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In this paper, an optical design is presented for an anastigmatic telescope with back focal length corrected
with exact ray tracing to eliminate spherical, coma, and astigmatism aberrations. The telescope is formed
of three conical mirrors, two of them polished on the same substratum. The optical design is divided into
three stages: we began the design obtaining the Gaussian parameters in a first-order solution; poster-
iorly, were obtained analytically the three mirrors’ asphericity in a third-order design. The final design
stage consists of the implementation of the Fermat’s principle, the Abbe sine condition, and the Codding-
ton equations for the exact correction for the three aforementioned aberrations. © 2011 Optical Society
of America
OCIS codes: 110.6770, 220.4830, 080.2740.

1. Introduction

The present work shows the design of a very particu-
lar compact telescope using three conical mirrors.
Some authors, such as Korsch [1] and Robb [2], have
studied the third-order correction for anastigmatic
systems with three mirrors; this idea has been
widely used in the design of anastigmatic systems.
We present a methodology to obtain the system pa-
rameters in an exact way for a configuration with
three mirrors and four reflections; in addition, we
show an analytical third-order solution for this par-
ticular configuration.

There exist some configurations of telescopes with
three mirrors like the large synoptic survey telescope
[3], where the focal plane is located in front of the pri-
mary mirror. The configuration shown in this paper
provides a posterior, or back focal length.

To start our design, we use a compact Gregory
telescope [4]; a Gregory telescope can be bent using
a flat mirror between the secondary and the primary

mirror. With this modification, the secondary and the
primary are located in the same space, making the
construction of both elements in the same substra-
tum possible, obtaining a compact Gregory telescope.

If we change the flat mirror by a curved mirror, we
can use the asphericity as variables in the system
correction. We propose three equations, one for each
optical aberration. The variable value of these equa-
tions is the asphericity, ε, of each mirror. The powers
Bi, positions di, and diameters Di were obtained by
means of the matrix-based ray trace [5]. In this stage,
the F=# ¼ Ftotal=D1 and the working distance dw of
the telescope are defined.

For the third-order design, the Seidel sums have
been calculated obtaining three equations in term
of the asphericity ε; these equations can be solved si-
multaneously for zero sum values to obtain the third-
order corrected system. We used Fermat’s principle
[6], the Abbe sine condition [7], Coddington equa-
tions [8], and the skew ray tracing [6] to built the
functions corresponding to the correction of each
aforementioned aberration.

In this system, a ray is reflected four times, which
complicates the explicit expression of the required
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equations, but it is easy to use algorithms with the
ray tracing that represent the three principles be-
fore mentioned. The three functions can be solved
simultaneously with the three dimensional Newton–
Raphson method using the third-order asphericity as
the initial values.

2. First-Order Design

To calculate the Gaussian parameters, we use the
system shown in Fig. 1, where for simplicity, the
powers (B1 ¼ 1=f 1, B2 ¼ 1=f 2, B3 ¼ 1=f 3) and the se-
parations are positive values. In practice, f 1 and f 2
will correspond to positive focal lengths of concave
mirrors, and f 3 will be negative to minimize the Petz-
val curvature.

The elements with powers B2, represent the same
mirror. In this case, the secondary mirror is located a
distance d2 from the tertiary mirror, which is inte-
grated to the primary mirror. From Fig. 1, we obtain
the system matrix of Eq. (1):

�
a b

c d

�
¼

�
1 −

1
f 2

0 1

��
1 0

d2 1

��
1 −

1
f 3

0 1

��
1 0

d2 1

�

×
�
1 −

1
f 2

0 1

��
1 0

d1 1

��
1 −

1
f 1

0 1

�
; ð1Þ

where the value of b is the power of the total system,
hence,

−b−1 ¼ Ftotal ¼
−f 1f 22f 3

Aþ Bþ C
; ð2Þ

where

A ¼ f 22ðf 1 − d1 þ f 3Þ þ d2
2ðf 1 − d1 þ f 2Þ;

B ¼ −d2ðf 2ðf 2 þ 2ðf 1 − d1 þ f 3ÞÞ þ 2f 3ðf 3 − d1ÞÞ;
C ¼ 2f 2f 3ðf 1 − d1Þ: ð3Þ

A. Working Distance

During the design, it is necessary to establish the
working distance dw, which is the distance from
the last element vertex to the image plane. If we
trace a parallel ray to the optical axis, this ray must
yield the optical axis at the image-plane position. To

ensure the working distance, we modify the sys-
tem matrix adding the separation “d2 þ dw,” so the
matrix will be redefined by

�
a0 b0

c0 d0

�
¼

�
1 0

d2 þ dw 1

��
a b
c d

�
: ð4Þ

The working-distance condition is determined by
the following equation:

�
a0 b0

c0 d0

�
¼

�
a b
c d

��
θin
h

�
: ð5Þ

Equation (5) guarantees that an incident ray with
an angle θin ¼ 0 and a height of incidence, h, will be
equal to zero at the working distance. Hence, from
Eq. (5) we have

d0 ¼ 0; ð6Þ

where the value of “d0
” corresponds to the element of

the matrix obtained in Eq. (4).

B. First-Order Parameters

Solving simultaneously Eqs. (2) and (6), we obtain
the following equations for the values of the second-
ary and tertiary focal distances, f 2 and f 3:

f 2 ¼ ½ðd1 − f 1ÞFtotal − ðd2 þ dwÞf 1�
½ðd1 − f 1 þ d2ÞFtotal − ð2d2 þ dwÞf 1�

; ð7Þ

f 3 ¼ Ftotalðf 1 þ d2 þ dw − d1Þf 1d2
2

Q
; ð8Þ

where

Q ¼ ½F2
total þ ðFtotal − dwÞ2d2 − d2

2 − d2
w�f 21

þ ½−F2
totald1 þ ð−d1 þ d2 þ dwÞd2Ftotal�2f 1

þ F2
totald

2
1: ð9Þ

The diameters of the elements are obtained with
the paraxial ray tracing. We evaluate Eqs. (7) and
(8) proposing values for the total focal distance,
Ftotal, the diameter, D1, and the primary mirror focal
distance, f 1, in addition to the pair of distances
between the mirrors, d1 and d2.

The separations d1 and d2 must be selected in such
a way that diminishes the vignetting produced by the
primary and tertiary intersection D3, in addition to
the secondary diameter D2, as is showed in Fig. 2.

C. Petzval Curvature

Korsch [1] and Robb [2] have shown three-mirror
telescopes corrected for spherical, coma, and astig-
matism in addition to Petzval curvature. We can
control the Petzval curvature, Pc, minimizing the
Petzval sum

Fig. 1. Optical system representing the use of a third mirror with
power B2 ¼ 1=f 2, where the light is reflected two times.
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Pc ¼
�
1
f 1

þ 2
f 2

þ 1
f 3

�
: ð10Þ

The fact of minimizing the value of Eq. (10) does
not mean that the proposed focal distances will gen-
erate a feasible asphericity. For this reason, we try
to minimize it and do not necessarily obtain zero.
Equation (10) implies that certain focal distances
are negative, which leads to the obtainment of con-
cave and convex surfaces.

3. Third-Order Design

The third-order aberrations coefficients [7] are de-
fined by the Seidel sums, which are given by Eq. (11),

SI ¼ −

Xn
k¼0

A2
khkΔ

�
u
n

�
k
; ð11aÞ

SII ¼ −
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k¼0
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�AkhkΔ

�
u
n

�
k
; ð11bÞ

SIII ¼ −
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�
k
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k
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k
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�
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ð11eÞ

For systems withmirrors, the most commonly used
convention set index n ¼ 1 and n0 ¼ ‒1 before and
after reflection means that for a ray traced from left
to right and reflected backward makes the total
optical path length positive.

L ¼
X

nili: ð12Þ

All the Gaussian parameters necessary to evaluate
the Seidel sums were obtained from the first-order
design.

A. Nomenclature

In the Seidel sums the following nomenclature
is used.

The Lagrange invariant H ¼ �hA − h�A, where �A
and A are the refraction invariants for a principal
and a marginal ray, respectively. These are only in-
variants on a given surface. The Lagrange invariant
is used in many ways: in the primary aberrations
theory it is a measure of the light propagating
through an optical system, making the connection
between the principal ray and a ray through the cen-
ter of the object.

In addition, �A ¼ n�i and A ¼ ni, where i is the mar-
ginal ray angle and �i is the principal ray angle, both
for each element of the system �h have to be consid-
ered. h corresponds to the principal ray height and
the marginal ray for each surface. The refraction
index is represented by n and the curvature of the
elements by c, as is commonly used.

The value of Δðu=nÞk is calculated by ðukþ1Þ=
ðnkþ1Þ − ðuk=nkÞ, and for Δð1=nÞk, we have 1=ðnkþ1Þ −
1=ðnkÞ. In addition, for Δnk we will use
Δnk ¼ nkþ1 − nk.

In optical systems, the value of c represents the
inverse of the paraxial curvature of the surface. In
reflective systems, the paraxial focal length of an
element is given by one-half of its paraxial ratio,
meaning

f ¼ rParaxial
2

¼ 1
2c

: ð13Þ

B. Contribution of the Eccentricity

We intend to correct the system aberrations by
means of conic surfaces, so we need modified Seidel
coefficients. Equation [14] corresponds to the Seidel
coefficients plus a contribution by the conic constant
of the elements, ε ¼ −e2, where e2 corresponds to the
eccentricity.

S�
I ¼ −

�
SI −

Xn
k¼0

ðεkc3kh4
kΔnkÞ

�
; ð14aÞ

S�
II ¼ −

�
SII −

Xn
k¼0

ðεkc3kh3
k
�hkΔnkÞ

�
; ð14bÞ

Fig. 2. Mirrors diameters and separations obtained by paraxial
ray trace. The diameter D4 is not shown in the figure because it
corresponds to the second reflection through the secondary mirror
where D2 has been calculated.
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S�
III ¼ −

�
SIII −

Xn
k¼0

ðεkc3kh2
k
�h2
kΔnkÞ

�
; ð14cÞ

S�
IV ¼ −

�
SIV −

Xn
k¼0

ðεkc3khk
�h3
kΔnkÞ

�
: ð14dÞ

C. Pupil Position Effect

The Seidel sums values depend on the pupil position
[7] with respect to each optical element, as is shown
in Eq. (15). The transmission invariant is modified
with respect to the pupil position

�A ¼ H
h
ðAhE − 1Þ; ð15Þ

where

Ekþ1 − Ek ¼ −d
nhkhkþ1

: ð16Þ

The value d represents the separation between the
surfaces designated by k. In our case, the value is
E0 ¼ 0 because the entrance pupil is located on the
first surface. From Eqs. (11a), (15), and (16) we know
that only the spherical aberration can be controlled
by the three mirrors, and the contribution of the
primary to the correction of coma and astigmatism
is null. Coma and astigmatism can only be corrected
by the secondary and tertiary mirrors. Notice how
the value of �h does not appear in the contribution
for the spherical aberration in S�

I [9].

D. System of Equations

To simplify, we can write αi ¼ c3i h
4
iΔnk, βi ¼

c3i h
3
i
�hiΔnk, and γi ¼ c3i h

2
i
�hi

2Δnk. With this simplifica-
tion the first three coefficients of Eq. [14]
become Eq. (17).

S�
I ¼ −½SI − ðε0α0 þ ε1α1 þ ε2α2 þ ε1α3Þ� ¼ 0; ð17aÞ

S�
II ¼ −½SII − ðε1β1 þ ε2β2 þ ε1β3Þ� ¼ 0; ð17bÞ

S�
III ¼ −½SIII − ðε1γ1 þ ε2γ2 þ ε1γ3Þ� ¼ 0: ð17cÞ

Therefore, we have three equations with three un-
knowns that can be solved to obtain the asphericity
ε0, ε1, and ε2 as shown below:

ε0 ¼ 1
α0

�
SI þ

SIII

δ ξ − SII

δ μ
�
; ð18aÞ

ε1 ¼ SII
γ2
δ − SIII

β2
δ ; ð18bÞ

ε2 ¼ SIII
β1 þ β3

δ − SII
γ1 þ γ3

δ ; ð18cÞ

where

δ ¼ β1γ2 − β2γ1 − β2γ3 þ β3γ2;
ξ ¼ α1β2 − α2β1 − α2β3 þ α3β2;
μ ¼ α1γ2 − α2γ1 − α2γ3 þ α3γ2: ð19Þ

4. Exact Design

In this section, we propose the algorithms used like
functions in the exact corrections of the optical
aberrations. Each intersection point Pðy; zÞ and di-
rector cosines ðL;M;NÞ showed in this section were
obtained bymeans of the exact ray tracing; the rest of
the values are the same as those obtained in the first-
order design. The only variables used in this Section
is the asphericity εi. The algorithms for the ray trace
and the correction are shown in Appendix A.

A. Spherical Aberration Correction

To correct the spherical aberration, we apply the
Fermat’s principle to the complete system. Figure 3
shows a marginal ray 4× reflected in the system.
These four reflections have associated intersection
points on each surface “i” given by Pðyi; ziÞ. The final
interception point has the dependences shown in
Eq. (20), where ci, εi, and di are the parameters of
the elements and the separations, respectively.

pðy;zÞ4 ¼ pðc1; c2; c3;d1;d2;d3; ε0; ε1; ε2;M;NÞ: ð20Þ

Bearing in mind the points of intersection of the
ray in Fig. 3, the total optical path for the marginal
ray OPmarginal is given by

Fig. 3. Intersection points must be calculated with the exact ray
trace for a marginal ray.
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OPmarginal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½z0 − d0�2 þ y0�2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½z1 − z0�2 þ ½y1 − y0�2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½z2 − z1�2 þ ½y2 − y1�2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½z3 − z2�2 þ ½y3 − y2�2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½z4 − z3�2 þ ½y4 − y3�2

q
:

The optical path is a relation of the form
OPmarginalðε0; ε1; ε2Þ. For a ray passing through the
center of the entrance pupil, we have

OPaxis ¼ d0 þ d1 þ d2 þ d2 þ ðd2 þ dwÞ: ð21Þ
The Fermat’s principle condition is represented by

the equation

Fermatðε0; ε1; ε2Þ ¼ OPmarginal −OPaxis ¼ 0: ð22Þ

B. Coma Aberration Correction

The function that corrects the coma aberration is
based on the Abbe sine condition. We can get
this function from the algorithm for the Fermat func-
tion, Eq. (22), because in Fig. 3, we have calculated
the director cosines in each ray intersection when we
built the Fermat function. The Abbe sine condition is
given by Eq. (23) for an object at infinity, where the
value of f Paraxial is known beforehand. To get the val-
ue of the director cosine M4, we need to find all the
information about the marginal ray. This means that
M4 ¼ M4ðc1; c2; c3;d1;d2;d3; ε1; ε2; ε3;L;M;NÞ or
M4 ¼ M4ðε1; ε2; ε3Þ.

Abbeðε1; ε2; ε3Þ ¼ f Paraxial −
y0
M4

¼ 0: ð23Þ

C. Astigmatism Correction

In Fig. 4, a principal ray is used to find the intersec-
tion points on each surface. These intersection points
were used to calculate the sagittal and tangential
curvature ratios, rs and rt, with Eq. (24):

rs ¼
1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − εc2y2Þ

q
; ð24aÞ

rt ¼
1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − εc2y2Þ

q
3
: ð24bÞ

The sagittal and tangential positions, Ps and Pt,
are given by the Coddington equations, Eq. (25). We
should consider that objects and images are on the
principal ray and not on the optical axis [8]. The cal-
culation of Eq. (25) must be realized for each surface,
considering that at first, the object is at infinity and
subsequently at a finite position given by the image

position after each element of the system.

1
Ps0

¼ 2 cos I0

rs
−

1
Ps

; ð25aÞ

1
Pt0

¼ 2
rt cos I0

−

1
Pt

: ð25bÞ

The intersection point on each surface of Fig. 4 was
calculated by means of the exact ray tracing.

Again, the intersection points of the ray on the
image surface are given by the form pðx;y;zÞ ¼
pðc1; c2; c3;d1;d2;d3; ε1; ε2; ε3;L;M;NÞ. We can then
consider that the image positions Ps0 and Pt0 are
functions of ðε1; ε2; ε3Þ, i.e., Psfinal ¼ Ps0 ðε1; ε2; ε3Þ and
Ptfinal ¼ Pt0 ðε1; ε2; ε3Þ.

The final sagittal and tangential images are given
by the final director cosine N and Eq. (26)):

f sfinal ¼ Psðε1; ε2; ε3ÞN; ð26aÞ

f tfinal ¼ Ptðε1; ε2; ε3ÞN: ð26bÞ

Using these focal distances, we can build Eq. (27):

Coddingtonðε0; ε1; ε2Þ ¼ f Sfinal
− f Tfinal

¼ 0: ð27Þ

5. Design of an Anastigmatic and Compact Telescope

The three basic functions proposed in the previous
sections represent three equations with three un-
knowns. It is impossible to find a simple analytic so-
lution for the corresponding roots, ε; however, we can
find the roots by means of a numerical method such
as Newton–Raphson [10], which consists of finding
the values for ε1, ε2, and ε3 in Eq. (28) introducing

Fig. 4. Image of an object at infinity Ps ¼ ∞ and Pt ¼ ∞ is pro-
duced at finite positions by the mirrors in the telescope. The final
sagittal position can be different from the tangential position be-
cause of astigmatism present in the system.
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the values iteratively to refine the solution.

0
B@

ε0
ε1
ε2

1
CA ¼

0
BBB@

df1
dε0

df1
dε1

df1
dε2

df2
dε0

df2
dε1

df2
dε2

df3
dε0

df3
dε1

df3
dε2

1
CCCA

−10
B@

f1
f2
f3

1
CA: ð28Þ

To find the system roots with the Newton–
Raphson method, it is necessary to select initial val-
ues, i.e., the first estimates for ε0, ε1, and ε2. In this
case, we have the previously found third-order solu-
tions; we can use them as initial values.

To implement the Newton–Raphson method, it is
necessary to know the derivatives of the functions to
form the Jacobian. The derivatives are calculated
numerically by Eq. (29):

df ðεÞ
dε ¼ lim

h→0

f ðεþ hÞ − f ðεÞ
h

: ð29Þ

The functions used in the Jacobian are the pre-
viously exhibited equations now renamed in the
following way:

f1 ¼ Fermatðε0; ε1; ε2Þ; ð30aÞ

f2 ¼ Abbeðε0; ε1; ε2Þ; ð30bÞ

f3 ¼ Coddingtonðε0; ε1; ε2Þ: ð30cÞ

A. Example

To confirm the effectiveness of the proposed metho-
dology, we designed a telescope using the following
input parameters: Ftotal ¼ 2:4m, d1 ¼ 348mm, d2 ¼
351:388mm, and D1 ¼ 300mm. The field of view is
0:25°, and the working distance is dw ¼ 100mm. Ex-
amining values near d1 ¼ 348mm, we found that for
d1 ¼ 347:74mm, the asphericity of the secondary
mirror equals zero, making it is easier to polish.
The results of the implemented algorithms with
the proposed values are shown in Table 1.

The layout obtained with the values from Table 1 is
presented in Fig. 5.

All the graphics shown in this example were ob-
tained with the software Zemax [11]; the software
was not used to optimize any parameter.

Figure 6 shows the resulting aberrations; we can
see that the optical path difference is less than
λ=10. The coma aberration is presented at the same
scale.

In Fig. 7, the Petzval curvature was ignored to
show the elimination of the astigmatism. The sagit-
tal and tangential image planes are equal.

Table 1. Obtained Parameters

R (mm) d (mm) D (mm) ε

−920 −347:74 150.00 −0:774
−1634:69 352.01 38.00 0.0
−329:93 −352:01 66.00 −0:396

−1634:69 352.01 30.22 0.0
171.00 −0:05 10.48 0

Fig. 5. (Color online) System layout.
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The spot diagram in the curved image plane is
shown in Fig. 8, where we can see that the spot is
less than the airy disk for the visible region of the
spectrum; we can say that the system is diffraction
limited.

In the same way, Figs. 7 and 8 show the spot
diagrams without the contribution of the Petzval cur-
vature. From the spot diagrams it is quite notable
that the correction of the desired aberrations has
been achieved.

6. Conclusions

The presented anastigmatic telescope is a compact
solution for systems where a back focal length and
good optical quality are required.

The analytical solutions for the third-order param-
eters are sufficiently good, and this is a good starting
point to the exact parameters. The proposed design
methodology is an alternative to the optimization
process with optical design software.

Fig. 7. (Color online) Sagittal and tangential image planes
plotted on the image plane with Petzval curvature.

Fig. 8. (Color online) Spot diagram of the perfectly corrected sys-
tem with an ideal image plane.

Fig. 6. (Color online) Aberrations obtained with the methodology shown in this work.
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We can search for the best parameters to facilitate
the construction, suitably choosing the entrance
parameters such as diameters, separations, working
distance, and power of the primary mirror.

The Petzval curvature given by the power of the
elements is a problem that can be solved by means
of the Petzval sum, Eq. (10).

Appendix A

The Appendix shows the exact ray trace used to
construct the algorithms for the Fermat, Abbe, and
Coddington functions.

The following, well known equations [6], are
programed and executed in sequence through each
element of the optical system. The ray trace shown
in this Appendix is used for surfaces that can be re-
presented by the general quadratic of revolution
equation:

z ¼ 1
2
cðx2 þ y2 þ εz2Þ; ðA1Þ

where ε is the asphericity and c is the inverse of the
paraxial ratio (also known as curvature).

The entrance parameters are the initial position of
the ray ðx; y; zÞ, the director cosines ðL;M;NÞ, and the
distance to the vertex of the next surface. The follow-
ing three equations are the intersection points of a
ray in a plane that is in the vertex of the next surface.

x0 ¼ x
−1 þ

L
N

ðd − z
−1Þ: ðA2Þ

y0 ¼ y
−1 þ

M
N

ðd − z
−1Þ: ðA3Þ

Values F and G are simplifications to shorten the
following equations:

F ¼ cðx20 þ y20Þ; ðA4Þ

G ¼ N − cðLx0 þMy0Þ: ðA5Þ
The value ofΔ is the separation between the plane

in the vertex of the surface and the intersection point
of the ray. Now, we need the characteristics of the op-
tical surface such as asphericity ε and curvature c.

Δ ¼ F

Gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

− cF½1þ ðε − 1ÞN2�
p : ðA6Þ

The next three equations are the intersection
points mentioned earlier.

x ¼ x0 þ LΔ: ðA7Þ

y ¼ y0 þMΔ: ðA8Þ

z ¼ NΔ: ðA9Þ

Applying Snell’s law to the ray in the intersection
point, the following equations are written in general
form and work well for refractions or reflections
through any system, taking a few considerations.

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2cðε − 1Þzþ c2εðε − 1Þz2

q
: ðA10Þ

cos I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

− cF½1þ ðε − 1ÞN2�
p

J
: ðA11Þ

n0 cos I0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n02

− n2ð1 − cos I2Þ
q

: ðA12Þ

K ¼ cðn0 cos I0 − n cosIÞ: ðA13Þ
The resulting director cosines after reflection or

refraction are given by

L0 ¼ 1
n0

�
nL −

Kx
J

�
; ðA14Þ

M0 ¼ 1
n0

�
nM −

Ky
J

�
; ðA15Þ

N 0 ¼ 1
n0

�
nN þ ð1 − zεcÞK

Jc

�
: ðA16Þ

For reflective systems in air, we must set a refrac-
tion index n ¼ −1 prior to the reflection and n ¼ 1
after the reflection.

The Fermat, Abbe, and Coddington functions were
constructed using the ray’s intersection on each
surface i. The calculation of the coordinates ðx; y; zÞ
requires the evaluation from Eqs. (A2)–(A16), thus
every coordinate is represented in terms of its depen-
dencies, as follows:

xi ¼ xðxi−1; yi−1; zi−1; ci;di; εi;Li;Mi;NiÞ; ðA17Þ

yi ¼ yðxi−1; yi−1; zi−1; ci;di; εi;Li;Mi;NiÞ; ðA18Þ

zi ¼ zðxi−1; yi−1; zi−1; ci;di; εi;Li;Mi;NiÞ: ðA19Þ

The following algorithms were programed using
Mathcad software [12].

The exact ray trace was programed in a function
called Exax, which depends on a vector PV ¼
ðx; y; z;L;M;NÞ. The Fermat, Abbe, and Coddington
functions use the Exax function to find the required
intersection points throughout the system.
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Figure 9 shows the Fermat algorithm, which
calculates the optical path between surfaces; Fig. 10
applies this algorithm through the system’s surfaces
to obtain the total optical path difference (OPD).

A represents the use of the Exax function in order
to obtain the exact ray trace, B calculates the optical
path, and C is the exit vector, which in addition con-
tains the optical path D.

For the algorithm shown in Fig. 10, A applies the
Fermat algorithm using the contribution of each
surface until reaching the image plane. B calculates
the optical path for a ray on the optical axis, and C
calculates the OPD, Eq. (22).

The algorithm Coma (Fig. 11) uses the Fermat
algorithm (A) to obtain the director cosine for a
ray exiting the system, and B represents Eq. (23).

Figure 12, shows the algorithm Codd. Points A toE
are used to calculate the sagittal and tangential focal
lengths, (Eqs. (24) and (25)).

Finally, algorithm Astig shown in Fig. 13, calcu-
lates the final sagittal and tangential focal lengths
to evaluate Eq. (27).

Eq. (A20) represent the principles in Eqs. (22), (23),
and (27). The functions f 1, f 2, and f 3 must be
solved for the values of x1, x2, and x3, which are

Fig. 10. Esfer algorithm.

Fig. 12. Codd algorithm.

Fig. 11. Coma algorithm. Fig. 13. Astig algorithm.

Fig. 9. Fermat algorithm.
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the asphericities.

f 1ðx1; x2; x3Þ ¼ Esferðc1; c2; c3; x1; x2; x3;d1;d2;Ht;LÞ;
f 2ðx1; x2; x3Þ ¼ Comaðc1; c2; c3; x1; x2; x3;d1;d2;Ht; f Þ;
f 3ðx1; x2; x3Þ ¼ Astigðc1; c2; c3; x1; x2; x3;d1;d2; θÞ:

ðA20Þ
We thank W. J. Schuster for carefully reading the

final manuscript.
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