto-correlation function of the field-

trength averaged over a train of optical pulses is obtained with
scanning Michelson interferometer [5,6], which allows measur-

ng the value of �0. However, information on the width �0 of the
eld-strength auto-correlation function is insufficient to determine
he time–frequency parameters of pulse train. That is why one
k 122 (2011) 136–141

can propose performing two additional measurements of the auto-
correlation function width with the help of a scanning Michelson
interferometer. During the second and third measurements, sup-
plementary optical components, changing the parameters T and b
in a predetermined way but not influencing the envelope of the
investigated pulses, should be placed in front of the beam-splitting
mirror of the interferometer. The auto-correlation function widths
�m (m = 1, 2) obtained from the repeated measurements are cou-
pled with the new values of the pulse duration Tm and the frequency
chirp bm by Eq. (10). One can assume that Tm = ˛mT0 and bm =
b0 + ˇm, where T0 and b0 are unknown values of the parameters T
and b, while the quantities ˛m and ˇm are determined by supple-
mentary optical components. Using the above-noted relations, one
can write two different algebraic quadratic equations for a quan-
tity of b0. The corresponding solutions are given by a pair of the
following formulas:

b0 = (qm˛2
m − 1)

−1
[ˇm ±

√
qm˛2

m(ˇ2
m + 2) − (q2

m˛4
m + 1)], (11)

where qm = �2
0 /�2

m and �m is the width of the field-strength
auto-correlation function obtained without supplementary optical
components. For (m = 1, 2), Eq. (11) gives four values of b0, of which
two coincide with each other and correspond to just the true value
of the train-average frequency chirp of the pulses. This method of
measuring allows one to determine both the value and the sign of
the frequency chirp, which is often impossible even with the help
of substantially more complicated methods, such as, for example,
the method described in [7]. Once the pulse frequency chirp b0 is
determined, one can use formula (11) to calculate the pulse dura-
tion T by using �0 and b = b0. For the supplementary electronically
controlled optical component, one can propose exploiting a spe-
cific device based on an InGaAsP/InP single-mode traveling-wave
semiconductor heterolaser, which is quite similar to a saturable-
absorber laser with the clarified facets [3,8].

4. Experimental studies

Semiconductor lasers have a broad gain band (about �� ≈
1013 Hz), so that by this is meant that their operation in the regime
of active mode-locking makes it possible to expect generating ultra-
short optical pulses with a duration of about �0 ≈ 1/�� lying in
a picosecond time range. Generally, the active mode-locking pro-
cess provides shaping stable trains of wave packets with rather
good reproducibility from pulse to pulse. Recently, this regime
has been practically realized utilizing a periodic modulation of
gain inherent in the active medium through injecting the pump
current with a frequency equal or multiple to the frequency spac-
ing between longitudinal modes of the laser cavity. Within this
discussion, the single-mode InGaAsP/InP semiconductor laser is
considered. It has been designed with one antireflection-coated
facet and matched by an external single-mode optical fiber cavity.
To obtain the shortest possible optical pulses the facet of semicon-
ductor crystal facing the fiber cavity were coated via deposition
of a SiO2-film, so that the reflection coefficient was typically less
than 1%. An external cavity was made of a single-mode silica opti-
cal fiber with the refractive index n ≈ 1.5 and the length L ≈ 1 m
with an additional mirror at its far end, providing the optical feed-
back. The corresponding feedback factor was estimated by 15% due
to about 40%-efficiency of exiting the light radiation in that opti-
cal fiber by semiconductor laser structure with the refractive index
nS ≈ 3.3. The fiber cavity length L corresponded to the frequency

spacing about f0 ≈ 100 MHz between its longitudinal optical modes
because of f = c/(2n), where c is the light velocity. The scheme of
our experiments is presented in Fig. 2.

Periodic modulation of optical losses in a cavity was pro-
vided through modulating the pump current from an external
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Fig. 2. Schematic arrangem

ource of the electronic sinusoidal RF-signal within the frequency
ange 400–800 MHz. The electronic port of semiconductor laser
as matched with a 50-Ohm output of that source via specially
esigned strip-line waveguiding circuit. The regular operation of
emiconductor laser was provided by thermo-stabilizing system

t a temperature of 16 ◦C with an accuracy of ±0.2 ◦C. The regime
f operation was controlled by the diffractive optical spectrom-
ter. Fig. 3 illustrates profiles of light radiation spectra at the
avelength � = 1320 nm without an external RF-modulation as

ig. 3. Radiation spectra inherent in semiconductor laser operating at the wave-
ength � = 1320 nm: (a) without an external modulation; (b) with an external
inusoidal modulation, i.e. in the active mode-locking regime.
f the experimental set-up.

well as with periodic RF-modulation applied at the semiconductor
laser, i.e. in the active mode-locking regime. The extended spec-
trum width within the active mode-locking regime was estimated
by about �� ≈ 100 Å. In the frequency domain, this estimation
gives �� = (��)c/�2 ≈ 1.72 THz that makes it possible to expect
generating trains of ultra-short optical pulses with characteris-
tic durations lying in the picosecond range. A bit rugged profile
inherent in the spectrum in Fig. 3b is affected evidently by the pres-
ence of the laser diode cavity by itself and connected with residual
reflections from the coated diode facet, which is facing the fiber
cavity.

Measuring the time–frequency parameters of optical pulses
was carried out exploiting the interferometric technique described
in [3]. At first, our experimental studies have demonstrated that
within mode-locking a single-mode InGaAsP-laser heterostructure
at a threshold of self-excitation (practically, it was realized at a
pump current of about 50 mA), only a spike-mode free oscillation
regime had been observed with an individual spike width of about
0.7–0.9 ps. The investigation of these spikes has shown that each

individual spike includes an irregular set of intensity fluctuations.
Fig. 4 represents an example of the digitized oscilloscope trace for
the auto-correlation function related to a spike-mode free oscilla-
tion when an average spike width is close to 0.7 ps.

Fig. 4. The digitized oscilloscope trace for the auto-correlation function for a spike-
mode free oscillation with an average spike width of about 0.7 ps.
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Then, during the performed proof-of-principle experiments, we
ad shaped stable trains of rather powerful (about 1 W in a peak)
icosecond optical pulses with predictable pulse parameters and
ith the repetition frequency multiple to the frequency spacing

f longitudinal optical modes in fiber cavity. An opportunity had
een used of estimating the train-average pulse duration as well
s the train-average frequency chirp. Shaping a continuous-wave
equence of stable regular ultra-short optical pulses with duration
f about 2–10 ps can be achieved only after exceeding a thresh-
ld of self-excitation by 10–20%. In so doing, one can observe
ncreasing the energy of oscillation about 10 times, so that the
eak power of regular optical pulses approaches 0.2–1.0 W. The
ctive mode-locking regime on multiple repetition frequencies can
e associated with the cases of circulating more than one optical
ulse in a long-haul cavity. A number of the circulating optical
ulses N can be estimated as N = 2nfL/c, and experimentally the
ases with N = 1 − 8 had been successfully realized. It can be noted
hat the interferogram widths, measured on a level of 1/e for the
ntensity contour, were decreasing from 12.2 to 3.9 ps as the num-
er N was growing from 1 to 8. The absolute frequency bandwidth,
eing available for the observation of mode-locking, was varying

n the range 0.2–0.5 MHz, so that the relative frequency locking
and was a little bit less than 10−3. Fig. 5a represents the digi-
ized interferogram of the second order auto-correlation function
or a high-repetition-rate train of optical pulses; the width of this
nterferogram was estimated by 4.4 ps, while Fig. 4b shows the dig-
tized oscilloscope trace for a train of ultra-short pulses with the
epetition frequency f ≈ 7f0 = 718 MHz, which was identified as
he most stable during the experiments performed. The parame-
er b, related to the frequency chirp, was estimated with applying

he above-mentioned technique by b ≈ 1.46 × 10−4. This is a train
f picosecond pulses detected with the time resolution of about
00 ps, which is associated with the transfer function of a high-
peed photodetector exploited. The off-duty ratio for optical pulses

ig. 5. The digitized oscilloscope traces related to a regular pulse train: (a) the train-
verage auto-correlation function; the pulse width of this interferogram, measured
n a level of 1/e for the intensity contour, was estimated by 4.4 ps; (b) the output
ignal from a high-speed photodetector; a train of the same ultra-short optical pulses
ith the repetition frequency f ≈ 718 MHz was detected with the time resolution

f about 300 ps.
k 122 (2011) 136–141

depicted in Fig. 5b is in correspondence to the ration between the
repetition period 1/f and the above-mentioned time resolution of
that high-speed photodetector.

5. Characterizing optical pulses

Within the direct photodetection, the time resolution is
restricted by inertia of various components and an effect of storage
associated with this inertia [6]. The response function R(t), inherent
in even rather high-speed photodetector, is not perfectly identi-
cal to the incoming optical signal S(t), because this response is
conditioned by a transfer function B(t). As a result, one has to write:

R(t) =
∞∫

−∞

dt1S(t1)B(t1 − t), (12)

in linear systems. Moreover, B(t1 − t) = 0 with t1 > t due to the
causality principle. One can see that the response function R(t) is
coinciding with the signal S(t) only if the transfer function B(t) is
the Dirac �-function. Usually, the normalized transfer functions
of high-speed photodiodes can be mathematically approximated
by functions of two kinds, namely, by the exponential function
exp(−t/T) or the hyperbolic-like function [1 + (t/T)m]

−1
with the

power m ∈ [1, 2], where the characteristic parameter T is deter-
mined by properties of each individual type of photodetectors. Fig. 6
illustrates principally appearing the response function conditioned
by the incoming ultra-short Gaussian optical pulse and the expo-
nential transfer function.

In the active mode-locking regime, optical pulses are self-
reproducing after each path through the cavity. Restoration of pulse
parameters is conditioned by properties of the active medium, and
because the cavity exhibits an optical dispersion, one of the nec-
essary conditions for reproducibility of pulses is the presence of
frequency chirp. Presently known mechanisms of interacting opti-
cal pulses with semiconductors allow us to simplify the theoretical
model of shaping an ultra-short pulse with the complex field ampli-
tude E(t) = A(t) exp(iω0t) + c.c. in a heterostructure. The pulse,
grown during the process of active mode-locking, has a Gaussian
shape and can be described by Eq. (11). The pulse width, measured
on a level of 1/e for the intensity contour, is given by [8]:

T = (gm)−1/4(ωmωS)−1/2, (13)

where g is the maximal gain at t = 0, m is the factor of external
modulation of the losses in a cavity, ωm is the external modulation
frequency, and ωS is the gain contour width. Finally, the frequency
chirp can be expressed as [8]:
b = 2T2ˇ, (14a)

ˇ = LDωmω2
S

√
m

4[gω0TC/(2Q )]3/2

(
d2k

dω2

)
, (14b)

Fig. 6. Shaping the response function (solid line) conditioned by the incoming ultra-
short Gaussian optical pulse (dashed line) and the exponential transfer function
(dotted line); the scales of curves are changed to illustrate better.
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[

[

ig. 7. A pair of the Wigner time–frequency distribution for the Gaussian pulses
btained from the performed estimation with T = 2.73 ps and the b = 0.84 × 10−4

s well as from the experiment with T = 2.2 ps and the b = 1.46 × 10−4.

here ˇ is the dimensional factor of frequency chirp, LD is the
ength of high-dispersion components (for example, the laser crys-
al), ω0 is the central frequency of emission, Q is the quality factor
nherent in a cavity, TC is the transit time of a pulse through a cav-
ty, and k is the wave number. In fact, Eqs. (13) and (14) can be
ractically used to estimate the parameters of the optical pulses
enerated.

Using the values characteristic of the experiments: g = 3,
= 0.25, ωm = 2� × 718 × 106 rad/s, and ωS = 2� × 1013 rad/s,

ne can obtain T ≈ 2.73 ps from Eq. (13), which can be con-
idered as rather good agreement with the experimental data.
he frequency chirp that arises within establishing the self-
eproducing pulses can be estimated with Eq. (14). For LD ≈
.5 mm, ω0 = 2.1 × 1015 rad/s (at � = 1320 nm), TC = 10−8 s, Q =
05, and (d2k/dω2) = 3.7 × 10−24 s2/m, one can obtain ˇ = 7.3 ×
018 s−2 from Eq. (14b). Nevertheless, this dimensional magni-
ude of the estimated frequency chirp is relatively small, because
ne can find from Eq. (14a) in dimensionless values that b ≈
.84 × 10−4 
 1. In practically reasonable assumption that the
nvelopes of optical pulses under consideration can be described
ather adequately by Gaussian functions, these estimations make it
ossible to create the corresponding theoretical version of Wigner
ime–frequency distribution with the above-calculated parame-
ers T and b. Together with this, the experimental version of
imilar time–frequency distribution can be designed with exper-

−4
mentally obtained parameters T ≈ 2.2 ps and b ≈ 1.46 × 10 in
he same approximation by Gaussian functions. The resulting plots
f two Wigner distributions for the Gaussian-like optical pulses,
btained from estimations and from experiment, are shown in
ig. 7.

[

[
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6. Conclusion

A novel approach to the characterization of low-power bright
picosecond optical pulses with an internal frequency modulation
in both time and frequency domains in practically important case
of operating the semiconductor laser with an external single-
mode fiber cavity in near-infrared range in the active mode-locking
regime has been presented. This approach is oriented to using the
joint Wigner time–frequency distributions. Similar distributions
can be created for this regime within exploiting the progressed
interferometric technique briefly described above. The modified
scanning Michelson interferometer has been chosen for obtain-
ing the field-strength auto-correlation functions. In fact, we have
presented the key features of a new experimental technique for
accurate and reliable measurements of the train-average tempo-
ral width and the frequency chirp of picosecond optical pulses in
high-repetition-rate trains. This technique makes it possible to find
the parameters needed for reconstructing the joint Wigner distri-
butions inherent in optical pulses. The InGaAsP/InP-heterolaser,
operating at 1320 nm wavelength range, has been used within
the experiments. When the optical signal consists of contiguous
pulses with the repetition frequency close to 1 GHz, conditioned by
operating semiconductor laser in the active mode-locking regime,
typical requirements for measurements and operating with the
Wigner distributions have been satisfied, so that the train-average
pulse parameters have been successfully characterized.
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