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Abstract. The technique under proposal for a precise spectrum analysis
within an algorithm of the collinear wave heterodyning implies a two-
stage integrated processing, namely, the wave heterodyning of a signal
in a square-law nonlinear medium and then the optical processing in the
same solid state cell. The technical advantage of this approach lies in pro-
viding a direct multichannel parallel processing of ultra-high-frequency
radio-wave signals with essentially improved frequency resolution. This
technique imposes specific requirements on the cell’s material. We focus
our attention on the solid solutions of thallium chalcogenides and take the
TlBr–TlI (thallium bromine–thallium iodine) solution, which forms KRS–5
cubic-symmetry crystals with the mass-ratio 58% of TlBr to 42% of TlI.
Analysis shows that the acousto-optical cell made of a KRS–5 crystal
oriented along the [111]-axis and the corresponding longitudinal elas-
tic mode for producing the dynamic diffractive grating can be exploited.
With the acoustic velocity of about 1.92 × 105 cm/s and attenuation of
∼10 dB/(cm GHz2), a similar cell is capable of providing an optical aper-
ture of ∼5.0 cm and one of the highest figures of acousto-optical merit
in solid states in the visible range. Such a cell is rather desirable for the
application to direct 5000-channel parallel spectrum analysis with an im-
proved up to 10− 5 relative frequency resolution. C© 2011 Society of Photo-Optical
Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3549892]
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1 Introduction
A notable portion of modern technical achievements in a
high-bit-rate optical data processing is directly connected
with utilizing such nonlinear phenomena as, for example,
wave mixing, various cross- and self-actions, etc.1, 2 Recently,
a two-cascade processing based on a three-wave interac-
tion between coherent waves of different natures (optical
and nonoptical) had been successfully realized.3 Then, in a
line with this, potential performances connected with using
a collinear wave mixing in the specific case of a medium
without any group-velocity dispersion while with strongly
dispersive losses had been demonstrated.4, 5 The proposed
approach makes it possible to provide an effective wave het-
erodyning, when the beneficial data in signal is converted
from a relatively high-frequency carrier wave to a differ-
ence frequency wave. Because of rather strong square-law
dispersion of linear acoustic losses, heterodyning leads to
increasing the characteristic length and time of propagation
(they both are associated with a clear optical aperture) for the
converted signal in that medium and to significantly improv-
ing the accuracy of signal processing, as follows from the

0091-3286/2011/$25.00 C© 2011 SPIE

uncertainty principle in quantum mechanics.6 In this con-
text, we consider an opportunity for real-time scale optical
analysis of frequency spectra, belonging to analog ultrahigh-
frequency radio-wave signals, with significantly improved
frequency resolution. This consideration is based on a two-
cascade processing, i.e., on exploiting a pair of different
wave processes, one after the other, sequentially in a single
crystalline cell, which includes the piezoelectric transducer,
converting the inputting electronic signals into gigahertz-
frequency elastic waves, with two electronic ports on its up-
per facet, clear optical aperture D, and an effective acoustic
absorber on its bottom facet [see Fig. 1(a)].

The first wave process represents mixing the longitudinal
elastic waves of finite amplitudes in a compactly localized
upper domain of a cell where a relatively powerful pump
of the frequency fp interacts with relatively weaker signal
elastic wave of the frequency fs. During just this nonlinear
process, a collinear wave heterodyning takes place providing
the appearance of an elastic wave of the difference frequency
fD, which is able to propagate along a large-aperture cell due
to weaker manifestation of strongly dispersive losses at lower
frequencies [see Fig. 1(b)].

The second wave process is the subsequent Bragg light
scattering by the difference-frequency elastic wave in a pos-
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Fig. 1 Schematic arrangement of the interacting beams in (a) a two-
cascade acousto-optical cell, and (b) the illustrating spatial distribu-
tions for powers of the interacting acoustic waves.

sible linear regime (i.e., in the regime of a given acoustic
field for the incident light beam). This process occurs within
a clear aperture D lighted by a wide incident optical beam
of the wavelength λ (in air) and is able to realize optical
spectrum analysis by itself. When, for example, the signal
wave is rather intricate in behavior and consists of various
frequencies, each individual spectral component from the
difference-frequency elastic wave plays the role of a partial
thick dynamic diffractive grating for the incident light beam.
The length L of acousto-optical interaction has to provide
performing the Bragg regime of light scattering.

Generally, the term “resolution” can be interpreted in
slightly different ways from one another. One of these ways
can be naturally related to the number N of resolvable spots,
because increasing N undoubtedly means improving the res-
olution. Nevertheless, the resolution can be characterized
from the other side as well if one will consider the absolute
value of, for example, frequency resolution: because as less
is an individual resolvable frequency interval as more is the
frequency resolution. Moreover, within designing a system
(for instance, for the star radio astronomy) one can meet a
specific situation when it is so desirable to improve just an
absolute value of the frequency resolution that the penalty for
that, even in the form of decreasing N when the bandwidth of
processing is not fixed, becomes acceptable. In connection
with this refining, only the last option is the case under con-
sideration here. Namely, we aspire first of all to improving
the frequency resolution, while a reasonably large number
N serves us to be an illustration that it could be done al-
gorithmically in a multichannel parallel regime. Therefore,
potentials peculiar to the acousto-optical spectrum analy-
sis of a gigahertz frequency range radio-wave signals with
essentially improved relative value of the frequency reso-
lution, which can be on the order of 10− 5 in our case, is
considered by exploiting a new type of the acousto-optical
cell made of a really effective KRS–5 cubic single crystal.
The obtained estimations show that the elaborated approach,
based algorithmically on a two-cascade processing, allows
the direct 5000-channel parallel optical analysis of spectra
inherent in ultrahigh-frequency radio-wave signals. In frames
of the performed investigations, the efficiencies of both non-
collinear acousto-optical and collinear acoustic interactions
are analytically estimated. Moreover, analytic expression for
the corresponding effective acoustic modulus of the third

order in KRS–5 has been found for the first time in our
knowledge. In so doing, contrary to our recently developed
theoretical approach based on the technique of substantial
approximations,4, 5 a regime of the coupled acoustic modes
is considered, which provides more accurate analysis. These
findings make it possible, first to estimate the technical re-
quirements to performance data of the acousto-optical cell,
as well as to acceptable values of the operating frequencies.
At the end, previously proposed methodology for the ex-
perimental simulation4 is practically applied and exploited
within a specific example of the liquid-made cell to estimate
performances of the parallel spectrum analysis with the new
KRS–5-crystal–based acousto-optical cell.

2 Efficiency of Acousto-Optic Interaction in a
KRS–5 Cubic Single Crystal

One can start from estimating the potential efficiency I of
Bragg light scattering by the longitudinal acoustic waves in a
KRS–5 single crystal. At first, let us take the cell’s orientation
shown in Fig. 2. Such a selection has its origins in preliminary
known data related to linear and nonlinear manifestations of
optical and acoustical properties inherent in this crystal.

To obtain the figure of acousto-optical merit M2 inherent
in the selected cut of a KRS–5 crystal, first of all the effective
photoelastic constant peff must be found. For this purpose, one
has to take into account that a KRS–5 single crystal belongs to
the m3m cubic symmetry group. This crystal allows existing
pure longitudinal elastic waves with the wave vector K and
the displacement vector u = um, when these waves are pass-
ing along the crystallographic axis [111], so that K‖m‖[111].
Each dynamic acoustic grating can be characterized by its de-
formation tensor of the second rank. Because of K‖[111] and
u‖[111], one can write q = K/|K | = (1/

√
3)(1, 1, 1) and

u = (1/
√

3)(1, 1, 1), so that the corresponding deformation
tensor γ (L) takes the form

γ (L) = 1

2
(u · q + q · u) = 1

3

(
1 1 1
1 1 1
1 1 1

)
. (1)

The tensor γ (L) of the second rank with the components
γ

(L)
kl (k, l = 1, 2, 3) can be converted into a six-dimension

vector γ̄
(L) = (1/3)(1, 1, 1, 2, 2, 2).7 This expression for

the deformation tensor makes it possible to estimate the
velocity of the longitudinal wave. For this purpose, one can
use the tensor C of elastic moduli of the second order. If now
one will use the same procedure7 and take the tensor C of
the fourth rank for the KRS–5 crystal in the form of a 6×6

Fig. 2 Crystallographic orientations for the piezoelectric transducer
and the crystalline material in a KRS–5 cell.
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matrix, its components Cλμ will be nonzero only with C11
= C 22 = C 33, C 44 = C 55 = C 66, and C 12 = C 13 = C 21
C 23 = C 31 = C 32. Utilizing a similar representation, one
can find the corresponding effective elastic modulus of the
second order,

C2 = γ (L)Cγ (L) = γ̄
(L)
λ Cλμγ̄ (L)

μ

= (1/3) (C11 + 2C12 + 4C44), (2)

which describes the velocity VL inherent in the selected pure
elastic longitudinal mode as VL = √

C2/ρ, where ρ is the
material density. One can use C11 = 3.4 × 1011 dyne/cm2,
C12 = 1.3 × 1011 dyne/cm2, C44 = 0.58 × 1011 dyne/cm2,
and ρ = 7.37 g/cm3 peculiar to a KRS–5 crystal and estimate
VL = 1.92 × 105 cm/s. Together with this, one must note
that acoustic attenuation peculiar to this acoustic mode is
not too low and is characterized by the factor � = 10 dB/
(cm GHz2).8, 9

Now, one is ready to estimate the efficiency of acousto-
optical interaction associated with the above-selected longi-
tudinal elastic wave. By this we mean that the photoelastic
tensor p of the fourth rank should be taken and converted
into the form of a 6 × 6 matrix with the components pλμ.
For the cubic KRS–5 crystal (symmetry group m3m), matrix
representation for the tensor p gives the following nonzero
components: p11 = p 22 = p 33, p 44 = p 55 = p 66, and p 12
= p 13 = p 21 = p 23 = p 31 = p 32. Consequently, one can
calculate the matrix product pγ̄ (L) = (1/3)(p11 + 2p12, p11
+ 2p12, p11 + 2p12, 2p44, 2p44, 2p44) and convert it back to
the form of a standard tensor [pγ (L)] of the second rank.7 The
effective photoelastic constant can be written from the scalar
form
peff = e1(pγ (L))e0

= 1

3
e1

⎛
⎜⎝

p11 + 2p12 2p44 2p44

2p44 p11 + 2p12 2p44

2p44 2p44 p11 + 2p12

⎞
⎟⎠ e0,

(3)

whereas before the vectors e0 and e1 describe the polarization
states of incident and scattered light beams, respectively.
Because of K‖[111], it is obvious that if the Bragg angles
are omitted as small values, the wave vectors k0 and k1 of
the incident and scattered light beams, respectively, should
lie in the (111)-plane to be orthogonal to K. Moreover, one
can put k0 = k1 = k when the Bragg angles are neglected.
Due to optical isotropy of cubic KRS–5 crystal, one can
select, for example, k||[11̄0]. In this particular case, one has

an opportunity to consider the vectors e0 and e1 belonging
to (11̄0)-plane, which includes [110], [111], and [001] axes;
therewith the axes [110] and [001] give us an orthogonal
basis, because [110] ⊥ [001]. In so doing, let us take at
first the angles α0,1 as current angles between e0,1 and the
[001]-axis. Consequently, one can easily obtain that e0,1 =
(sin α0,1/

√
2, sin α0,1/

√
2, cos α0,1), so that e0,1‖[001] when

α0,1 = 0. Now, one can change the initial position for the
vectors e0,1 via the substitution the angles α0,1 by the new
angles α0,1 + β1, where β1 = arccos(1/

√
3); i.e., one can

write

e0,1 =
[

1√
2

sin(α0,1 + β1),
1√
2

sin(α0,1 + β1),

cos (α0,1 + β1)

]
. (4)

After such a substitution, one will have finally obtained that
e0,1‖[111] when α0,1 = 0. Usually, two types of light scat-
tering can be realized. At first, one can consider the normal
scattering when α1 = α0. In this case,

p(n)
eff = 1

3

{
(p11 + 2p12 + 2p44) sin2(α0 + β1) + 2

√
2p44

× sin[2(α0 + β1)] + (p11 + 2p12) cos2(α0 + β1)
}
.

(5)

This formula can be simulated numerically with p11
= 0.21, p12 = 0.22, and p44 = 0.15 [see Fig. 3(a)]. The oscil-
lating plot exhibits a maximum magnitude p(n)

eff max = 0.417
at α0 = πk, k = {. . . ,–2,–1,0,1,2,. . . } and a minimum mag-
nitude p(n)

eff min = 0.117 at α0 = (π /2) + πk. The second type
is associated with the anomalous light scattering when α1
= α0 + (π /2). Similar process is characterized by

p(an)
eff = p44

3

{
sin[2(α0 + β1)] + 2

√
2 cos[2(α0 + β1)]

}
. (6)

This value reaches provides its maxima p(an)
eff max = 0.15 with

α0 = (π /4) + (πk/2). The plots associated with these an-
gular distributions for the effective photo-elastic constants in
a KRS–5 single crystal are shown in Fig. 3(b). The max-
imal magnitude inherent in the corresponding figures of
acousto-optical merit is related to the normal scattering in a
KRS–5 single crystal and equal to M2 = n6(p(n)

eff max)2/(ρV 3
L )

≈ 930×10− 18 s3/g with n = 2.57 at the wavelength λ = 671
nm. The performed calculations demonstrate that the normal

Fig. 3 Absolute dependences for the effective photoelastic constants in a KRS–5 single crystal versus the angle α0: (a) normal light scattering
and (b) anomalous light scattering.
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light scattering by the longitudinal elastic wave is a few times
more efficient than the anomalous one.

The other side of estimating the efficiency of acousto-
optic interaction is connected with choosing the regime of
light scattering. The most efficient one is the Bragg regime,
which is shown in Fig. 1(a). It allows 100% efficiency of
light scattering and occurs with large enough length L of
interaction between light and acoustic waves when the dy-
namic acoustic diffractive grating is sufficiently thick. Such a
regime can be realized only when the angle of light incidence
on that acoustic grating meets the corresponding Bragg con-
dition (which can be assumed to be provided in advance)
and the inequality Q = 2πλL f 2

D/(nV 2
L ) � 1 for the Klein-

Cook factor Q (Ref. 10) is satisfied. Taking, for example, λ
= 671 nm, L = 1.0 cm, and VL = 1.92 × 105 cm/s, one can
estimate Q ≥ 7 for fD > 40 MHz. Thus, the Bragg regime of
light scattering could be expected for the acoustic difference
frequencies at least exceeding 40 MHz in a KRS–5 single
crystal, so that the acoustic frequency fD = 40 MHz can be
considered as a lower limit for the Bragg regime of light
scattering.

3 Efficiency of the Codirectional Collinear
Acoustic Wave Heterodyning

At this stage, effect of a three-acoustic wave mixing asso-
ciated with the longitudinal elastic wave propagating along
the [111]-axis in a KRS–5 single crystal is under considera-
tion. It can be done using the Shapiro–Thurston equation11

reduced down to terms of the third order in its general form,

ρ
∂2ui

∂t2
− Ci jkl

∂2uk

∂x j∂xl
= C̃i jklqr

∂uq

∂xr

∂2uk

∂x j∂xl
, (7)

C̃i jklqr = Ci jklqr + Ci jlq δkr + Cilqr δ jk + Ciklq δ jr . (8)

These equations include all the components. In the above-
chosen case of propagating pure longitudinal elastic mode
along the crystallographic axis [111] with K‖m‖[111] (see
Sec. 2), the direction cosines ni(i = 1,2,3) should satisfy a
pair of the following obvious conditions n1 = n2 = n3 and
n2

1 + n2
2 + n2

3 = 1, so that ni = 1/
√

3. Using Eqs. (7) and
(8), and after easy but cumbersome algebraic calculations,
one can obtain the following effective elastic modulus of the
third order:

C3 = C111 + 2C123 + 6C112 + 12C144 + 16C456

+24C155 + 9C11 + 18C12 + 36C44 (9)

and (exploiting, for example, the data from Ref. 12) con-
clude that the longitudinal elastic wave propagating along
the [111]-axis is definitely capable of mixing the acoustic
waves in a KRS–5 single crystal.

Now, one can introduce the new coordinate axis x ori-
ented along the [111] crystallographic axis of KRS–5, so

that x‖m‖[111] and Eq. (7) takes the form

∂2u

∂t2
− V 2

L
∂2u

∂x2
= C3

ρ

∂u

∂x

∂2u

∂x2
. (10)

The first term in Eq. (10) can be approximately converted
within the quasi-linear linear form of ∂u/∂x ≈ −VL (∂u/∂x)
as ∂2u/∂t2 ≈ −VL (∂2u/∂x∂t). Then, using the obvious re-
lation 2(∂u/∂x)(∂2u/∂x2) = (∂/∂x)(∂u/∂x)2, one can in-
tegrate Eq. (10) with respect to x. After that, an additional
phenomenological term αVLu can be included to take into
account linear acoustic losses, which are physically charac-
terized by the amplitude decrement α (measured in centime-
ters to the power –1), reflecting usually just the square-law
frequency dispersion of losses in solids. As a result, one can
write

∂u

∂t
+ VL

∂u

∂x
+ αVL u = �

2
VL

(
∂u

∂x

)2

, (11)

where � = −C3/C2, VL = √
C2/ρ, and C2 = (C11 + C12

+ C44)/3 is the elastic modulus of the second order for
x‖m‖[111]. A one-dimensional wave equation [Eq. (11)] for
the complex amplitude of an elastic wave is peculiar for
characterizing a three-wave mixing in a medium with lin-
ear dispersive losses and square-law nonlinearity. Because
of a square-law dispersion of acoustic losses, the complex
amplitude u can be taken in the form of a superposition
of only a triplet of waves, including the pump, the signal
wave, and the difference-frequency wave, namely, u = uP
+ uS + uD, while the second harmonics of both the pump
and the signal wave as well as their sum-frequency com-
ponent can be omitted in this project of the chosen solu-
tion. Starting, for example, from the pump, one can write
the corresponding complex amplitude as uP(x,t) = AP(x)
exp [i(kPx − ωPt)] + A∗

P(x) exp [−i(kPx − ωPt)] and note
its losses as αP. Substituting this formula into the left-hand
side of Eq. (11), one can calculate

V − 1
L

∂uP

∂t
+ ∂uP

∂x
+ αPu

=
[
αP AP + d AP

dx

]
exp [i(kPx − ωPt)]

+
[
αP A∗

P + d A∗
P

dx

]
exp [− i(kPx − ωPt)]. (12)

It is seen that the relations analogous to Eq. (12) can be
obtained for the signal and difference-frequency waves. To
construct the contribution (∂u/∂x)2 in the right-hand side of
Eq. (11) one has to estimate the summands. Applying the
slowly varying amplitudes technique, one must take into ac-
count the inequalities |d A j (x)/dx | 
 k j |A j (x)|, j ∈
[P,S,D]. Consequently, the following approximation appears(

∂u

∂x

)2

≈ (
ikP{AP(x) exp [i(kPx − ωPt)]

− A∗
P(x) exp [− i(kPx − ωP t)]}

+ ikS{AS(x) exp [i(kSx − ωSt)]

− A∗
S(x) exp [− i(kSx − ωSt)]}

+ ikD{AD(x) exp [i(kDx − ωDt)]

− A∗
D(x) exp [− i(kDx − ωDt)]})2

. (13)
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Now, one must consider two different regimes of a three-
wave mixing. The right-hand sides of Eqs. (12) and (13)
give

1. fS = fP + fD:

d AS

dx
+ αS AS = βS AD AP, (14a)

d AP

dx
+ αP AP = − βP A∗

D AS, (14b)

d AD

dx
+ αD AD = − βD A∗

P AS; (14c)

2. fP = fS + fD:

d AP

dx
+ αP AP = βP AD AS, (15a)

d AS

dx
+ αS AS = −βS A∗

D AP, (15b)

d AD

dx
+ αD AD = − βD A∗

S AP. (15c)

where βS = 0.5 � kPkD, βP = 0.5 � kSkD, and βD
= 0.5 � kPkS are the coupling factors. At this step, one can
take AD,S,P = aD,S,P exp [i(ϕD,S,P)], where aD,S,P and ϕD,S,P
are the real-valued amplitudes and phases of non-optical
waves. Let us consider, for example, Eq. (14) governing the
system in a regime of fS = fP + fD with sign( fP − fS) =
−1. Dividing real and imaginary parts in Eq. (14), one can
find two groups of the real-valued equations

daS

dx
+ αSaS = βSaDaP cos (ϕS − ϕD − ϕP), (16a)

daD

dx
+ αDaD = − βDaSaP cos (ϕS − ϕD − ϕP), (16b)

daP

dx
+ αPaP = − βPaDaS cos (ϕS − ϕD − ϕP); (16c)

dϕS

dx
aS = βSaDaP sin (ϕS − ϕD − ϕP), (17a)

dϕD

dx
aD = − βDaSaP sin (ϕS − ϕD − ϕP), (17b)

dϕP

dx
aP = − βPaDaS sin (ϕS − ϕD − ϕP ). (17c)

Equations (16) and (17) can be analyzed with the natural
for similar problems boundary conditions UP �= 0, US �= 0,
and UD = 0, where UP,S,D = AP,S,D(x = 0). With these con-
ditions, one can find from Eq. (16b) that (daD/dx) (x = 0)
= − βDUPUS. Here, the following quite natural approxima-
tion can be done; namely, let us put aP � aS, aD almost
everywhere in an area of interaction. In this particular case,
Eq. (16c) can be solved in a given field approximation as
aP = UP exp(−αPx), while Eq. (17c) gives dϕP/dx = 0.

Substituting these solutions into Eqs. (16) and (17) and di-
viding real and imaginary parts, one can obtain

daS

dx
+ αSaS = βSaDUP exp (−αPx) cos ϕ, (18a)

daD

dx
+ αDaD = −βDaSUP exp (−αPx) cos ϕ, (18b)

dϕ

dx
= UP exp(−αPx) sin ϕ

(
βD

aS

aD
− βS

aD

aS

)
, (18c)

ϕ = ϕS − ϕP − ϕD. (18d)

From the first integral of Eq. (18), with allowance for the
boundary condition aD(x = 0) = 0, which is characteris-
tic of wave heterodyning, one can find that dϕ/dx ≡ 0 and
sin ϕ ≡ 0, so that one can take, for example, cosϕ = 1. Equa-
tions (15a)–(15c), associated with the regime fP = fS + fD
with sign ( fP − fS) = +1, can be analyzed by similar way
via substituting βS → − βS. Consequently, Eqs. (18a) and
(18b) give the two following pairs of the combined ordinary
differential equations of the first order:

daS

dx
+ αSaS = − sign ( fP − fS) βSaDUP exp (−αPx),

(19a)

daD

dx
+ αDaD = −βDaSUP exp (−αPx). (19b)

Excluding aS from Eq. (19), one can write a linearized version
for the needed second-order ordinary differential equation

d2aD

dx2
+ (αP + αS + αD)

daD

dx
+ [

αD(αP + αS)

− sign ( fP − fS) βSβDU 2
P exp (−2αPx)

]
aD = 0. (20)

Because of the above-mentioned dispersion of losses in-
cluded in the factors αP, αS, and αD, one can extract
their square-law proportionalities to the corresponding car-
rier frequencies of acoustic waves αP,S,D ∼ f 2

P,S,D and
write

αP + αS + αD = 2αP[1 + δ sign ( fP − fS) + δ2], (21a)

αP + αS − αD = 2αP [1 + δ sign ( fP − fS)], (21b)

with δ = fD/ fP 
 1. Introducing the notations g
= − δ sign ( fP − fS) + δ2 and h = δ sign( fP − fS) so that
g ≈ − h due to the smallness of δ, one can express the exact
solution to Eq. (20) in terms of the Bessel functions as

aD(x) = exp [−αPx(1 + g)] {C1 Z(h−1) [ξ exp (−αPx)]

+ C2 Z(1−h) [ξ exp (−αPx)]}, (22)

where ξ = α−1
P UP

√
βSβD is the normalized acoustic wave

amplitude. Then, Zν = Jν when fP < fS and sign( fP − fS)
= −1, while Zν = Iν with fP > fS and sign( fP
− fS) = +1 (for example, see Ref. 13). Exploiting the
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above-mentioned boundary conditions for aD and its spatial
derivative, one can determine the constants C1,2 of integra-
tion in Eq. (22) as

C1 =
(−2βDUPUS

αPξ

)
Z(1−h)(ξ )

W (ξ, h)
, (23a)

C2 =
(

2βDUPUS

αPξ

)
Z(h−1)(ξ )

W (ξ, h)
, (23b)

W (ξ, h) = Z(1−h)(ξ )[Z(h−2)(ξ ) + sign ( fP − fS) Z(h)(ξ )]

− Z(h−1)(ξ )[Z(−h)(ξ ) + sign ( fP − fS) Z(2−h)(ξ )].

(24)

Thus, Eqs. (22)–(24) represent the solution describing the
spatial distribution for the difference-frequency acoustic
wave along the acousto-optical cell exploiting collinear
acoustic wave heterodyning. In the above-noted par-
ticular cases, Eq. (24) can be simplified as W (ξ, h)
= − 4(π ξ )−1 sin (π δ) sign ( fP − fS), so that one can write

1. fS = fP + fD, sign ( fP − fS) = −1:

aD (αPx) = πβDUPUS{J(−δ−1)(ξ )J(1+δ)[ξ exp (−αPx)] − J(1+δ)(ξ )J(−δ−1)[ξ exp (−αPx)]}
2αP sin (πδ) exp [αPx(1 + δ + δ2)]

, (25)

2. fP = fS + fD, sign ( fP − fS) = +1:

aD (αPx) = πβDUPUS{I(1−δ)(ξ )I(δ−1)[ξ exp (−αPx)] − I(δ−1)(ξ )I(1−δ)[ξ exp (−αPx)]}
2αP sin (πδ) exp [αPx(1 − δ + δ2)]

. (26)

The amplitude distributions, which are inherent in the
difference-frequency acoustic wave components and normal-
ized by the factor πβDUPUS/(2αP), for the same pairs of
the normalized acoustic wave amplitudes ξ are presented in
Figs. 4 and 5.

4 Estimating the Frequency Potentials Peculiar
to Multichannel Direct Optical Spectrum
Analysis with Novel Acousto-Optical Cell

Potential Estimating frequency limitations can be ana-
lyzed within nonlinear acoustic mechanisms of collinear

heterodyning. Without the loss of generality, let us take
Eq. (25) for further analysis at length. This equation, re-
lated as before to the case of fS = fP + fD, can be rewritten
with z = αPx as

aD (z) = FD � (z, δ, ξ ) , (27a)

FD = πβDUPUS

2αP
, (27b)

� (z, δ, ξ ) = J(−δ−1)(ξ )J(1+δ)[ξ exp (−z)] − J(1+δ)(ξ )J(−δ−1)[ξ exp (−z)]

sin (πδ) exp [z(1 + δ + δ2)]
. (27c)

At this stage, the coordinate zm of a maximum of the ampli-
tude function �(z,δ,ξ ) must be found. For this purpose, one
must analyze the condition [d� (zm, δ, ξ )/dz] = 0. The con-
dition of an existing maximum for �(z,δ,ξ ) takes the form

J(−1−δ)(ξ ){δ2 J(1+δ)[ξ exp (zm)] + ξ exp (zm)J(δ)[ξ exp (zm)]}
−J(1+δ)(ξ ){δ2 J(−1−δ)[ξ exp (zm)] − ξ

× exp (zm)J(−δ)[ξ exp(zm)]} = 0. (28)

This condition can be easily analyzed numerically by consid-
ering δ and zm as the independent and dependent variables,
respectively, while ξ plays the role a discrete independent

parameter. One can find from Eq. (28) that

zm(δ, ξ = 0.5) ≈ 2.66 − 2.1 × 10−4 δ−2 + 0.0405 δ−1

−8.17 δ + 10.3 δ2, (29a)

zm(δ, ξ = 1.0) ≈ 2.587 − 6.0 × 10−6 δ−2 + 0.0016 δ−1

−8.26 δ + 11.4 δ2; (29b)

see Fig. 6(a). These formulas are rather important practically
because they make it possible to estimate potential frequency
limitations for optical spectrum analysis.

On one side, substituting the obtained zm(δ,ξ ) into Eq. (28)
allows us, first, to estimate the accuracy of the performed
approximations. Figure 6(b) illustrates the closeness of the
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Fig. 4 Normalized amplitudes for the difference-frequency acoustic
waves versus the product αPx when fS = fP + fD.

derivative d� [zm(δ, ξ ), δ, ξ ]/dz to zero in terms of its rela-
tive fall off from zero for two particular cases of ξ = 0.5 and
ξ = 1.0. One can see from Fig. 6(b) that the maximal value of
an error does not exceed 0.3% within δ ∈ [0.01;0.30]. Then,
Figs. 4 and 5 exhibit a nonuniformity of distributing signals
associated with various difference-frequency acoustic com-
ponents inside the cell, so that a larger non-uniformity is
associated with the component of a higher value of δ. Thus,
one can take the upper difference-frequency component and
restrict itself by an upper value δU of the parameter δ. Then,
substituting the obtained zm(δU,ξ ) into �(z,δ,ξ ) makes it pos-
sible to formulate the requirement to the cell’s optical aper-
ture. One can see it as follows: decreasing the normalized
acoustic field distribution down to a level of –3 dB along the
cell’s optical aperture at a point zD(δU,ξ ) gives the equality

�2[zD(δU, ξ ), δU, ξ ] = 0.5 �2[zm(δU, ξ ), δU, ξ ] (30)

in terms of the intensities.

Fig. 5 Normalized amplitudes for the difference-frequency acoustic
waves versus the product αPx when fP = fS + fD.

In fact, the value of zD(δU,ξ ) determines the total ge-
ometric length xD(δU,ξ ) of an acousto-optical cell with
the collinear wave heterodyning. Then, one can explain
xm,D = α−1

P zm,D and obtain

D = xD(δU, ξ ) − xm(δU, ξ ), (31)

where D is the really operating part of the cell’s optical
aperture available for parallel optical processing at given ξ
and some range of the parameter δ. Nevertheless, it is seen
from Figs. 4 and 5 that the normalized intensity distributions
�2 (z, δ, ξ ) are the obviously decreasing functions of the
parameter δ. As a result, similar dependences on δ lead to a
nonuniformity of distributing signals associated with various
difference-frequency components inside the cell. Moreover,
this nonuniformity is as large as the corresponding parameter
δ is high, so that the lowest magnitude δL of the parameter δ
leads to almost uniform acoustic signal distribution along the
cell’s optical aperture. Together with this, Figs. 4 and 5 show
that the parameter δ is as high, as the absolute maximum
of the corresponding dependence is low, and consequently,

Fig. 6 (a) Plots determine the coordinate zm as an approximate function of the frequency ratio δ from numerical solution to Eq. (28), whereas
(b) curves characterize the relative accuracy of approximate plots in Fig. 6(a).
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Fig. 7 Renormalized maximal intensities �2
m [zm(δ), δ, ξ ] versus the

parameter δ with G = 4: the dashed line is for ξ = 0.5, whereas the
solid line is for ξ = 1.0.

the corresponding frequency components must be adequately
preamplified. Under these circumstances, one can suggest the
following criterion for such a preamplification, namely, let us
equalize various frequency components in a central vicinity
of the above-noted operating part D inherent in the cell’s
optical aperture. In so doing, one can suggest renormalizing
maximal intensity determined by the expression

�2
m [zm(δ, ξ ), δ, ξ, G] = G

zm(δ, ξ )
�2 [zm(δ, ξ ), δ, ξ ] (32)

with possible linear gain G, whose magnitude can be taken
rather arbitrarily. The corresponding distributions, both al-
lowing δU up to 0.35 and δL down to 0.05, are presented in
Fig. 7 in the particular case of, for instance, G = 4. This di-
agram illustrates the simplest (and definitely nonoptimized)
possibility of the above-noted equalizing the frequency com-
ponents involved.

Then, one can consider the renormalized spatial intensity
distributions

�2
0 (z, δ, ξ ) = G

zm(δ)
�2 (z, δ, ξ ) (33)

along the cell’s aperture. These distributions are depicted in
Fig. 8 in the same particular case of G = 4 as before, together
with the magnitudes δU = 0.17 and δL = 0.034, also taken,
for example, in view of the further consideration.

Taking into account Eq. (30), one can find from Fig. 8 that
the really operating part D of the cell’s optical aperture avail-
able for parallel optical processing in Eq. (31) is practically
independent on the magnitude of ξ . Very slight dependence

on ξ manifests itself mainly in concrete localization of D
within total aperture of the cell. However, this dependence
is rather weak because it follows from the data in Fig. 8, so
that potentially it could be neglected in practice.

At this point, an opportunity exists to simplify the process
of determining the value of xD(δU, ξ ). In so doing, let us
rewrite Eq. (27c) as � (z, δ, ξ ) = �1 + �2, where

�1 (z, δ, ξ ) = J(−δ−1)(ξ )J(1+δ)[ξ exp (−z)]

sin (πδ) exp [z(1 + δ + δ2)]
, (34a)

�2 (z, δ, ξ ) = −J(1+δ)(ξ )J(−δ−1)[ξ exp (−z)]

sin (πδ) exp [z(1 + δ + δ2)]
. (34b)

Comparisons of these contributions to the right from the
planes zm(δ) in two above-chosen cases of ξ = 0.5 and ξ
= 1.0 are presented in Fig. 9. It is clearly seen from Fig. 9
that �1 → 0 and �1 
 �2 in those areas, so that one can
motivatively take the reduced form of � (z, δ, ξ ) and put
� (z, δ, ξ ) ≈ �2 (z, δ, ξ ) within at least z ≥ 2zm(δ, ξ ) in
Eq. (27b) and take the reduced, but well-approximated form
of Eq. (27a),

aDR (z) = −
(

πβDUPUS

2αP

)
J(1+δ)(ξ )J(−δ−1)

[
ξ exp (−z)

]
sin (πδ) exp [z(1 + δ + δ2)]

.

(35)

The corresponding contributions after substituting
� (z, δ, ξ ) ≈ �2 (z, δ, ξ ) into Eq. (33) (i.e., after
normalizing) are presented in Fig. 10 with δ = 0.17 in the
cases of ξ = 0.5 and ξ = 1.0 under discussion.

Now, let us direct our attention to the particular case of
a KRS–5 crystalline cell with �0 = 10 dB/(cm GHz2) and
practically operating optical aperture D = 5.0 cm and make
a few practical estimations. At first, to provide higher oper-
ating frequencies inherent in the cell under consideration
together with the simplicity of realizing a low-frequency
pump, it looks preferable to choose an area of fS = fP + fD
and sign ( fP − fS) = − 1 related to Eq. (25) in spite of
the fact that this area is more sensitive to variations of the
parameter δ (see Fig. 4). Applying Eq. (35) and Fig. 10,
one can find that the upper difference frequency about fUD
≈ 250 MHz provides a ∼3 dB level of acoustic losses along
the taken optical aperture D ≈ 5.0 cm of the cell. It should be
noted at this step that the numerical estimations adduced here

Fig. 8 Renormalized spatial intensity distributions �2
0 (z, δ, ξ ) along the cell’s aperture with G = 4 for various δ: (a) is for ξ = 0.5 and (b) is for

ξ = 1.0.
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Fig. 9 Comparing the contributions of the terms �1 and �2 from Eq. (34) to the right of the plane zm(δ,ξ ) with (a) ξ = 0.5 and (b) ξ = 1.0. The
0 dB-levels are shown as well for a convenience.

should be considered as rather simplified illustrations, while
practically notable technical calculations must be performed
much more precisely. Nevertheless, one can say that these
estimations reflect the proposed principle of operation in the
full measure. Because of the upper magnitude of δ in this
case is δU = 0.17, as it follows also from Fig. 10, and initial
determination of the parameter δ gives fUD/δU = fP, one can
find that the pump frequency will be fP = 1470 MHz and
the upper signal frequency will be fUS = 1720 MHz. Then,
one can choose the bandwidth �f of spectrum analysis, for
example, in the range of 200 MHz, which leads to the lower
difference frequency fLD = 50 MHz restricted by the Bragg
regime condition (see the corresponding estimation at the
end of Sec. 2). Consequently, the lower signal frequency is
fLS = 1520 MHz, and the lower magnitude of the parameter
δ is δL = 0.034. These estimations are conditioned by the
relations

fUD = fUS − fP = fP δU, (36a)

fLD = fLS − fP = fP δL. (36b)

It should be noted that direct exploitation of similar KRS–5
cell with the active optical aperture D = 5.0 cm at the signal
frequencies of already 1000 MHz is definitely impossible be-
cause the acoustic attenuation is ∼50 dB along this aperture.
Nevertheless, applying the collinear acoustic wave hetero-
dyning allows us to operate on these gigahertz-range carrier
frequencies. The above-mentioned nonuniformities in the
distributions of signals associated with various difference-
frequency components in the KRS–5 cell under consideration
are illustrated in Fig. 8. Using Eq. (29) at the pump frequency
fP = 1470 MHz providing αP = 2.485 cm− 1, one can es-
timate with δU = 0.17 that zm = 1.80 and xm = 0.720 cm

for ξ = 0.5 as well as zm = 1.52 and xm = 0.608 cm for ξ
= 1.0. Then, estimating these non-uniformities in the distri-
butions of acoustical signals along the cell’s aperture at δU =
0.17 even graphically makes it possible to conclude from
Figs. 8 and 10 that one can obtain zD = 14.2 and xD = 5.71
cm for ξ = 0.5 as well as zD = 13.8 and xD = 5.55 cm for
ξ = 1.0. At this point, it is worthwhile to make two refining
remarks. First, the analysis should naturally include consid-
ering the behavior of another frequency component inherent
in the complete spectrum of the difference-frequency signal,
in particular, the component with δL = 0.034. Nevertheless,
one can see from Fig. 8 (as well as from Figs. 4 and 5) that to-
tal irregularity inherent in this lowest-frequency component
is practically insignificant, even taking into account the ap-
propriateness zm(δL) > zm(δU). Second, some small part of
the cell’s aperture placed to the left of zm(δU), which exhibit
more or less an “acceptable” level of signal irregularity can
be also exploited practically. Thus, the real operating optical
aperture D, lying between zm(δU) and zD(δU) for δU = 0.17 at
a level of –3 dB with the above-mentioned remarks, consists
of approximately D = 5.0 cm.

5 Estimating the Efficiency of Collinear Wave
Heterodyning

Now, the efficiency of collinear wave heterodyning in the
chosen regime of a given pump intensity and coupling be-
tween signal and difference-frequency acoustic modes must
be estimated. Again, without the loss of generality, let us
take Eq. (25) in the form of Eq. (27), which describes the
case of fS = fP + fD, for further analysis. At this case, let
us estimate the contributions involved in the term FD from
Eq. (27), which does not include any coordinate dependence
contrary to the function � (z, δ, ξ ). One can start from the
pump losses that are described by the factor αP = �̃0 f 2

P .

Fig. 10 Coinciding the terms �2
0 and �2

0,2 obtained from Eqs. (33) and (34) to the right of the area 2zm(δ,ξ ) with G = 4, δ = 0.17 and (a) ξ = 0.5
and (b) ξ = 1.0. The 0 dB and –3 dB levels are shown as well.
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Usually, the acoustic attenuation factor �0 is used in bib-
liography (see, for instance, Refs. 8 and 9), measured in
decibels per centimeter per gigahertz squared, but here one
needs it in the form of �̃0 (in seconds squared per centimeter)
= [(ln 10)/10]×10−18 · �0 dB/(cm GHz2) within estimating
the efficiency of collinear wave heterodyning. Then, the fac-
tor βD, introduced in Eqs. (14) and (15), takes the form
βD = 2π2V −2

L � fP fS. Finally, the deformation tensor γ (L),
described initially by Eq. (1) in the normalized form, can be
converted to the axes chosen in connection with orienting the
coordinate axis x as x||m||[111] in Eq. (10). In so doing, one
can write γ (L) = u · q for the longitudinal acoustic mode.
After that, recovering the magnitudes of the vectors included
into γ (L), one can explain the unique nonzero component of
this tensor in dimensional form as γ

(11)
j ≡ γ j = U j k j , where

j ∈ [P,S,D] as before [see comments to Eq. (13)]. This di-
mensional form represents a scalar relation as well, so that
it can be inverted as U j = γ j/k j , where k j = 2π f j/VL. In
its turn, the chosen component of deformations can be ex-
plained in terms of the corresponding acoustic power density
Pj as γ 2

j = 2Pj/(ρV 3
L ).15 Exploiting these relations, one can

obtain from Eq. (27) that

F2
D = π2�2 PP PS

4�̃2
0ρ

2V 6
L f 4

P

. (37)

Together with this, the left-hand side of Eq. (27a) gives

a2
D (z) �−2 (z, δ, ξ ) = PD

2π2ρVL f 2
D

. (38)

Combining Eqs. (37) and (38), one can find the power density
of the difference-frequency acoustic wave

PD = 4π2 PP PSm

(
f 2
D

f 4
P

)
�2 (z, δ, ξ ) , (39a)

m = π2�2

8ρ�̃2
0 V 5

L

. (39b)

Now, one can estimate the total efficiency I of Bragg light
scattering by the difference-frequency acoustic wave. In
the particular case of rather weak acoustic signals, when
nonlinearity inherent in acousto-optical interaction can be
omitted,15 one can use only a few terms from the corre-
sponding expansion and write

I = sin2(q L) ≈ q2L2 − 1

3
q4 L4 + · · · , (40a)

q ≈ πλ−1
√

M2 PD/2. (40b)

Under natural condition q2L2 
 3, i.e., under inequality

PD 
 6λ2/(π2 M2L2), (41)

one may restrict himself by the first term on the right-
hand side of Eq. (40a) and rewrite Eq. (40a) as I
= π2 M2L2 PD/(2λ2). Sometimes [see, for instance,
Eq. (44b)], it is worthwhile to exploit the parameter μ
= (π2/2)M2m, which combines characterization of both
nonlinear acoustic and linear acousto-optic properties of ma-
terial under consideration. The magnitude of I determines
the combined efficiency of the acousto-optical cell under
consideration in terms of light scattering. This result makes
it possible to characterize the contribution of acousto-optical

interaction exploiting Eq. (40a) in the form of

Imax = π2 M2L2 PD max
/

(2λ2). (42)

With a maximally allowed level PD max ≈ 5 × 105 g/s3

= 0.05 W/cm2, obtained from Eq. (41), one can find
Imax ≈ 0.3. This estimation makes it possible to consider
the above-chosen level of PD as more or less tolerable for
an upper limit in a KRS–5 single crystal under the afore-
mentioned condition given by Eq. (41). An undoubted merit
of this characterization consists of practically convenient di-
rect proportionality between the efficiency I and the power
density PD.

After that, the contribution of acoustic wave mixing
should be briefly analyzed. With this object in view, one
can use Eqs. (25) and (26) for estimating the acous-
tic pump power density PP0 needed to reaching a preas-
signed peak level of the difference-frequency power den-
sity PD max at a given ratio α = PS/PP0. From the start,
it should be noted that a peak magnitude peculiar to
the squared coordinate dependence �2

m [zm(δ, ξ ), δ, ξ, G]
= [G/zm(δ, ξ )] �2 [zm(δ, ξ ), δ, ξ ] in, for example, Eq. (32)
can be estimated as �2

m [zm(δ, ξ ), δ, ξ, G] ≈ 0.1 with G = 4
(see Fig. 7). Consequently, one can find

PP0 = fP

2πδ�m [zm(δ, ξ ), δ, ξ, G]

√
PD max

αm
. (43)

Let us consider the particular example related to a KRS–5
single crystal. When the required magnitude of Imax is, for
instance, equal to 3% (which is quite reasonable for the spec-
trum analysis in a small-signal linear regime), Eq. (42) gives
PD max ≈ 3.0 × 104 g/s3 = 0.003 W/cm2. Then, taking m
≈ 1.1 × 1011 s/g, α = 0.1, G = 4, δ = 0.15, ξ = 1.0, and fP
= 1.5 GHz, one can estimate from Eq. (43) the needed
value of the acoustic pump power density by PP0
≤ 0.83 × 107 g/s3 = 0.83 W/cm2, which looks, practically,
quite acceptable.

6 Proof-of-Principal Experimental Modeling
The obtained theoretical results related to the collinear acous-
tic wave heterodyning were examined experimentally via ex-
ploitation of the acousto-optic technique. The main focus was
paid to the process of generating the difference-frequency
acoustic wave and the effect of heterodyning by itself. At
this step, one must say that the above-presented analytical
calculations allow mathematically scaling the parameters ex-
ploited within the problem. By this we mean that a principal
physical opportunity exists for experimental simulation of
the desirable collinear interaction between high-frequency
acoustic waves passing along the wave axes in anisotropic
solid state through studying a perfectly equivalent process at
low frequencies in isotropic media with acceptable charac-
teristics, namely, parameters of acoustic nonlinearity, acous-
tic attenuation, and acoustic and acousto-optical figures of
merit. In our particular case, one can perform experimental
simulation of codirectional collinear acoustic wave hetero-
dyning in a 1.5-GHz frequency range in the KRS–5 crystal
through studying the same process in the acousto-optical cell
exploiting the distillated water (H2O) at frequencies of
∼100 MHz. Analysis of Eq. (39) shows that, if the orig-
inal parameter γ is saved during both the scaling and the
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Fig. 11 General principle of the wave heterodyning and its experi-
mental modeling.

experimental modeling, [i.e., γ ≡ γ M (where index M is
related to the modeling process)], one can write

f 2
j = �̃0, M

�̃0
f 2

j, M, (44a)

PP PS L2

λ2
= μM�̃0, M

μ�̃0

(
PP,M PS,ML2

M

λ2
M

)
. (44b)

The index j in Eq. (44a) represents a generalization for
all the indices exploited above. Taking into account the
properties of water: ρM = 1.0 g/cm3, nM = 1.33, |�M| = 8,
VL,M = 1.49 × 105 cm/s, �0,M = 2400 dB/(cm GHz2), and
M2,M = 126 × 10− 18 s3/g, one can find �̃0,M ≈ 5.52 × 10−16

s2/cm, mM ≈ 3.53 × 106 s/g, and μM ≈ 8.77 × 10−9 s4/(g
cm). Using Eq. (44a), which gives the frequency factor√

�̃0/�̃0,M
∼= 0.0645, and utilizing the data from Sec. 4,

which are related to Eq. (36) and illustrated by Fig. (8), one
can calculate for the modeling medium (i.e., for the distilled
water) that

fUS,M = 110.940 MHz, (45a)

fLS,M = 98.045 MHz, (45b)

fP,M = 94.815 MHz, (45c)

fDL,M = 3.225 MHz, (45d)

fDU,M = 16.125 MHz. (45e)

The general principle of the wave heterodyning and its ex-
perimental modeling are illustrated in Fig. 11. The obtained
magnitudes of the operating frequencies for liquid cell keep a
pair of the previously chosen parameters γL ≡ γL,M = 1.034
and γU ≡ γU,M = 1.17.

The frequency fDU,M from Eq. (45e) makes it possible to
exploit the results of Sec. 4 for the modeling medium and to
estimate potential clear aperture inherent in the water-based
acousto-optical cell at a –3 dB level of acoustic losses along
this aperture as DM ≈ 5.0 cm. Together with this, one has
to estimate the Klein-Cool factor Q for the liquid cell. Tak-
ing, for example, λM = λ = 671 nm and LM = 2.5 cm, one
can estimate Q ∼= 0.4 for fDL,M = 3.225 MHz and Q ∼= 9.1
for fDU,M = 16.125 MHz. Thus, the Bragg region of light
scattering could be expected for the acoustic difference fre-
quencies, which are close to fDU,M, while for the acoustic
difference frequencies near fDL,M the transition region8 of
light scattering could be expected in this water-based cell.
Nevertheless, both these options are acceptable for our pur-
poses. In fact, they both give almost the same linear approxi-
mation, and this approximation alone is desirable within the
small-signal linear regime of spectral data processing under
consideration here.

In so doing, the experimental setup, whose optical part
is presented in Fig. 12, has been arranged. The goals of our
experiment did not touch the principal possibility of mod-
eling the power-density relations, which are described by
Eq. (44b). This fact is conditioned by really large techni-
cal difference in designing between a liquid-based acousto-
optical cell and a solid state one. In our opinion, similar
modeling cannot give adequate data being practically use-
ful to help in creating the ultrahigh-frequency KRS–5 based
cell. This is why at this step of modeling our attention was
mainly concentrated on the physical principles of collinear
acoustic wave heterodyning and the corresponding frequency
relations.

Exploiting the above-listed estimations, the specific
liquid-based acousto-optical cell of a new type had been
designed and inserted in an almost standard optical scheme
for acousto-optical spectrum analysis. This scheme includes
a dark red-light laser (λM = 671 nm, the output optical power
∼40 mW), a four-prism beam expander (only two of them are
shown), a rectangular selecting optical diaphragm, a liquid-
based acousto-optical cell with acoustic absorber and two
radio-wave frequency electronic ports for the input signal
and pump (see Fig. 13), a large-aperture achromatic dou-
blet lens, and a 3000-pixel CCD linear array photocamera. A
water-based liquid cell of ∼6.0 cm in total length was lighted
by the expanded optical beam being linearly polarized along
the acoustic beam inside the cell. It provided, on the one

Fig. 12 Optical scheme for experimental acousto-optical modeling of the collinear wave heterodyning.
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Fig. 13 Water-based liquid acousto-optical cell with acoustic ab-
sorber and two radio-wave frequency electronic ports.

hand, the maximal transmission of the prism beam expander
due to coinciding the plane of expanding laser beam with the
corresponding vector of light polarization and, on the other
hand, the maximal efficiency of acousto-optical interaction
in water, because the effective photoelastic constant equals
the maximum value p11,M = 0.274. To underline the role
of the cell within modeling, one should note that the same
optical components and a multipixel CCD linear array pho-
tocamera could be practically used for operating over both
the potential KRS–5–based cell and the water-based liquid
cell. This opportunity is conditioned by rather similar sizes of
their optical apertures, while a significant difference in their
frequency performances will be reflected mainly in different
angular alignments peculiar to the chosen Bragg regime of
light scattering.

The piezoelectric transducer with an interaction length of
2.5 cm was made of a thin (Y + 36 deg)-cut lithium nio-
bate crystal, so that it excited purely longitudinal acoustic
wave at its resonant frequency close to f0,M ≈ 103 MHz and
within the total frequency bandwidth of � fM ≥ 16 MHz (i.e.,
15.5%). The single-frequency pumping longitudinal acoustic
wave with the power density of up to 0.6 mW/mm2 was gen-
erated at the fixed carrier frequency of ∼95 MHz, so that the
case of γ ∈ [1.04, 1.18] had been experimentally realized
in frames of modeling. During the experiments, we placed a
diaphragm in an ∼8-mm vicinity of the piezoelectric trans-
ducers area (∼13% of the total 6.0-cm aperture) to minimize
the effect of this area, where an increase in the power of
difference frequency waves takes place. Consequently, the
available optical aperture of a cell was exceeding 5.0 cm.
The efficiency of light scattering by longitudinal acous-
tic wave at the difference-frequency was slightly greater
than 2%. Figure 14 shows the digitized oscilloscope trace
of the light intensity distribution versus the difference fre-
quency inherent in the resulting acoustic wave, which was
generated in a water-based liquid cell realizing the algorithm
of collinear wave heterodyning. This oscilloscope trace had
been recorded by a multipixel CCD linear array photocam-

Fig. 14 The digitized oscilloscope trace reflecting the frequency dis-
tribution of the light intensity scattered by the acoustic wave with the
difference frequency within the modeling experiment.

era through connecting the input signal port of a cell at the
radio-wave sweep generator simulating the radio-wave sig-
nal. The scheme, connecting the sweep generator with the
cell’s piezoelectric transducer, included a two-section wide-
band matching circuit of the lumped components together
with a two-cascade resistance step-down transformer assem-
bled out of microcoaxial cables. The signal-like frequency
was sweeping in the range of about 98–111 MHz, so that
the difference frequency was varied in the range of about
3.0–16.5 MHz. It should be noted that for radio-wave sig-
nals, producing the dynamic acoustic gratings on the re-
sulting carrier difference-frequencies of ∼250 MHz in the
KRS–5 crystal and ∼16.2 MHz in the distilled water, the
attenuation is close to a –3 dB level over the corresponding
total cell apertures. At the same time, for the signal acoustic
waves at even the lower original frequencies of ∼1520 MHz
in KRS–5 and ∼98 MHz in water, the total attenuations ex-
ceed 110 dB along the corresponding apertures, which is
perfectly unacceptable in practice.

7 Brief Comparative Discussion
The above-obtained results make it possible to perform theo-
retical estimations for potential number of parallel frequency
channels and frequency resolution of spectrum analysis. Po-
tential frequency resolution δf inherent in similar acousto-
optical cell, operating in the regime of spectrum analysis,
can be estimated from the following simple quantum me-
chanic consideration as δf ≈ V/D. This value alone deter-
mines the physical limit of the frequency resolution pecu-
liar to an acousto-optical cell, independently, on the num-
ber of phonons taking part in a process of the Bragg light
scattering. Taking into account the above-listed values VL
= 1.92×105 cm/s and D = 5.0 cm, one can find δf
≈ 38.4 KHz. The number of parallel frequency channels for
spectrum analysis can be calculated as N = � f

/
δ f . In the

case of � f = 200 MHz, one can obtain N ≈ 5210. Moreover,
because the initial frequencies under analysis are lying in the
range 1520–1720 MHz, one can conclude that the relative
accuracy of data processing can be estimated at least by the
ratio δ f/ f0 ≈ 2.37 × 10−5. Then, the data from Sec. 4 show
that, if the total efficiency of Bragg light scattering by the
difference-frequency acoustic wave is chosen to be I0 = 0.03
(i.e., 3%), one should provide PP0 ≤ 0.83 × 107 g/s3 =
0.83 W/cm2, and PS ≤ 0.83 × 106 g/s3 = 0.083 W/cm2 due
to α = 0.1 with L = 1.0 cm (see Sec. 5).

At this step, it seems quite reasonable to compare opera-
tion characteristic of the proposed KRS–5 acousto-optical

Optical Engineering March 2011/Vol. 50(3)034002-12

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 1/25/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Shcherbakov et al.: Potentials of the acousto-optical spectrum analysis on a basis of a novel algorithm. . .

cell with the corresponding characteristics of the tradi-
tional high-frequency cell. Perhaps, the best option for
this purpose is connected with a crystalline cell exploit-
ing longitudinal acoustic waves along the [100]-axis of
uniquely low-loss lithium niobate (LiNbO3) single crystal
with M2 = 7.0 × 10− 18 s3/g, � = 0.15 dB/(cm GHz2), and
VL = 6.57 × 105 cm/s. Each cell can be characterized in
both frequency and amplitude domains. The best set of fre-
quency characteristics for the chosen cell at the central fre-
quency f0 = 1.6 GHz (which is neighboring to the central
frequency f0 = 1620 MHz obtained for KRS–5 crys-
talline cell) includes the frequency bandwidth � f ≈ f0/2
= 810 MHz, the upper signal frequency fU = 2.0 GHz,
the optical aperture D0 = 3[dB]/(� f 2

U) ≈ 5.0 cm associ-
ated with a 3-dB level of acoustic losses at the frequency
fU, the frequency resolution δ f = V/D0 = 131.4 KHz, the
number of resolvable spots N = � f/δ f ≈ 6010, and the
relative accuracy of analysis δ f/ f0 ≈ 8.2 × 10− 5. The ef-
ficiency of this cell with L = 1.0 cm and a given excit-
ing acoustic wave power density P0 can be estimated by
I0 = sin2(q0L), where q0 can be taken from Eq. (40b) at
λ = 671 nm. To make the comparison to the data at the end
of Sec. 2, let us take, as before, I0 = 0.03 (i.e., 3%). In
this case, one can estimate q0 = I 1/2/L ≈ 0.173 cm− 1 and
P0 = (2Iλ2)/(π2L2 M2) ≈ 0.4 × 107 g/s3 = 0.4 W/cm2.

The above-mentioned data make it possible to conclude
that the proposed KRS–5 based cell, exploiting the collinear
acoustic wave heterodyning, provides increasing both the
frequency resolution and the relative accuracy of analysis by
∼3.4 times in comparison to the traditional lithium niobate
cell. Together with this, the new KRS–5 cell ranks below
the traditional lithium niobate cell in the number of resolv-
able spots by 13%. Then, to make the correct decision, one
must take into account a few following circumstances. First,
a large optical aperture requires growing a large-size boule
of lithium niobate deprived of internal lattice defects. In fact,
it should be the monodomained perfect single crystal ex-
hibiting a high optical homogeneity and providing top-level
conditions for propagation of both optical as well as UHF
acoustic waves through a large-aperture cell. Practically, it
is rather difficult to satisfy these requirements; otherwise,
similar cells will have lost a significant part of its poten-
tial frequency resolution. Second, designing truly effective
piezoelectric transducer with a 50% frequency bandwidth at
a carrier frequency of ∼1.6 GHz is not an ordinary task. The
existing difficulties in technology of production as well as
in subsequent acoustic and electronic matching of a simi-
lar wideband piezoelectric transducer can be resolved cur-
rently only by decreasing its efficiency or/and narrowing its
bandwidth. This is why the above-noted potential frequency
characteristics must be considered as only the limiting the-
oretical values. Third, the estimated efficiency for a lithium
niobate cell cannot be applied directly to the comparison un-
der consideration because the proposed new cell involves two
cascades of processing and provides an additional function,
namely, the heterodyning, which, naturally, needs additional
power consumption.

8 Conclusion
The presented data demonstrate both the possibility and po-
tential advantages of applying a codirectional collinear wave
heterodyning to essential, about an order of magnitude or

more, improvement of the frequency resolution within a
multichannel parallel acousto-optical spectrum analysis of
gigahertz-frequency range analog radio-wave signals. In so
doing, we have theoretically investigated the phenomenon
of a codirectional collinear wave heterodyning, taken in the
particular case of mixing the longitudinal acoustic waves
of finite amplitudes. Then, an opportunity of implementing
acousto-optical data processing with the wave heterodyning
has been experimentally modeled utilizing the specially de-
signed acousto-optical cell based on distilled water. Together
with this, the methods for estimating the total efficiency of
operation and optimizing aperture parameters for the cell of
a new type have been developed. The proposed technique ex-
ploits a two-cascade algorithm of processing and is intended
for direct parallel and precise optical spectrum analysis and
provides more then 5000 frequency channels for processing
analog radio-wave signals in a gigahertz-frequency range
with the accuracy or with the relative frequency resolution
∼10− 5, which is usually unattainable for conventional di-
rect acousto-optical methods. The obtained results reflect the
fruitful character of modern approaches based on applying
various nonlinear phenomena to improving the performance
data of optical processing and give an appropriate example
of this kind. A few practical advantages of the presented
approach can be noted. First, the proposed device does not
need additional electronic equipment for mixing the signals
and selecting the resulting carrier frequency, because het-
erodyning can be performed directly in a cell and provides
potentially the dynamic range of ∼90 dB peculiar to wave
processes in solids. Then, the approach under consideration
decreases the required relative bandwidth of piezoelectric
transducer from 50 to 100% at the resulting frequency within
a conventional cell to 15% at the initial carrier frequency.
Third, in the case of a spatially multichannel arrangement
of the acousto-optical cell, the identity of neighboring spa-
tial channels to each other can be provided by adjusting
the corresponding heterodynes. Finally, one should note that
the number of isotropic or crystalline materials, which are
appropriate for acousto-optical cells processing signals in
a gigahertz-frequency range, is definitely restricted due to
fast-growing influence of square-law frequency dependence
for the acoustic attenuation in solids. For instance, one can
easily show that the above-discussed KRS–5 cubic crystal
cannot be used for creating a conventional acousto-optical
cell operating with signals whose carrier frequency exceeds
about 400–500 MHz. Nevertheless, this crystalline material,
alone, can be, in principle, exploited for the control over
f0 = 1.6 GHz signals. Consequently, one can conclude that
a two-cascade arrangement of a cell presented here allows
extending the spectrum of acousto-optical materials being
appropriate for direct processing of ultrahigh-frequency ana-
log radio-wave signals.
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